• Aucun résultat trouvé

Chapitre VI : Conclusion générale et perspectives

6.5. Futures orientations

L'utilisation du modèle animal d'infection de M. ulcerans que nous avons mis au point a permis d'acquérir de nouvelles connaissances sur la pathogénie de l'UB. Cependant, du fait que le système immunologique de la souris soit fondamentalement différent de celui de l'humain [285], les résultats que nous avons obtenus, ne peuvent pas être transférés directement chez l'humain. De même, notre travail étant un travail pionnier dans le domaine, nos conclusions débouchent sur plusieurs pistes de recherche. Par exemple :

S Est­ce que les cellules musculaires (cellules satellites) sont plus sensibles à la mycolactone que les autres types cellulaires (ex. fibroblastes, cellules endothéliales).

S Est­ce que les fibres lentes ou rapides pourraient être plus vulnérables à l'action nécrotique de la mycolactone ?

S Est­ce que la mycolactone empêche la conversion des macrophages pro­ inflammatoires vers des macrophages anti­inflammatoires ?

S L'atrophie des tissus musculaires est­elle causée principalement par une diminution de la synthèse ou par une augmentation de la dégradation des protéines musculaires?

S Par quels mécanismes moléculaires la mycolactone et/ou le M. ulcerans provoquent­ils la lyse des protéines musculaires et la régénération imparfaite du muscle squelettique ?

■S Le muscle squelettique humain présente­il des dommages semblables à ceux observés dans notre modèle animal ?

S Quel sera alors, le programme de réadaptation à mettre en œuvre en vue de prévenir et/ou de réduire les séquelles fonctionnelles engendrées par la maladie et à quel moment ? E­es ébauches d'un tel protocole sont présentées au point 6.4.2 précédent.

Enfin sans être exhaustif, l'évaluation de la dégénérescence et de la régénération musculaires associées à l'infection à M. ulcerans suscitent à l'étape actuelle, d'intéressantes interrogations que nous pensons aborder dans un avenir très proche.

_ 23

!_

n

ro n C L < en (.9 CU k . l_ ro =3 Q. on CD c *(D CO ro t o n; cu

E

c

o

V c

o

o

CD >-

<o

4 _ u ^ J " O

c

o

u r

o

ro 4 -1 4-» ro o ro o > Q . ro

17

-1

!# •IFN-Y

IL-10

7 21 42

Jours post-infection

Fig. annexes 1 : Amplitude de la variation de l'EFN-y et de I'LL-10 dans le sang de souris C57BL/6 infectée de M. ulcerans. Exs valeurs sont des moyennes ± erreur standard moyenne (n =5 expérimentations distinctes). * Significativement différent de 7 jours ; # Significativement différente de 21 jours. P < 0,05.

Bibliographie

1. Young, V.R., The role of skeletal and cardiac muscle in the regulation of protein metabolism. In: Mammalian Protein Metabolism (Munro, H. N., ed.), vol. 4, pp. 587-674, Academic Press, New York, 1970.

2. Walsh, D.S., Portaels F., and Meyers W.M., Buruli ulcer (Mycobacterium ulcerans infection). Trans R Soc Trop Med Hyg, 2008.102(10): p. 969-78.

3. Barker, D.J., Epidemiology of Mycobacterium ulcerans infection. Trans R Soc Trop Med Hyg, 1973. 67(1): p. 43-50.

4. WHO, Buruli ulcer: progress report, 2004-2008. Wkly Epidemiol Rec, 2008 april 25. 83(17): p. 145-54.

5. Amofah, G.K., Sagoe-Moses C , Adjei-Acquah C , et al., Epidemiology of Buruli ulcer in Amansie West district, Ghana. Trans R Soc Trop Med Hyg, 1993. 87(6): p. 644-5.

6. Marston, B.J., Diallo M.O., Horsburgh C.R., Jr., et al., Emergence of Buruli ulcer disease in the Daloa region of Cote d'Ivoire. Am J Trop Med Hyg, 1995. 52(3): p. 219-24.

7. Ellen, D.E., Stienstra Y., Teelken M.A., et al., Assessment of functional limitations caused by Mycobacterium ulcerans infection: towards a Buruli ulcer functional limitation score. Trop Med Int Health, 2003. 8(1): p. 90-6.

8. MacCallum P, T.J., Buckle G, Sissons HA, A new mycobacterial infection in man. J Pathol Bacteriol, 1948. 60(93-122).

9. Fenner, F., The significance of the incubation period in infectious diseases. Med J Aust, 1950. 2(23): p. 813-8.

10. Clancey, J.K., Dodge O.G., Lunn H.F., et al., Mycobacterial skin ulcers in Uganda. Lancet, 1961. 2(7209): p. 951-4.

11. Dodge, O.G. and Lunn H.F., Buruli ulcer: a mycobacterial skin ulcer in a Uganda child. J Trop Med Hyg, 1962. 65: p. 139-42.

13. Krieg, R.E., Hockmeyer W.T., and Connor D.H., Toxin of Mycobacterium ulcerans. Production and effects in guinea pig skin. Arch Dermatol, 1974. 110(5): p. 783-8. 14. Meyers, W.M., Shelly W.M., and Connor D.H., Heat treatment of Mycobacterium

ulcerans infections without surgical excision. Am J Trop Med Hyg, 1974. 23(5): p. 924-9.

15. Meyers, W.M., Shelly W.M., Connor D.H., et al., Human Mycobacterium ulcerans infections developing at sites of trauma to skin. Am J Trop Med Hyg, 1974. 23(5): p. 919-23.

16. Read, J.K., Heggie CM., Meyers W.M., et al., Cytotoxic activity of Mycobacterium ulcerans. Infect Emmun, 1974. 9(6): p. 1114-22.

17. Krieg, R.E., Klimas N.G., and Attanasio R., Absence of an antibiotic effect of Mycobacterium ulcerans. Int J Lepr Other Mycobact Dis, 1975. 43(3): p. 265-6. 18. Krieg, R.E., Wolcott J.H., and Confer A., Treatment of Mycobacterium ulcerans

infection by hyperbaric oxygenation. Aviat Space Environ Med, 1975. 46(10): p. 1241-5.

19. Stanford, J.L., Revill W.D., Gunthorpe W.J., et al., The production and preliminary investigation of Burulin, a new skin test reagent for Mycobacterium ulcerans infection. J Hyg (Lond), 1975. 74(1): p. 7-16.

20. Ullmann, U., Schubert G.E., and Kieninger G., [Bacteriological investigations and animal experiments with Mycobacterium ulcerans (Tubingen 1971) (author's transi)]. Zentralbl Bakteriol Orig A, 1975. 232(2-3): p. 318-27.

21. Krieg, R.E., Wolcott J.H., and Meyers W.M., Mycobacterium ulcerans infection: treatment with rifampin, hyperbaric oxygenation, and heat. Aviat Space Environ Med, 1979. 50(9): p. 888-92.

22. Monson, M.H., Gibson D.W., Connor D.H., et al., Mycobacterium ulcerans in Liberia: a clinicopathologic study of 6 patients with Buruli ulcer. Acta Trop, 1984. 41(2): p. 165-72.

23. Hayman, J. and McQueen A., The pathology of Mycobacterium ulcerans infection. Pathology, 1985.17(4): p. 594-600.

24. Pimsler, M., Sponsler T.A., and Meyers W.M., Immunosuppressive properties of the soluble toxin from Mycobacterium ulcerans. J Infect Dis, 1988. 157(3): p. 577-

25. Portaels, F., [Epidemiology of ulcers due to Mycobacterium ulcerans]. Ann Soc Belg Med Trop, 1989. 69(2): p. 91-103.

26. George, K.M., Chatterjee D., Gunawardana G., et al., Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science, 1999. 283(5403): p. 854-7.

27. George, K.M., Barker L.P., Welty D.M., et al., Partial purification and characterization of biological effects of a lipid toxin produced by Mycobacterium ulcerans. Enfect Immun, 1998. 66(2): p. 587-93.

28. Stinear, T., Ross B.C., Davies J.K., et al., Identification and characterization of IS2404 and IS2606: two distinct repeated sequences for detection of Mycobacterium ulcerans by PCR. J Clin Microbiol, 1999. 37(4): p. 1018-23.

29. Chemlal, K., De Ridder K., Fonteyne P.A., et al., The use of IS2404 restriction fragment length polymorphisms suggests the diversity of Mycobacterium ulcerans from different geographical areas. Am J Trop Med Hyg, 2001. 64(5-6): p. 270-3. 30. Chemlal, K, Huys G., Fonteyne P.A., et al., Evaluation of PCR-restriction profile

analysis and IS2404 restriction fragment length polymorphism and amplified fragment length polymorphism fingerprinting for identification and typing of Mycobacterium ulcerans andM. marinum. J Clin Microbiol, 2001. 39(9): p. 3272-8. 31. Chemlal, K., Huys G., Laval F., et al., Characterization of an unusual

Mycobacterium: a possible missing link between Mycobacterium marinum and Mycobacterium.ulcerans. J Clin Microbiol, 2002. 40(7): p. 2370-80.

32. Stienstra, Y., van der Werf T.S., Guarner J., et al., Analysis of an IS2404-based nested PCR for diagnosis of Buruli ulcer disease in regions of Ghana where the disease is endemic. J Clin Microbiol, 2003. 41(2): p. 794-7.

33. Stinear, T.P., Mve-Obiang A., Small P.L, et al., Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc Natl Acad Sci U S A , 2004.101(5): p. 1345-9.

34. WHO, WHA57.1, and Assembly T.F.-s.W.H., Surveillance and control of Mycobacterium ulcerans disease (Buruli ulcer). WHA57.1, Resolution, 2004 may 21 p. 1-2.

36. Meyers, W.M., Tignokpa N., Priuli G.B., et al., Mycobacterium ulcerans infection (Buruli ulcer): first reported patients in Togo. Br J Dermatol, 1996. 134(6): p.

1116-21.

37. Johnson, P.D., Stinear T., Small P.L, et al., Buruli ulcer (M. ulcerans infection): new insights, new hope for disease control. PLoS Med, 2005. 2(4): p. el08.

38. WHO, Buruli ulcer disease; Severe Acute Respiratory Syndrome - Singapore, 2003; International Health Regulations, weekly epidemiological record, 2003 May 9. vol. 78(19): p. 157-68.

39. WHO, Buruli ulcer : first programme review meeting for west Africa - summary report. Weekly epidemiological record, Relevé épidémiologique hebdomadaire, 2009 february 6. 84(6): p. 41-48.

40. Debacker, M., Aguiar J., Steunou C , et al., Mycobacterium ulcerans disease: role of age and gender in incidence and morbidity. Trop Med Int Health, 2004b. 9(12): p. 1297-304.

41. Asiedu, K. and Etuaful S., Socioeconomic implications of Buruli ulcer in Ghana: a three-year review. Am J Trop Med Hyg, 1998. 59(6): p. 1015-22.

42. Debacker, M., Portaels F., Aguiar J., et al., Risk factors for Buruli ulcer, Benin. Emerg Infect Dis, 2006. 12(9): p. 1325-31.

43. Newport, M.J., Huxley CM., Huston S., et al., A mutation in the interferon-gamma- receptor gene and susceptibility to mycobacterial infection. N Engl J Med, 1996. 335(26): p. 1941-9.

44. Stienstra, Y., van der Werf T.S., Oosterom E., et al., Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorphism. Genes Emmun, 2006. 7(3): p. 185-9.

45. Portaels, F., Aguiar J., Debacker M., et al., Mycobacterium bovis BCG vaccination as prophylaxis against Mycobacterium ulcerans osteomyelitis in Buruli ulcer disease. Infect Emmun, 2004. 72(1): p. 62-5.

46. Nakanaga, K, Eshii N., Suzuki K., et al., "Mycobacterium ulcerans subsp. shinshuense" isolated from a skin ulcer lesion: identification based on 16S rRNA gene sequencing. J Clin Microbiol, 2007. 45(11): p. 3840-3.

48. Portaels, F., Meyers W.M., Ablordey A., et al., First Cultivation and Characterization of Mycobacterium ulcerans from the Environment. PLoS Negl Trop Dis, 2008. 2(3): p. el78.

49. Marsollier, L., Brodin P., Jackson M., et al., Impact of Mycobacterium ulcerans biqfilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog, 2007b. 3(5): p. e62.

50. Tonjum, T., Welty D.B., Jantzen E., et al., Differentiation of Mycobacterium ulcerans, M. marinum, and M. haemophilum: mapping of their relationships to M. tuberculosis by fatty acid profile analysis, DNA-DNA hybridization, and 16S rRNA gene sequence analysis. J Clin Microbiol, 1998. 36(4): p. 918-25.

51. Stinear, T.P., Jenkin G.A., Johnson P.D., et al., Comparative genetic analysis of Mycobacterium ulcerans and Mycobacterium marinum reveals evidence of recent divergence. J Bacteriol, 2000.182(22): p. 6322-30.

52. Stinear, T.P., Seemann T., Pidot S., et al., Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res, 2007.17(2): p. 192-200.

53. Demangel, C , Stinear T.P., and Cole S.T., Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat Rev Microbiol, 2009. 7(1): p. 50-60.

54. Roberts, B. and Hirst R., Immunomagnetic separation and PCR for detection of Mycobacterium ulcerans. J Clin Microbiol, 1997. 35(10): p. 2709-11.

55. Ross, B.C., Johnson P.D., Oppedisano F., et al., Detection of Mycobacterium ulcerans in environmental samples during an outbreak of ulcerative disease. Appl Environ Microbiol, 1997. 63(10): p. 4135-8.

56. Portaels, F., Elsen P., Guimaraes-Peres A., et al., Insects in the transmission of Mycobacterium ulcerans infection. Lancet, 1999. 353(9157): p. 986.

57. Marsollier, L., Robert R., Aubry J., et al., Aquatic insects as a vector for Mycobacterium ulcerans. Appl Environ Microbiol, 2002. 68(9): p. 4623-8.

58. Johnson, P.D., Azuolas J., Lavender C.J., et al., Mycobacterium ulcerans in mosquitoes captured during outbreak of Buruli ulcer, southeastern Australia. Emerg Infect Dis, 2007.13(11): p. 1653-60.

59. Mignard, S. and Flandrois J.P., Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J Med Microbiol, 2007. 56(Pt8):p. 1033-41.

60. Portaels, F., Microbiologie fondamentale, in: Kingsley Asiedu; Robert Scherpbier; Mario Raviglione. Ulcère de Buruli, Infection à Mycobacterium ulcerans, World Health Organization, Geneva, Switzerland., 2000(WHO/CDS/GBUI/2000.1): p. 13-

15.

61. Allen, S., Buruli ulcer and HIV infection. Int J Dermatol, 1992. 31(10): p. 744-5. 62. Asiedu, K., Meyers W., and Agbenorku P., Manifestations cliniques et traitement.

in in: Kingsley Asiedu; Robert Scherpbier; Mario Raviglione. Ulcère de Buruli, Infection à Mycobacterium ulcerans, World Health Organization, Geneva, Switzerland., 2000(WHO/CDS/GBUE/2000.1): p. 37-47.

63. Junghanss, T., Um Boock A., Vogel M., et al., Phase Change Material for Thermotherapy of Buruli Ulcer: A Prospective Observational Single Centre Proof- of-Principle Trial. PLoS Negl Trop Dis, 2009. 3(2): p. e380.

64. Lehmann, J.F., Warren C.G., and Scham S.M., Therapeutic heat and cold. Clin Orthop Relat Res, 1974(99): p. 207-45.

65. George, K.M., Pascopella L., Welty D.M., et al., A Mycobacterium ulcerans toxin, mycolactone, causes apoptosis in guinea pig ulcers and tissue culture cells. Enfect Emmun, 2000. 68(2): p. 877-83.

66. Silva, M.T., Portaels F., and Pedrosa J., Aquatic insects and Mycobacterium ulcerans: an association relevant to Buruli ulcer control? PLx)S Med, 2007. 4(2): p. e63.

67. Duker, A.A., Portaels F., and Hale M., Pathways of Mycobacterium ulcerans infection: a review. Environ Ent, 2006. 32(4): p. 567-73.

68. Romagnani, S., The ThlVTh2 paradigm. Immunol Today, 1997.18(6): p. 263-6. 69. Constant, S.L., Lee K.S., and Bottomly K., Site of antigen delivery can influence T

cell priming: pulmonary environment promotes preferential Th2-type differentiation. Eur J Immunol, 2000. 30(3): p. 840-7.

70. Lafaille, J.J., The role of helper T cell subsets in autoimmune diseases. Cytokine Growth Factor Rev, 1998. 9(2): p. 139-51.

71. Kidd, P., ThIfTh.2 balance: the hypothesis, its limitations, and implications for health and disease. Altem Med Rev, 2003. 8(3): p. 223-46.

72. Lienhardt, C , Azzurri A., Amedei A., et al., Active tuberculosis in Africa is associated with reduced Thl and increased Th2 activity in vivo. Eur J Immunol, 2002. 32(6): p. 1605-13.

73. Stienstra, Y., van der Graaf W.T., te Meerman G.J., et al., Susceptibility to development of Mycobacterium ulcerans disease: review of possible risk factors. Trop Med Ent Health, 2001. 6(7): p. 554-62.

74. Opal, S.M. and DePalo V.A., Anti-inflammatory cytokines. Chest, 2000. 117(4): p. 1162-72.

75. Flynn, J.L., Goldstein M.M., Chan J., et al., Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Emmunity, 1995. 2(6): p. 561-72.

76. Letimier, F.A., Passini N., Gasparian S., et al., Chromatin remodeling by the SWI/SNF-like BAF complex and STAT4 activation synergistically induce IL- 12Rbeta2 expression during human Thl cell differentiation. EMBO J, 2007. 26(5): p. 1292-302.

77. Romagnani, S., Understanding the role of Thl/Th2 cells in infection. Trends Microbiol, 1996. 4(12): p. 470-3.

78. Flynn, J.L. and Chan J., Immunology of tuberculosis. Annu Rev Lmmunol, 2001. 19: p. 93-129.

79. Gong, J.H., Zhang M., Modlin R.L., et al., Interleukin-10 downregulates Mycobacterium tuberculosis-induced Thl responses and CTLA-4 expression. Enfect Immun, 1996. 64(3): p. 913-8.

80. Murray, P.J., Wang L., Onufryk C , et al., T cell-derived IL-10 antagonizes macrophage function in mycobacterial infection. J Immunol, 1997. 158(1): p. 315- 21.

81. Houngbédji, M.G., Boissinot M., Bergeron G.M., et al., Subcutaneous injection of Mycobacterium ulcerans causes necrosis, chronic inflammatory response and fibrosis in skeletal muscle. Microbes Infect, 2008. 10(12-13): p. 1236-43.

Documents relatifs