• Aucun résultat trouvé

2) Types de sondes :

8.4 Vers des interfaces cerveau-machine passives performantes et peu intrusives

Ces travaux de thèse ont permis de mettre au jour diérents apports pour les interfaces cerveau-machine passives. Ainsi, ces interfaces pourraient voir leurs performances grandement améliorées par l'utilisation d'étapes de ltrage spatial, mais aussi par l'utilisation de mesures de l'activité EEG évoquée par des sondes potentiellement très peu distractrices, puisqu'ignorées par les opérateurs. L'utilisation de telles sondes nous paraît particulièrement pertinente pour l'estimation de la charge mentale qui est un état encore mal décodé par les systèmes actuels. En revanche, pour la fatigue mentale, l'utilisation de telles sondes n'est pas nécessaire, une mesure continue de marqueurs EEG fréquentiels et/ou de marqueurs de l'activité oculaire peuvent sure à atteindre des performances élevées tout en restant le moins intrusif possible.

Ces travaux apportent donc de nouveaux éléments pour l'implémentation de systèmes de suivi des états mentaux ecaces et peu intrusifs qui permettront, je l'espère, à terme de déve- lopper des interfaces optimales pour l'amélioration des conditions de sécurité d'opérateurs dans des situations à risque, mais aussi pour développer des interfaces d'e-learning s'adaptant à l'état de l'élève, des ordinateurs ou téléphones intelligents modulant leurs modalité de notication, ou encore des jeux vidéos adaptant leur niveau de challenge en fonction de notre état. Ces systèmes devront combiner la mesure de plusieurs états mentaux, dont les états attentionnels et émo- tionnels. En eet, l'attention et les émotions inuent sur de nombreux états mentaux dont la

"We must develop as quickly as possible technologies that make possible a direct connection between brain and computer, so that articial brains contribute to human intelligence rather

than opposing it."

[1] E. Cutrell and D. Tan, BCI for passive input in HCI, ACM Press, 2008.

[2] R. Parasuraman, J. Christensen, and S. Grafton, Neuroergonomics : The brain in action and at work, NeuroImage, vol. 59, no. 1, pp. 13, 2012.

[3] R. Parasuraman and M. Rizzo, Neuroergonomics : the brain at work. New York : Oxford University Press, 2008.

[4] S. H. Fairclough, Fundamentals of physiological computing, Interacting with Computers, vol. 21, no. 1-2, pp. 133145, 2008.

[5] J. Allanson and S. H. Fairclough, A research agenda for physiological computing, Inter- acting with Computers, vol. 16, no. 5, pp. 857878, 2004.

[6] J. van Erp, F. Lotte, and M. Tangermann, Brain-computer interfaces : Beyond medical applications, Computer, vol. 45, no. 4, pp. 2634, 2012.

[7] D. Chen and R. Vertegaal, Using mental load for managing interruptions in physiologically attentive user interfaces, in Proc. Int. Conf. Human Factors in Comput. Syst., pp. 1513 1516, ACM Press, 2004.

[8] J. J. Vidal, Toward direct brain-computer communication, Annual Review of Biophysics and Bioengineering, vol. 2, pp. 157180, 1973.

[9] J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, and T. Vaughan, Brain- computer interfaces for communication and control, Clinical neurophysiology, vol. 113, no. 6, pp. 767791, 2002.

[10] B. Grainmann, B. Allison, and G. Pfurtscheller, Brain-computer interfaces : A gentle introduction, in Brain-computer interfaces : Revolutionizing human-computer interaction, pp. 125, Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.

[11] T. O. Zander and C. Kothe, Towards passive braincomputer interfaces : applying braincomputer interface technology to humanmachine systems in general, J. Neur. Eng., vol. 8, Apr. 2011.

[12] L. George and A. Lécuyer, An overview of research on passive brain-computer interfaces for implicit human-computer interaction, in Proc. Int. Conf. Appl. Bionics Biomech., 2010. [13] F. Putze, J. Jarvis, and T. Schultz, Multimodal recognition of cognitive workload for

multitasking in the car, in Proc. Int. Conf. Pattern Recognition, pp. 37483751, 2010. [14] M. Arns, S. de Ridder, U. Strehl, M. Breteler, and A. Coenen, Ecacy of neurofeedback

treatment in adhd : the eects on inattention, impulsivity and hyperactivity : a meta- analysis, Clinical EEG and neuroscience, vol. 40, no. 3, pp. 180189, 2009.

[15] J.-P. Lachaux, K. Jerbi, O. Bertrand, L. Minotti, D. Homann, B. Schoendor, and P. Ka- hane, BrainTV : a novel approach for online mapping of human brain functions, Biological Research, vol. 40, no. 4, pp. 401413, 2007.

[16] C. Berka, D. J. Levendowski, M. N. Lumicao, A. Yau, G. Davis, V. T. Zivkovic, R. E. Olm- stead, P. D. Tremoulet, and P. L. Craven, EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks, Aviation, Space, and Environmental Medicine, vol. 78, no. 5 Suppl, pp. B231244, 2007.

[20] D. Purves, G. J. Augustine, D. Fitzpatrick, L. C. Katz, A.-S. Lamantia, J. O. McNamara, and S. M. Williams, Neurosciences. Bruxelles ; Belgium : de Boeck, 2003.

[21] S. Sanei and J. Chambers, EEG signal processing. Chichester, England ; Hoboken, NJ : John Wiley & Sons, 2007.

[22] R. Scapolan, Etude numérique de la stimulation neuronale. 2010.

[23] E. Niedermeyer and F. Lopes da Silva, Electroencephalography : Basic principles, clinical applications and related elds. Philadelphia ; USA : Lippincott Williams and Wilkins, 2005. [24] A. Campagne, Méthodes de neuroimagerie : Electroencéphalographie & magnétoencépha-

lographie, 2010. Lecture.

[25] A. Barachant, Commande robuste d'un eecteur par une interface cerveau-machine EEG asynchrone. PhD thesis, Université Grenoble Alpes, 2012.

[26] G. E. Chatrian, E. Lettich, and P. L. Nelson, Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity, Am. J. EEG Technol., vol. 25, pp. 8392, 1985.

[27] R. Oostenveld and P. Praamstra, The ve percent electrode system for high-resolution EEG and ERP measurements, Clinical Neurophysiology, vol. 112, no. 4, pp. 713719, 2001.

[28] S. H. Patel and P. N. Azzam, Characterization of N200 and P300 : selected studies of the Event-Related Potential., Int J Med Sci, vol. 2, no. 4, pp. 147154, 2005.

[29] L. Sörnmo and P. Laguna, Bioelectrical signal processing in cardiac and neurological appli- cations. Amsterdam ; Boston : Elsevier Academic Press, 2005.

[30] G. G. Berntson, J. Bigger, J T, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, Heart rate variability : origins, methods, and interpretive caveats, Psychophysiology, vol. 34, no. 6, pp. 623648, 1997.

[31] M. Malik, J. T. Bigger, A. J. Camm, R. E. Kleiger, A. Malliani, A. J. Moss, and P. J. Schwartz, Heart rate variability : Standards of measurement, physiological interpretation, and clinical use, Eur. Heart J., vol. 17, no. 3, pp. 354381, 1996.

[32] A. Bulling, J. A. Ward, H. Gellersen, and G. Troster, Eye movement analysis for activity recognition using electrooculography, IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 4, pp. 741753, 2011.

[33] S. Mason and G. Birch, A general framework for brain-computer interface design, IEEE Trans.Neural Syst. Rehabil. Eng., vol. 11, no. 1, pp. 7085, 2003.

[34] A. Bashashati, M. Fatourechi, R. Ward, and G. Birch, A survey of signal processing algorithms in braincomputer interfaces based on electrical brain signals, J. Neur. Eng., vol. 4, p. R32, 2007.

[35] F. Lotte, A Tutorial on EEG Signal Processing Techniques for Mental State Recognition in Brain-Computer Interfaces, in Guide to Brain-Computer Music Interfacing (J. C. Eduardo Reck Miranda, ed.), Springer, 2014.

[36] G. Pfurtscheller, C. Brunner, R. Leeb, R. Scherer, G. R. Müller-Putz, and C. Neurper, The Graz Brain-Computer Interface, in Brain-computer interfaces : Revolutionizing human- computer interaction (B. Grainmann, B. Allison, and G. Pfurtscheller, eds.), pp. 7996, Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.

[37] G. Gratton, Dealing with artifacts : The EOG contamination of the event-related brain potential, Behavior Research Methods, Instruments, & Computers, vol. 30, no. 1, pp. 44 53, 1998.

[38] R. Croft and R. Barry, Removal of ocular artifact from the EEG : a review, Neurophy- siologie Clinique/Clinical Neurophysiology, vol. 30, no. 1, pp. 519, 2000.

[39] M. Fatourechi, A. Bashashati, R. K. Ward, and G. E. Birch, EMG and EOG artifacts in brain computer interface systems : A survey, Clinical Neurophysiology, vol. 118, no. 3, pp. 480494, 2007.

[40] R. Romo Vázquez, H. Vélez-Pérez, R. Ranta, V. Louis Dorr, D. Maquin, and L. Maillard, Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling, Biomed. Sign. Proc. Contr., 2011.

[41] F. Lotte, Study of Electroencephalographic Signal Processing and Classication Techniques towards the use of Brain-Computer Interfaces in Virtual Reality Applications. PhD thesis, INSA de Rennes, 2008.

[42] D. Heger, F. Putze, and T. Schultz, Online workload recognition from EEG data du- ring cognitive tests and human-machine interaction, Advances in Articial Intelligence, p. 410417, 2010.

[43] A. Hyvärinen and E. Oja, Independent component analysis : algorithms and applications, Neural networks, vol. 13, no. 4-5, p. 411430, 2000.

[44] M. Congedo, C. Gouy-Pailler, and C. Jutten, On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics, Cli- nical Neurophysiology, vol. 119, no. 12, p. 26772686, 2008.

[45] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, A blind source sepa- ration technique using second-order statistics, IEEE Trans. Sign. Proc., vol. 45, no. 2, pp. 434444, 1997.

[46] C. J. James and C. W. Hesse, Independent component analysis for biomedical signals, Physiological measurement, vol. 26, p. R15, 2005.

[47] A. Cichocki and J. Zurada, Blind signal separation and extraction : Recent trends, future perspectives, and applications, Proc. Int. Conf. Artif. Intell. Soft., p. 3037, 2004. [48] Z. J. Koles, The quantitative extraction and topographic mapping of the abnormal com-

ponents in the clinical EEG, Electroencephalography and clinical neurophysiology, vol. 79, no. 6, pp. 440447, 1991.

[49] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, Optimal spatial ltering of single trial EEG during imagined hand movement, IEEE Trans. Rehabil. Eng., vol. 8, no. 4, pp. 441446, 2000.

[50] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. robert Müller, Optimizing spatial lters for robust EEG single-trial analysis, in IEEE Signal Proc. Magazine, pp. 581 607, 2008.

[51] M. Schultze-Kraft, M. Gugler, G. Curio, and B. Blankertz, Towards an online detection of workload in industrial work, in Proc. IEEE Conf. Eng. Med. Biol. Soc., 2012.

[52] M. Spüler, A. Walter, W. Rosenstiel, and M. Bogdan, Spatial ltering based on canonical correlation analysis for classication of evoked or event-related potentials in EEG data, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, pp. 1097  1103, 11 2014.

Diego, United States), pp. 14, Nov. 2013.

[56] M. W. Tangermann, Feature selection for brain-computer interfaces. PhD thesis, Eberhard Karls Universität, Tübingen, 2007.

[57] B. Hjorth, EEG analysis based on time domain properties, Electroencephalography and clinical neurophysiology, vol. 29, no. 3, pp. 306310, 1970.

[58] F. Lotte, A new feature and associated optimal spatial lter for EEG signal classication : Waveform length, in Proc. Int. Conf. Pattern Recog., pp. 13021305, Nov. 2012.

[59] D. Tkach, H. Huang, and T. A. Kuiken, Study of stability of time-domain features for electromyographic pattern recognition, J. NeuroEng. Rehabil., vol. 7, no. 1, pp. 721, 2010.

[60] N.-J. Huan and R. Palaniappan, Neural network classication of autoregressive features from electroencephalogram signals for braincomputer interface design, J. Neur. Eng., vol. 1, no. 3, p. 142, 2004.

[61] C. Torrence and G. P. Compo, A practical guide to wavelet analysis, Bulletin of the American Meteorological Society, vol. 79, pp. 6178, 1998.

[62] R. Greenblatt, M. Pieger, and A. Ossadtchi, Connectivity measures applied to human brain electrophysiological data, J. Neurosci. Meth., vol. 207, no. 1, pp. 116, 2012. [63] R. Quian Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger, Performance of dierent

synchronization measures in real data : A case study on electroencephalographic signals, Physical Review, vol. 65, no. 4, 2002.

[64] C. W. J. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica, vol. 37, no. 3, p. 424, 1969.

[65] B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Müller, Single-trial analysis and classication of ERP components  a tutorial, NeuroImage, vol. 56, no. 2, pp. 814825, 2011.

[66] J. V. Odom, M. Bach, C. Barber, M. Brigell, M. F. Marmor, A. P. Tormene, G. E. Holder, and Vaegan, Visual evoked potentials standard, Documenta ophthalmologica. Advances in ophthalmology, vol. 108, pp. 115123, Mar. 2004.

[67] Y. Li, K. K. Ang, and C. Guan, Digital signal processing and machine learning, in Brain- computer interfaces : Revolutionizing human-computer interaction (B. Grainmann, B. Al- lison, and G. Pfurtscheller, eds.), pp. 305330, Berlin, Heidelberg : Springer Berlin Heidel- berg, 2010.

[68] B. Blankertz, M. Tangermann, C. Vidaurre, T. Dickhaus, C. Sannelli, F. Popescu, S. Fazli, M. Danoczy, G. Curio, and K.-R. Mülle, Detecting mental states by machine learning techniques : The berlin- brain-computer interface, in Brain-computer interfaces : Revo- lutionizing human-computer interaction (B. Grainmann, B. Allison, and G. Pfurtscheller, eds.), pp. 113136, Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.

[69] B. Obermaier, C. Guger, C. Neuper, and G. Pfurtscheller, Hidden Markov models for on- line classication of single trial EEG data, Pattern Recogn. Lett., vol. 22, no. 12, pp. 1299 1309, 2001.

[70] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, A review of classication algorithms for EEG-based braincomputer interfaces, J. Neur. Eng., vol. 4, pp. R1R13, June 2007.

[71] J. Schäfer and K. Strimmer, A shrinkage approach to large-scale covariance matrix esti- mation and implications for functional genomics, Stat. Appl. Genet. Mol. Biol., 2005. [72] D. Garrett, D. A. Peterson, C. W. Anderson, and M. H. Thaut, Comparison of linear,

nonlinear, and feature selection methods for EEG signal classication, IEEE Trans. Neur. Syst. Rehabil. Eng., vol. 11, no. 2, pp. 141144, 2003.

[73] A. Eliseyev, A.-L. Benabid, and T. Aksenova, Recursive multi-way PLS for adaptive ca- libration of brain computer interface system, in Articial Neural Networks and Machine Learning  ICANN 2011 (D. Hutchison, T. Kanade, and J. a. Kittler, eds.), vol. 6792, pp. 1724, Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.

[74] A. Schlögl, F. Lee, H. Bischof, and G. Pfurtscheller, Characterization of four-class motor imagery EEG data for the BCI-competition 2005, J. Neur. Eng., vol. 2, no. 4, pp. L14L22, 2005.

[75] J. Cacioppo and L. G. Tassinary, Inferring psychological signicance from physiological signals, American Psychologist, vol. 45, pp. 1628, 1990.

[76] D. Kahneman, Attention and eort. Prentice-Hall Englewood Clis, NJ, 1973.

[77] D. A. Norman and D. G. Bobrow, On Data-limited and Resource-limited Processes, Cognitive Psychology, vol. 7, no. 1, pp. 4464, 1975.

[78] J. Sweller, Cognitive load during problem solving : Eects on learning, Cognitive Science, vol. 12, pp. 257285, 1988.

[79] B. Oken, M. Salinsky, and S. Elsas, Vigilance, alertness, or sustained attention : physio- logical basis and measurement, Clinical Neurophysiology, vol. 117, no. 9, pp. 18851901, 2006.

[80] S. K. Lal and A. Craig, Driver fatigue : Electroencephalography and psychological assess- ment, Psychophysiology, vol. 39, no. 3, pp. 313321, 2002.

[81] Y. Kato, H. Endo, and T. Kizuka, Mental fatigue and impaired response processes : Event-related brain potentials in a Go/NoGo task, Int. J. Psychophysiol., vol. 72, no. 2, pp. 204211, 2009.

[82] C. Zhao, M. Zhao, J. Liu, and C. Zheng, Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator, Accident Analysis & Prevention, vol. 45, pp. 8390, 2012.

[83] G. Borghini, L. Astol, G. Vecchiato, D. Mattia, and F. Babiloni, Measuring neurophy- siological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness, Neuroscience & Biobehavioral Reviews, 2012.

[84] M. Boksem, T. Meijman, and M. Lorist, Eects of mental fatigue on attention : an ERP study, Cognitive Brain Research, vol. 25, no. 1, pp. 107116, 2005.

[85] J. Coull, Neural correlates of attention and arousal : insights from electrophysiology, func- tional neuroimaging and psychopharmacology, Progress in Neurobiology, vol. 55, pp. 343 361, July 1998.

[86] M. Sarter, B. Givens, and J. P. Bruno, The cognitive neuroscience of sustained attention : where top-down meets bottom-up, Brain Research Reviews, vol. 35, no. 2, pp. 146160, 2001.

[87] J. F. Mackworth, Vigilance, arousal, and habituation, Psychological Review, vol. 75, no. 4, pp. 308322, 1968.

[90] A. Campagne, T. Pebayle, and A. Muzet, Correlation between driving errors and vigilance level : inuence of the driver's age., Physiology and Behavior, vol. 80, no. 4, pp. 51524, 2004.

[91] E. Schmidt, M. Schrauf, M. Simon, M. Fritzsche, A. Buchner, and W. Kincses, Drivers' misjudgement of vigilance state during prolonged monotonous daytime driving, Accident Analysis & Prevention, vol. 41, no. 5, pp. 10871093, 2009.

[92] R. Parasuraman and D. R. Davies, Decision theory analysis of response latencies in vigi- lance., J. Exp. Psychol. Human Perc. Perf., vol. 2, no. 4, pp. 578590, 1976.

[93] J. Szalma, J. Warm, G. Matthews, W. Dember, E. Weiler, A. Meier, and F. Eggemeier, Eects of sensory modality and task duration on performance, workload, and stress in sustained attention, Human Factors, vol. 46, no. 2, pp. 219233, 2004.

[94] A. Ishii, M. Tanaka, and Y. Watanabe, Neural mechanisms of mental fatigue., Rev. Neu- rosci., vol. 25, no. 4, pp. 469479, 2014.

[95] Y. Shigihara, M. Tanaka, A. Ihiss, S. Tajima, E. Kanai, M. Funakura, and Y. Watanabe, Two dierent types of mental fatigue produce dierent styles of task performance, Neu- rology, Psychiatry and Brain Research, vol. 19, no. 1, pp. 511, 2013.

[96] W. Klimesch, EEG alpha and theta oscillations reect cognitive and memory performance : a review and analysis, Brain Research Reviews, vol. 29, no. 2-3, pp. 169195, 1999. [97] I. Käthner, S. C. Wriessnegger, G. R. Müller-Putz, A. Kübler, and S. Halder, Eects of

mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface, Biol. Psychol., vol. 102, pp. 118129, 2014. [98] L.-D. Liao, S.-L. Wu, C.-H. Liou, S.-W. Lu, S.-A. Chen, S.-F. Chen, L.-W. Ko, and C.-T.

Lin, A novel 16-channel wireless system for electroencephalography measurements with dry spring-loaded sensors, IEEE Trans. Instrum. Meas., pp. 15451555, 2014.

[99] L. G. Faber, N. M. Maurits, and M. M. Lorist, Mental fatigue aects visual selective attention, PLoS ONE, vol. 7, no. 10, 2012.

[100] B. T. Jap, S. Lal, P. Fischer, and E. Bekiaris, Using EEG spectral components to assess algorithms for detecting fatigue, Expert Systems with Applications, vol. 36, no. 2, pp. 2352 2359, 2009.

[101] G. Borghini, L. Astol, G. Vecchiato, D. Mattia, and F. Babiloni, Measuring neurophy- siological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness, Neuroscience & Biobehavioral Reviews, vol. 44, pp. 5875, 2014. [102] H. S. Koelega, M. N. Verbaten, T. H. van Leeuwen, J. Kenemans, C. Kemner, and

W. Sjouw, Time eects on event-related brain potentials and vigilance performance, Biological Psychology, vol. 34, no. 1, pp. 5986, 1992.

[103] A. Murata, A. Uetake, and Y. Takasawa, Evaluation of mental fatigue using feature para- meter extracted from event-related potential, Int. J. Ind. Ergon., vol. 35, no. 8, pp. 761 770, 2005.

[104] T. Morris and J. Miller, Electrooculographic and performance indices of fatigue during simulated ight, Biological Psychology, vol. 42, no. 3, pp. 343360, 1996.

[105] G. Barbato, V. De Padova, A. R. Paolillo, L. Arpaia, E. Russo, and G. Ficca, Increa- sed spontaneous eye blink rate following prolonged wakefulness, Physiology & Behavior, vol. 90, no. 1, pp. 151154, 2007.

[106] K. Kaneko and K. Sakamoto, Spontaneous blinks as a criterion of visual fatigue during prolonged work on visual display terminals, Perceptual and Motor Skills, vol. 92, no. 1, pp. 234250, 2001.

[107] G. Borghini, G. Vecchiato, J. Toppi, L. Astol, A. Maglione, R. Isabella, C. Caltagirone, W. Kong, D. Wei, Z. Zhou, L. Polidori, S. Vitiello, and F. Babiloni, Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices, in Proc. IEEE Conf. Eng. Med. Biol. Soc., pp. 64426445, Aug. 2012.

[108] S. H. Fairclough and L. Venables, Prediction of subjective states from psychophysiology : A multivariate approach, Biological Psychology, vol. 71, no. 1, pp. 100110, 2006.

[109] N. Pattyn, X. Neyt, D. Henderickx, and E. Soetens, Psychophysiological investigation of vigilance decrement : Boredom or cognitive fatigue ?, Physiology & Behavior, vol. 93, no. 1-2, pp. 369378, 2008.

[110] R. Magjarevic, C. Heinze, U. Trutschel, T. Schnupp, D. Sommer, A. Schenka, J. Krajewski, and M. Golz, Operator fatigue estimation using heart rate measures, in World Congress Med. Phys. Biomed. Eng., vol. 25/4, (Berlin, Heidelberg), pp. 930933, Springer Berlin Heidelberg, 2009.

[111] S. Fairclough, L. Venables, and A. Tattersall, The inuence of task demand and learning on the psychophysiological response, Int. J. Psychophysiol., vol. 56, no. 2, pp. 171184, 2005.

[112] A. R. Subhani, X. Likun, and A. Saeed Malik, Association of autonomic nervous system and EEG scalp potential during playing 2D grand turismo 5, in Proc. IEEE Conf. Eng. Biol. Med. Soc., pp. 34203423, Aug. 2012.

[113] M. Tanaka, Y. Shigihara, A. Ishii, M. Funakura, E. Kanai, and Y. Watanabe, Eect of mental fatigue on the central nervous system : an electroencephalography study, Behavio- ral and Brain Functions, vol. 8, no. 1, pp. 848, 2012.

[114] M. Golz, D. Sommer, U. Trutschel, B. Sirois, and D. Edwards, Evaluation of fatigue monitoring technologies, Somnologie - Schlaorschung und Schlafmedizin, vol. 14, no. 3, pp. 187199, 2010.

[115] K.-Q. Shen, X.-P. Li, C.-J. Ong, S.-Y. Shao, and E. P. Wilder-Smith, EEG-based mental fatigue measurement using multi-class support vector machines with condence estimate, Clinical Neurophysiology, vol. 119, no. 7, pp. 15241533, 2008.

[116] L.-C. Shi and B.-L. Lu, EEG-based vigilance estimation using extreme learning machines, Neurocomputing, vol. 102, pp. 135143, 2013.

[117] M. V. Yeo, X. Li, K. Shen, and E. P. Wilder-Smith, Can SVM be used for automatic EEG detection of drowsiness during car driving ?, Safety Science, vol. 47, no. 1, pp. 115124, 2009.

[118] C. Zhang, C. Zheng, and X. Yu, Evaluation of mental fatigue based on multipsychophy- siological parameters and kernel learning algorithms, Chinese Science Bulletin, vol. 53, no. 12, pp. 18351847, 2008.

[119] F. Laurent, M. Valderrama, M. Besserve, M. Guillard, J.-P. Lachaux, J. Martinerie, and G. Florence, Multimodal information improves the rapid detection of mental fatigue, Biomed. Signal Proc. Contr., vol. 8, no. 4, pp. 400408, 2013.

[120] T.-P. Jung, S. Makeig, M. Stensmo, and T. Sejnowski, Estimating alertness from the EEG power spectrum, IEEE Trans. Biomed. Eng., vol. 44, no. 1, pp. 6069, 1997.

[123] R. R. Johnson, D. P. Popovic, R. E. Olmstead, M. Stikic, D. J. Levendowski, and C. Berka, Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model, Biological Psychology, vol. 87, no. 2, pp. 241250, 2011.

[124] D. Levendowski, Z. Konstantinovic, R. Olmstead, and C. Berka, Method for the quanti- cation of human alertness, Patent number WO 00/40148, 07 2000.

[125] C.-T. Lin, R.-C. Wu, S.-F. Liang, W.-H. Chao, Y.-J. Chen, and T.-P. Jung, EEG-based drowsiness estimation for safety driving using independent component analysis, IEEE Trans. Circuits Syst., vol. 52, pp. 27262738, Dec. 2005.

[126] S. F. Liang, C. T. Lin, R. C. Wu, Y. C. Chen, T. Y. Huang, and T. P. Jung, Monito- ring driver's alertness based on the driving performance estimation and the EEG power spectrum analysis, Proc. IEEE Conf. Eng. Med. Biol. Soc., vol. 6, pp. 57385741, 2005. [127] L. J. Trejo, K. Knuth, R. Prado, R. Rosipal, K. Kubitz, and R. K. B. Matthews, EEG-

based estimation of mental fatigue : Convergent evidence for a three-state model, in Proc. HCII, Augmented Cognition, 2007.

[128] A. Picot, S. Charbonnier, and A. Caplier, On-line automatic detection of driver drowsiness using a single electroencephalographic channel, Proc IEEE Conf. Eng. Med. Biol. Soc., vol. 2008, pp. 38643867, 2008.

[129] J. E. Arruda, R. T. Amoss, K. L. Coburn, and H. McGee, A quantitative electroence- phalographic correlate of sustained attention processing, Applied Psychophysiology and Biofeedback, vol. 32, no. 1, pp. 1117, 2007.

[130] S. K. Lal and A. Craig, A critical review of the psychophysiology of driver fatigue, Biological Psychology, vol. 55, no. 3, pp. 173194, 2001.

[131] S. Makeig and M. Inlow, Lapses in alertness : coherence of uctuations in performance and EEG spectrum, Electroencephalography and clinical neurophysiology, vol. 86, pp. 2335, Jan. 1993.

[132] S. Makeig, Tonic, phasic, and transient EEG correlates of auditory awareness in drowsi- ness, Cognitive Brain Research, vol. 4, pp. 1525, July 1996.

[133] F. G. Freeman, P. J. Mikulka, M. W. Scerbo, and L. Scott, An evaluation of an adaptive automation system using a cognitive vigilance task, Biological Psychology, vol. 67, no. 3, pp. 283297, 2004.

[134] A. T. Kamzanova, G. Matthews, A. M. Kustubayeva, and S. M. Jakupov, EEG indices to time-on-task eects and to a workload manipulation (cueing), in Proc. of the World Academy of Science, Engineering & Technology, vol. 80, pp. 1922, Aug. 2011.

[135] H. Yu, H. Lu, T. Ouyang, H. Liu, and B.-L. Lu, Vigilance detection based on sparse representation of EEG, in Proc. IEEE Conf. Eng. Med. Biol. Soc., pp. 24392442, Aug. 2010.

[136] R. N. Khushaba, S. Kodagoda, S. Lal, and G. Dissanayake, Driver drowsiness classication using fuzzy Wavelet-Packet-Based Feature-Extraction algorithm, IEEE Trans. Biomed. Eng., vol. 58, no. 1, pp. 121131, 2011.

[137] A. Subasi, Automatic recognition of alertness level from EEG by using neural network and wavelet coecients, Expert Systems with Applications, vol. 28, no. 4, pp. 701711, 2005.