• Aucun résultat trouvé

SICI lacking in PT

4.4 Implications cliniques

Cette étude apporte de nouvelles connaissances sur le développement cérébral des enfants à terme et des enfants très prématurés. Le travail qui propose pour la première fois des biomarqueurs des incapacités cliniques souligne à nouveau l'importance d'une détection précoce des enfants à risque de développer des incapacités fonctionnelles à long terme. Une revue de littérature récente rappelle l'importance de diagnostiquer précocement les enfants

prématurés à risque de déficits à long terme, même mineurs, et ainsi aider à ajuster les interventions aux problèmes détectés (Arpino et al., 2010).

Ainsi, non seulement le dépistage précoce, mais également la prise en charge par des professionnels de la santé des enfants nés très prématurés ayant des déficits moteurs (même subtils), va bénéficier de résultats tels que les nôtres, dans lesquels c'est le côté dominant qui est problématique à 8 ans chez les prématurés. Il faut s'intéresser au continuum du développement de l'enfant, de son fonctionnement cérébral à ses capacités cognitivo- motrices, sans oublier les aspects de son adaptation et participation sociales. En effet, les études sur l'ajustement social des enfants prématurés à l'âge scolaire démontrent que, même en l'absence de déficience motrice ou cognitive majeure, la présence de déficits moteurs mineurs augmente le risque de retrait social et de victimisation par les pairs (Nadeau et al., 2004). La meilleure compréhension de ce continuum de développement permettra de guider l'adaptation des interventions de réadaptation physique et psychosociales auprès des enfants très prématurés.

En conclusion, l'identification d'indicateurs de fonctionnement du cerveau (incluant les aspects de développement), tels que ceux proposés par le présent travail, va permettre d'améliorer le diagnostic, le pronostic, ainsi que les interventions thérapeutiques visant à réduire les risques d'incapacités à long terme. L'augmentation du nombre de naissances prématurées signifie également l'augmentation du nombre de nouveaux-nés dont le cerveau est vulnérable (Hayden, 2010). Si le but des avancées dans les soins néonataux est la survie de ces enfants prématurés ainsi que la baisse de comorbidité pour une meilleure qualité de vie, alors la compréhension du développement de leur cerveau est cruciale pour l'établissement de nouveaux biomarqueurs. Ces derniers sont pertinents pour le suivi clinique, car ils fournissent des informations plus subtiles sur le fonctionnement cérébral que les examens en neuroanatomie. Ceci est particulièrement déterminant dans un contexte où l'identification d'anomalies de fonctionnement cérébral pendant l'enfance pourrait d'aider à prévenir les incapacités fonctionnelles des enfants à l'âge scolaire ainsi qu'à l'adolescence.

Aarnoudse-Moens CS, Weisglas-Kuperus N, van Goudoever JB & Oosterlaan J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 124:717-28.

Abernethy LJ, Cooke RW & Foulder-Hugues L. (2004). Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm. Pediatr Res 55:884-93.

Alagona G, Delvaux V, Gérard P, De Pasqua V, Pennisi G, Delwaide PJ, Nicoletti F & Maertens de Noordhout A. (2001). Ipsilateral motor responses to focal transcranial magnetic stimulation in healthy subjects and acute-stroke patients. Stroke 32:1304- 9.

Allen MC. (2008). Neurodevelopmental outcomes of preterm infants. Curr Opin Neurol 21:123-8.

Anderson PJ & Doyle LW. (2008). Cognitive and educational deficits in children born extremely preterm. Semin Perinatol 32:51-8.

Arpino C, Compagnone E, Montanaro ML, Cacciatore D, De Luca A, Cerulli A, Di Girolamo S & Curatolo P. (2010). Preterm birth and neurodevelopmental outcome : a review. Childs Nerv Syst. [Epub ahead of print], doi: 10.1007/s00381-010-l 125-y. Barker AT, Jalinous R & Freeston IL. (1985). Non-invasive magnetic stimulation of the

human motor cortex. Lancet 1:1106-1107.

Beery KE. (2004). The Beery-Buktenica Developmental Test of Visual-Motor Intégration. Administration, Scoring, and Teaching Manual, 5* ed. Minneapolis, MN : NCS Pearson, Inc.

Bloom JS & Hynd GW. (2005). The role of the corpus callosum in interhemispheric transfer of information : excitation or inhibition? Neuropsychol Rev 15:59-71. Boroojerdi B, Diefenbach K & Ferbert A. (1996). Transcallosal inhibition in cortical and

subcortical cerebral vascular lesions. J Neurol Sci 144:160-70.

Butefisch CM, Davis BC, Wise SP, Sawaki L, Kopylev L, Classen J & Cohen LG. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci USA 97:3661-5.

Butefisch CM, Netz J, Wessling M, Seitz RJ & Hômberg V. (2003). Remote changes in cortical excitability after stroke. Brain 126:470-81.

Byblow WD & Stinear CM. (2006). Modulation of short-latency intracortical inhibition in human primary motor cortex during synchronised versus syncopated finger movements. Exp Brain Res 168:287-93.

Conrad AL, Richman L, Lindgren S & Nopoulos P. (2010). Biological and environmental predictors of behavioral sequelae in children bora preterm. Pediatrics 125:e83-9. Constable RT, Ment LR, Vohr BR, Kesler SR, Fulbright RK, Lacadie C, Delancy S, Katz

KH, Schneider KC, Schafer RJ, Makuch RW & Reiss AR. (2008). Prematurely born children demonstrate white matter mirostructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects. Pediatrics 121:306-16.

Cooke RW & Foulder-Hughes L. (2003). Growth impairment in the very preterm and cognitive and motor performance at 7 years. Arch Dis Child 88:482-7.

Counsell SJ, Edwards AD, Chew AT, Anjari M, Dyet LE, Srinivasan L, Boardman JP, Allsop JM, Hajnal JV, Rutherford MA & Cowan FM. (2008). Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 131:3201-8.

Croce RV, Horvat M & McCarthy E. (2001). Reliability and concurrent validity of the movement assessment battery for children. Percept Mot Skills 93:275-80.

Darling WG, Wolf SL & Butler AJ. (2006). Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation. Ex Brain Res

174:376-85.

Day BL, Dressier D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC & Thompson PD. (1989). Electric and magnetic stimulation of human motor cortex : surface EMG and single motor unit responses. J Physiol 412:449-73.

de Kieviet JF, Piek JP, Aarnoudse-Moens CS & Oosterlaan J. (2009). Motor development in very preterm and very low-birth-weight children from birth to adolescence : a meta-analysis. JAMA 320:2235-42.

de Kleine MJ, den Ouden AL, Kollée LA, Nijhuis-van der Sanden MW, Sondaar M, van Kessel-Feddema BJ, Knuijt S, van Baar AL, Ilsen A, Breur-Pieterse R, Briët JM, Brand R & Verloove-Vanhorick SP. (2003). Development and evaluation of a follow up assessment of preterm infants at 5 years of age. Arch Dis Child 55:870-5. deRegnier RA. (2008). Neurophysiologic evaluation of brain function in extremely

premature newborn infants. Semin Perinatol 32:2-10.

Devanne H, Lavoie BA & Capaday C. (1997). Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329-38.

Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P & Rothwell JC. (1998). Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119: 265-8.

Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P & Rothwell JC. (2000). Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794-9.

Fallang B, 0ien I, Hellem E, Saugstad OD & Hadders-Algra M. (2005). Quality of reaching and postural control in young preterm infants is related to neuromotor outcome at 6 years. Pediatr Res 58:347-53.

Feder KP, Majnemer A, Bourbonnais D, Piatt R, Blayney M & Synnes A. (2005). Handwriting performance in preterm children compared with term peers at age 6 to 7 years. Dev Med Child Neurol 47:163-70.

Fietzek UM, Heinen F, Berweck S, Maute S. Hufschmidt A, Schulte-Mônting J, Lucking CH & Korinthenberg R. (2000). Development of the corticospinal system and hand motor function : central conduction times and motor performance tests. Dev Med Child Neurol 42:220-7.

Flamand V, Nadeau L & Schneider C. (2010, June). Cerebral excitability and visuomotor coordination in 8 year-old children bora very preterm. Communication presented at the 8th International Conference on Kangaroo Mother Care (KMC), Quebec City,

Canada.

Foulder-Hughes LA & Cooke RW. (2003). Motor, cognitive, and behavioural disorders in children born very preterm. Dev Med Child Neurol 45:97-103.

Frye RE, Rotenberg A, Ousley M & Pascual-Leone A. (2008). Transcranial magnetic stimulation in child neurology : current and future directions. J Child Neurol 23:79- 96.

Gagné M & Schneider C. (2008). Dynamic influence of wrist flexion and extension on the intracortical inhibition of the first dorsal interosseus muscle during precision grip. Brain Res 1195:77-88.

Garvey MA, Ziemann U, Bartko JJ, Denckla MB, Barker CA & Wassermann EM. (2003). Cortical correlates of neuromotor development in healthy children. Clin Neurophysiol 114:1662-70.

Garvey MA & Gilbert DL. (2004). Transcranial magnetic stimulation in children. Eur J Paediatr Neurol 8:7-19.

Garvey MA, Barker CA, Bartko JJ, Denckla MB, Wassermann EM, Castellanos FX, Dell ML & Ziemann U. (2005). The ipsilateral silent period in boys with attention- deficit/hyperactivity disorder. Clin Neurophysiol 116:1889-96.

Garvey MA & Mall V. (2008). Transcranial magnetic stimulation in children. Clin Neurophysiol 119:973-84.

Geffen GM, Jones DL & Geffen LB. (1994). Interhemispheric control of manual motor activity. Behav Brain Res 64:131-40.

Gilbert DL, Garvey MA, Bansal AS, Lipps T, Zhang J & Wassermann EM. (2004). Should transcranial magnetic stimulation research in children be considered minimal risk ? Clin Neurophysiol 115:1730-9.

Glynn LM, Schetter CD, Hobel CJ & Sandman CA. (2008). Pattern of perceived stress and anxiety in pregnancy predicts preterm birth. Health Psychol 27:43-51.

Goyen TA, Lui K & Woods R. (1998). Visual-motor, visual-perceptual, and fine motor outcomes in very-low-birthweight children at 5 years. Dev Med Child Neurol 40:76-81.

Hard AL, Niklasson A, Svensson E & Hellsrrom A. (2000). Visual function in school-aged children born before 29 weeks of gestation: a population-based study. Dev Med Child Neurol 42:100-5.

Hayden EC. (2010). Neuroscience : the most vulnerable brains. Nature 463:154-6.

Haynes RL, Billiards SS, Borenstein NS, Volpe JJ & Kinney HC. (2008). Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr Res 63:656-61.

Heinen F, Glocker FX, Fietzek U, Meyer BU, Lucking CH & Korinthenberg R. (1998a). Absence of transcallosal inhibition following focal magnetic stimulation in preschool children. Ann Neurol 43:608-12.

Heinen F, Fietzek UM, Berweck S, Hufschmidt A, Deuschl G & Korinthenberg R. (1998b). Fast corticospinal system and motor performance in children: conduction proceeds skill. Pediatr Neurol 19:217-21.

Henderson SE & Sugden DA. (1992). Movement Assessment Battery for Children. London: Psychological Corporation.

Howell DC. (1998). Méthodes statistiques en sciences humaines. Paris: De Boeck Université.

Jasper HH. (1958). Report of Committee on Methods of Clinical Examination in Electroencephalography. Electroenceph Clin Neurophysiol 10:370-375.

Johnson S, Fawke J, Hennessy E, Rowell V, Thomas S, Wolke D & Marlow N. (2009). Neurodevelopmental disability through 11 years of age in children bora before 26 weeks of gestation. Pediatrics 124:249-57.

Keller A. (1993). Intrinsic synaptic organization of the motor cortex. Cereb Cortex 3:430- 41.

Keller H, Ayub BV, Saigal S & Bar-Or O. (1998). Neuromotor ability in 5- to 7-year-old children with very low or extremely low birthweight. Dev Med Child Neurol 40:661-6.

Kesler SR, Reiss AL, Vohr B, Watson C, Schneider KC, Katz KH, Maller-Kesselman J, Silbereis J, Constable RT, Makuch RW & Ment LR. (2008). Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. J Pediatr 152:513-20.

Kiers L, Cros D, Chiappa KH & Fang J. (1993). Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89:415- 23.

Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P & Marsden CD. (1993). Corticocortical inhibition in human motor cortex. J Physiol 471:501-19.

Larroque B. (2004). Developmental problems of very premature children at school age. Review of the literature. J Gynecol Obstet Biol Reprod 33:475-86.

Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, Robertson RL, Volpe JJ & du Plessis AJ. (2005). Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 115:688-95.

Lin KL & Pascual-Leone A. (2002). Transcranial magnetic stimulation and its applications in children. Chang Gung Med J 25:424-36.

Luoma L, Herrgârd E & Martikainen A. (1998). Neuropsychological analysis of the visuomotor problems in children born preterm < or = 32 weeks of gestation: a 5- year prospective follow-up. Dev Med Child Neurol 40 :21-30.

Mall V, Berweck S, Fietzek UM, Glocker FX, Oberhuber U, Walther M, Schessl J, Schulte-Mônting J, Korinthenberg R & Heinen F. (2004). Low level of intracortical inhibition in children shown by transcranial magnetic stimulation. Neuropediatrics 35:120-25.

Mather N & Roberts R. (1995). Informal Assessment and Instruction in Written Language: A Practitioner's Guide for Students with Learning Disabilities. Brandon, VT: Clinical Psychology Publishing Co. Inc.

Mathur AM, Neil JJ & Inder TE. (2010). Understanding brain injury and neurodevelopmental disabilities in th preterm infant : the evolving role of advanced magnetic resonance imaging. Semin Perinatol 34:57-66.

Ment LR, Hirtz D & Hfippi PS. (2009). Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8:1042-55.

Moll GH, Heinrich H, Wischer S, Tergau F, Paulus W & Rothenberger A. (1999). Motor system excitability in healthy children : developmental aspects from transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:243-9.

Nadeau L, Tessier R, Lefebvre F & Robaey P. (2004). Victimization : a newly recognized outcome of prematurity. Dev Med Child Neurol 46:508-13.

Narberhaus A, Segarra D, Caldû X, Giménez M, Junqué C, Pueyo R & Botet F. (2007). Gestational age at preterm birth in relation to corpus callosum and general cognitive outcome in adolescents. J Child Neurol 22:761-5.

Narberhaus A, Segarra D, Caldû X, Giménez M, Pueyo R, Botet F & Junqué C. (2008). Corpus callosum and prefrontal functions in adolescents with history of very preterm birth. Neuropsychologia 46:111-6.

Netz J, Lammers T & Hômberg V. (1997). Reorganization of motor output in the non- affected hemisphere after stroke. Brain 120:1579-86.

Nosarti C, Al-Asady MH, Frangou S, Stewart AL, Rifkin L & Murray RM. (2002). Adolescents who were born very preterm have decreased brain volumes. Brain 125:1616-23.

Nosarti C, Rushe TM, Woodruff PW, Stewart AL, Rifkin L & Murray RM. (2004). Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain 127:2080-9.

Oka S, Miyamoto O, Janjua NA, Honjo-Fujiwara N, Ohkawa M, Nagao S, Kondo H, Minami T, Toyoshima T & Itano T. (1999). Re-evaluation of sexual dimorphism in human corpus callosum. Neuro Report 10:937-40.

Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport JL & Evans AC. (1999). Structural maturation of neural pathways in children and adolescents : in vivo study. Science 283:1908-11.

Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, Katz KH, Westerveld M, Sparrow S, Anderson AW, Duncan CC, Makuch RW, Gore JC & Ment LR. (2000). Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284:1939-1947.

Quintana H. (2005). Transcranial magnetic stimulation in persons younger than the age of 18. J ECT 21:88-95.

Rademaker KJ, Lam JN, Van Haasert IC, Uiterwaal CS, Lieftink AF, Groenendaal F, Grobbee DE & de Vries LS. (2004). Larger corpus callosum size with better motor performance in prematurely born children. Semin Perinatol 28:279-87.

Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC & Cohen LG. (2008). Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586:325-51.

Reynolds C & Ashby P. (1999). Inhibition in the human motor cortex is reduced just before a voluntary contraction. Neurology 53:730-5.

Ridding MC, Taylor JL & Rothwell JC. (1995). The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 487:541-8.

Ridding MC & Rothwell JC. (1999). Afferent input and cortical organisation : a study with magnetic stimulation. Exp Brain Res 126:536-44.

Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008-39.

Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell JC, Swash M & Tomberg C. (1994). Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroenceph Clin Neurophysiol 91:79-92.

Rothwell JC, Thompson PD, Day BL, Boyd S & Marsden CD. (1991). Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159-200.

Rothwell JC. (1997). Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113-22.

Rushe TM, Rifkin L, Stewart AL, Townsend JP, Roth SC, Wyatt JS & Murray RM. (2001). Neuropsychological outcome at adolescence of very preterm birth and its relation to brain structure. Dev Med Child Neurol 43:226-33.

Saigal S & Doyle LW. (2008). An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371:261-9.

Salt A & Redshaw M. (2006). Neurodevelopmental follow-up after preterm birth: follow up after two years. Early Hum Dev 82:185-97.

Samsom JF, de Groot L, Cranendonk A, Bezemer D, Lafeber HN & Fetter WP. (2002). Neuromotor function and school performance in 7-year-old children born as high- risk preterm infants. J Child Neurol 17:325-32.

Schneider C, Lavoie BA, Barbeau H & Capaday C. (2004). Timing of cortical excitability changes during the reaction time of movements superimposed on tonic motor activity. J Appl Physiol 97:2220-7.

Schneider C, Nadeau L, Bard C, Lambert J, Majnemer A, Malouin F, Robaey P, St-Amand P & Tessier R. (2008). Visuo-motor coordination in 8-year-old children born pre- term before and after 28 weeks of gestation. Dev Neurorehabil 11:215-24.

Sharbrough F, Chatrian GE, Lesser RP, Lûders H, Nuwer M & Picton TW. (1991). American Electroencephalographic Society Guidelines for Standard Electrode Position Nomenclature. J Clin Neurophysiol 8:200-2.

Skranes JS, Nilsen G, Smevik O, Vik T & Brubakk AM. (1998). Cerebral MRI of very low birth weight children at 6 years of age compared with the findings at 1 year. Pediatr Radiol 28:471-5.

Skranes JS, Martinussen M, Smevik O, Myhr G, Indredavik M, Vik T & Brubakk AM. (2005). Cerebral MRI findings in very-low-birth-weight and small-for-gestational- age children at 15 years of age. Pediatr Radiol 35:758-65.

Skranes J, Vangberg TR, Kulseng S, Indredavik MS, Evensen KA, Martinussen M, Dale AM, Haraldseth O & Brubakk AM. (2007). Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain 130:654-66.

Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC & Zigmond MJ. (2003). Fundamental Neuroscience, 2nd ed. London UK : Academic Press.

Steer P. (2005). The epidemiology of preterm labour. BJOG 112 Suppl 1:1-3.

Stinear CM & Byblow WD. (2003). Role of intracortical inhibition in selective hand muscle activation. J Neurophysiol 89:2014-20.

Taylor HG, Klein N & Hack M. (2000). School-age consequences of birth weight less than 750 g: A review and update. Dev Neuropsychol 17:289-321.

Tegenthoff M, Witscher K, Schwenkreis P & Liepert J. (1999). Pharmacological modulation of training-induced plastic changes in human motor cortex. Electroenceph clin Neurophysiol Suppl 51:188-96.

Thickbroom GW, Phillips BA, Morris I, Byrnes ML, Sacco P & Mastaglia FL. (1999). Differences in functional magnetic resonance imaging of sensorimotor cortex during static and dynamic finger flexion. Exp Brain Res 126:431-8.

Traversa R, Cicinelli P, Bassi A, Rossini PM & Beraardi G. (1997). Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses. Stroke 28:110-7.

Traversa R, Cicinelli P, Pasqualetti P, Fillipi M & Rossini PM. (1998). Follow-up of interhemispheric differences of motor evoked potentials from the 'affected' and 'unaffected' hemispheres in human stroke. Brain Res 803:1-8.

Vangberg TR, Skranes J, Dale AM, Martinussen M, Brubakk AM & Haraldseth O. (2006). Changes in white matter diffusion anisotropy in adolescents born prematurely. Neuroimage 32:1538-48.

VAN Hoorn JF, Maathuis CG, Peters LH & Hadders-Algra M. (2010). Handwriting, visuomotor integration, and neurological condition at school age. Dev Med Child Neurol. [Epub ahead of print], doi: 10.1111/j.l469-8749.2010.03715.x.

Vederhus BJ, Markestad T, Eide GE, Graue M & Halvorsen T. (2010). Health related quality of life after extremely preterm birth: a matched controlled cohort study. Health Qual Life Outcomes 8:53.

Volpe J J. (2001). Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553-562.

Volpe JJ. (2009). The encephalopathy of prematurity—brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol 16:167-78.

Walther M, Berweck S, Schessl J, Linder-Lucht M, Fietzek UM, Glocker FX, Heinen F & Mall V. (2009). Maturation of inhibitory and excitatory motor cortex pathways in children. Brain Dev 31:562-67.

Wassermann EM, Grafman J, Berry C, Hollnagel C, Wild K, Clark K & Hallett M. (1996). Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr Clin Neurophysiol 101:412-17.

Wassermann EM. (1998). Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol 108:1-16.

Yazgan MY, Wexler BE, Kinsbourae M, Peterson B & Leckman JF. (1995). Functional significance of individual variations in callosal area. Neuropsychologia 33:769-79. Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M &

Wassermann EM. (1999). Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518:895-906.

Ziemann U, Muellbacher W, Hallett M & Cohen LG. (2001). Modulation of practice- dependant plasticity in human motor cortex. Brain 124:1171-81.

/ ' - M A ,

ggœfflttHosmAua

33ffl UNIVOtSITAlIlE DE QUÉBEC cm

Le 24 août 2007

Docteur Cyril Schneider, Ph.D. Unité de recherche en neurosciences CHUL du CHUQ

OBJET: Projet 109.05.02

Contrôle cortical d'une synergie musculaire proximo-distale chez l'être humain Docteur,

La présente est en réponse à la présentation du projet en titre lors de la réunion du

Documents relatifs