• Aucun résultat trouvé

Fusion de GUVs

Dans le document Fusion d'auto-assemblages lipidiques (Page 157-179)

Diélectrophorèse

La diélectrophorèse est définie comme le mouvement de matière causé par les effets de polarisation dans un champ électrique non uniforme (Pohl 1951; Pohl 1958). Ce phénomène ne nécessite pas l’utilisation de molécules globalement chargées, contrairement à l’électrophorèse. Tout dipôle possède une séparation de charges partielles plus et moins. L’application d’un champ électrique alternatif entraîne une orientation du dipôle selon ce champ. Une force sera alors créée et le dipôle sera déplacé. Dans le cas où la permittivité des particules en mouvement est supérieure à celle de milieu de suspension, les particules seront attirées dans les régions de fort champ électrique. Cependant, si la permittivité des particules en mouvement est inférieure à celle du milieu de suspension, les particules se dirigeront vers les zones de faible champ électrique.

Lorsque des vésicules géantes sont soumises à un champ électrique non uniforme, leurs dipôles induits s’alignent le long des lignes de champ. On observe donc une agrégation des vésicules les unes à la suite des autres sous forme de « collier de perles » le long des lignes de champ électrique.

Les conditions utilisées sont les suivantes (Bertsche and Zimmermann 1988) : - Signal sinusoïdal

- Fréquence f = 1,7 MHz

- Champ électrique E = 180 V/cm

Ces conditions permettent d’avoir des doublets de vésicules en environ 1 minute et des « colliers de perles » en environ 3-4 minutes, ce qui donne un temps suffisant pour faire la mise au point sur des doublets de vésicules.

Le générateur utilisé est un Agilent® 33220A, 20 MHz. Il est règlé sur 18 V pic à pic. Pour la chambre d’observation les électrodes sont espacées de 1 mm. Le champ électrique obtenu est alors de 180 V/cm. Plus le champ électrique est fort plus la diélectrophorèse se fait rapidement.

Fusion de GUVs

Après avoir mis deux vésicules en contact par diélectrophorèse, celle-ci est stoppée et une unique impulsion électrique de 100 µs de durée et d’environ 3 kV/cm est appliquée.

L’application de l’impulsion se fait de façon concomitante à l’arrêt de la diélectrophorèse grâce à un interrupteur permettant de passer d’un générateur à l’autre. Une série d’images espacées de 500 ms et de temps d’exposition 500 ms est enregistrée par l’intermédiaire de la caméra et envoyée sur l’ordinateur relié à cette caméra CCD. Les rayons des GUVs avant le processus de fusion et celui du GUV résultant sont mesurés en traçant les profils d’intensité de chacune des vésicules ; le diamètre est mesuré entre les deux pics d’intensité caractéristiques de la membrane (Figure 77).

Figure 77 : Principe du traitement d’image pour visualiser les rayons des GUVs avant et après fusion. L’image de gauche est l’image prise avant fusion, pendant la diélectrophorèse ; l’image de droite est prise après fusion des deux vésicules. Les profils d’intensité sont tracés le long des traits bleus présent sur les images. Les diamètres des GUVs sont mesurés entre les deux pics d’intensité caractéristiques de la membrane, représentés par les traits rouges.

Synthèse des vésicules de TriCat

(Soussan, Mille et al. 2008)

Synthèse du tensioactif catanionique fluorescent FluoCat

L’acide 12-(N-(7-nitrobenz-2oxa-1,3-diazol-4-yl)amino)dodecaoique est additionné à un équivalent de N-hexadecylamino-1-deoxylactitol en solution dans l’eau pour conduire à une suspension hétérogène. Le milieu réactionnel est maintenu sous agitation à température ambiante jusqu’à ce que le réactif de départ, insoluble, disparaisse. Le produit de la réaction est récupéré après lyophilisation sous la forme d’une poudre orangée.

Synthèse des vésicules de TriCat

Une fois les tensioactifs synthétisés, les vésicules sont obtenues par quinze minutes de sonication d’une solution aqueuse contenant la poudre de tensioactif TriCat dans le cas des vésicules non fluorescentes, ou à partir d’un mélange de poudres 95% de TriCat pour 5% de tensioactif fluorescent en masse. Pour obtenir les vésicules, il suffit de se placer à une concentration supérieure à la concentration d’agrégation critique égale à 5.10-5 M dans l’eau. Leur taille est ensuite mesurée par DLS. Leur diamètre moyen est de 200 nm.

A

AA

A

Andelman, D. (1995). "Electrostatic Properties of Membranes: The Poisson-Boltzmann Theory." Hanbook of Biological Physics 1: 603-641.

Angelova, M. I. and D. S. Dimitrov (1986). "Liposome electroformation." Biophys J 81: 303- 11.

B

B

B

B

Beaune, G., E. Soussan, et al. (2008). "Interaction between catanionic vesicles and giant magnetic vesicles." C. R. Chim.: 1-7.

Begu, S., A. Aubert Pouessel, et al. (2007). "Liposil, a promising composite material for drug storage and release." J Control Release 118(1): 1-6.

Bernhardt, J. and H. Pauly (1973). "On the generation of potential differences across the membranes of ellipsoidal cells in an alternating electrical field." Biophysik 10(3): 89- 98.

Bertsche, U. and U. Zimmermann (1988). "Analysis of X-ray induced aberrations in mammalian chromosomes by electrofusion induced premature chromosome condensation." Radiat Environ Biophys 27(3): 201-12.

Blanzat, M., E. Perez, et al. (1999). "Synthesis and anti-HIV activity of catanionic analogs of galactosylceramide." New J. Chem. 23: 1063-65.

Blanzat, M., E. Perez, et al. (1999). "New Catanionic Glycolipids. 1. Synthesis, Characterization, and Biological Activity of Double-Chain and Gemini Catanionic Analogues of Galactosylceramide (galâ1cer)." Langmuir 15: 6163-69.

Boudier, A., A. Aubert-Pouessel, et al. (2009). "pH-sensitive double-hydrophilic block copolymer micelles for biological applications." Int J Pharm 379(2): 212-7.

Brand, A. and E. Yavin (2001). "Early ethanolamine phospholipid translocation marks stress- induced apoptotic cell death in oligodendroglial cells." J Neurochem 78(6): 1208-18.

Bretscher, M. S. (1972). "Asymmetrical lipid bilayer structure for biological membranes." Nat New Biol 236(61): 11-2.

Brockmann, H. (1994). "Dipole potential in lipid membranes." Chem. Phys. Lipids 73: 57-79.

C

CC

C

Carr, C. M. and P. S. Kim (1993). "A spring-loaded mechanism for the conformational change of influenza hemagglutinin." Cell 73(4): 823-32.

Cavazzana-Calvo, M., S. Hacein-Bey, et al. (2000). "Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease." Science 288(5466): 669-72.

Cemazar, M., T. Jarm, et al. "Cancer electrogene therapy with interleukin-12." Curr Gene Ther 10(4): 300-11.

Chernomordik, L. V. and M. M. Kozlov (2003). "Protein-lipid interplay in fusion and fission of biological membranes." Annu Rev Biochem 72: 175-207.

Chernomordik, L. V. and M. M. Kozlov (2008). "Mechanics of membrane fusion." Nat Struct Mol Biol 15(7): 675-83.

Chiu, D. T., C. F. Wilson, et al. (1999). "Chemical transformations in individual ultrasmall biomimetic containers." Science 283(5409): 1892-5.

Colleau, M., P. Herve, et al. (1991). "Transmembrane diffusion of fluorescent phospholipids in human erythrocytes." Chem Phys Lipids 57(1): 29-37.

Consola, S., M. Blanzat, et al. (2007). "Design of original bioactive formulations based on sugar-surfactant/non-steroidal anti-inflammatory catanionic self-assemblies: a new way of dermal drug delivery." Chemistry 13(11): 3039-47.

Cribier, S., G. Morrot, et al. (1990). "Lateral diffusion of erythrocyte phospholipids in model membranes comparison between inner and outer leaflet components." Eur Biophys J

18(1): 33-41.

Cruzeiro-Hansson, L. and O. G. Mouritsen (1988). "Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area." Biochim Biophys Acta

944(1): 63-72.

D

DD

D

Dimova, R., N. Bezlyepkina, et al. (2009). "Vesicles in electric fields : Some novel aspects of membrane behavior." Soft Matter 5: 3201-12.

Dimova, R., K. A. Riske, et al. (2007). "Giant vesicles in electric fields." Soft Matter 3: 817- 27.

Dubois, M., B. Deme, et al. (2001). "Self-assembly of regular hollow icosahedra in salt-free catanionic solutions." Nature 411(6838): 672-5.

Dumas, F., M. Lebrun, et al. (1999). "The transmembrane protein bacterioopsin affects the polarity of the hydrophobic core of the host lipid bilayer." Biochim Biophys Acta

1421(2): 295-305.

E

E

E

E

Edidin, M. (2003). "The state of lipid rafts: from model membranes to cells." Annu Rev Biophys Biomol Struct 32: 257-83.

Escoffre, J. M., D. S. Dean, et al. (2007). "Membrane perturbation by an external electric field: a mechanism to permit molecular uptake." Eur Biophys J 36(8): 973-83.

Escoffre, J. M., C. Mauroy, et al. (2009). "Gene electrotransfer: from biophysical mechanisms to in vivo applications

Part 2- In vivo developments and present clinical applications." Biophys Rev 1: 185-191.

Escoffre, J. M., C. Mauroy, et al. (2009). "Gene electrotransfer: from biophysical mechanisms to in vivo applications

Part 1- Biophysical mechanisms." Biophys Rev 1: 177-184.

Evans, E. A. and V. A. Parsegian (1986). "Thermal-mechanical fluctuations enhance repulsion between bimolecular layers." Proc Natl Acad Sci U S A 83(19): 7132-6.

F

F

F

F

Fernandez, M. L., G. Marshall, et al. "Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers." J Phys Chem B 114(20): 6855-65.

Finkelstein, A. and A. Cass (1967). "Effect of cholesterol on the water permeability of thin lipid membranes." Nature 216(5116): 717-8.

Fischbarg, J., K. Y. Kuang, et al. (1989). "Evidence that the glucose transporter serves as a water channel in J774 macrophages." Proc Natl Acad Sci U S A 86(21): 8397-401.

Fischbarg, J., K. Y. Kuang, et al. (1990). "Glucose transporters serve as water channels." Proc Natl Acad Sci U S A 87(8): 3244-7.

Fischer, A., S. Hacein-Bey, et al. (2000). "Gene therapy of severe combined immunodeficiencies." Immunol Rev 178: 13-20.

Friend, A. W., Jr., E. D. Finch, et al. (1975). "Low frequency electric field induced changes in the shape and motility of amoebas." Science 187(4174): 357-9.

G

GG

G

Gabriel, B. and J. Teissie (1999). "Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse." Biophys J 76(4): 2158-65.

Gardlik, R., R. Palffy, et al. (2005). "Vectors and delivery systems in gene therapy." Med Sci Monit 11(4): RA110-21.

Golzio, M., J. M. Escoffre, et al. (2010). "Observations of the mechanisms of electromediated DNA uptake--from vesicles to tissues." Curr Gene Ther 10(4): 256-66.

Golzio, M., M. P. Rols, et al. (2004). "In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression." Methods 33(2): 126-35.

H

H

H

H

Hacein-Bey-Abina, S., C. Von Kalle, et al. (2003). "LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1." Science 302(5644): 415-9.

Haines, T. H. (1994). "Water transport across biological membranes." FEBS Lett 346(1): 115- 22.

Halfmann, H. J., W. Röcken, et al. (1982). "Transfer of mitochondrial function into a cytoplasmic respiratory-deficient mutant of Saccharomyces yeast by electro-fusion." Curr Genetics 6: 25-28.

Haluska, C. K., K. A. Riske, et al. (2006). "Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution." Proc Natl Acad Sci U S A 103(43): 15841-6.

Helfrich, W. (1978). "Steric interaction of fluid membranes in multilayers systems." Z. Naturforsch 33a: 305-15.

Helm, C. A., J. N. Israelachvili, et al. (1992). "Role of hydrophobic forces in bilayer adhesion and fusion." Biochemistry 31(6): 1794-805.

Heuvingh, J., F. Pincet, et al. (2004). "Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance." Eur Phys J E Soft Matter 14(3): 269-76.

Hillaireau, H. and P. Couvreur (2009). "Nanocarriers' entry into the cell: relevance to drug delivery." Cell Mol Life Sci 66(17): 2873-96.

Hoekstra, D. (1982). "Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion." Biochemistry 21(12): 2833-40.

Hsueh, Y. W. (2007). "The physical properties of POPC/cholesterol membranes : a deuterium NMR study." Thèse de doctorat.

Hsueh, Y. W., M. T. Chen, et al. (2007). "Ergosterol in POPC membranes: physical properties and comparison with structurally similar sterols." Biophys J 92(5): 1606-15.

IIII

Ipsen, J. H., G. Karlstrom, et al. (1987). "Phase equilibria in the phosphatidylcholine- cholesterol system." Biochim Biophys Acta 905(1): 162-72.

Israelachvili, J. and R. M. Pashley (1983). "Molecular layering of water at surfaces and origin of repulsive hydration forces." Nature 306: 249-250.

Israelachvili, J. and H. Wennerstrom (1996). "Role of hydration and water structure in biological and colloidal interactions." Nature 379(6562): 219-25.

JJJJ

Jeremic, A., M. Kelly, et al. (2004). "Calcium drives fusion of SNARE-apposed bilayers." Cell Biol Int 28(1): 19-31.

K

K

K

K

Kakorin, S., U. Brinkmann, et al. (2005). "Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles." Biophys Chem 117(2): 155-71.

Kakorin, S. and E. Neumann (1998). "Kinetics of the electroporative deformation of lipid vesicles and biological cells in an electric field." Ber. Bunsenges. Phys. Chem 102(4): 670-675.

Khalil, I. A., K. Kogure, et al. (2006). "Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery." Pharmacol Rev 58(1): 32-45.

Khan, A. and E. Marques (1997). Specialist Surfactants (Ed.: B. A. a. Professional), London: 37.

Kinosita, K., Jr. and T. T. Tsong (1977). "Hemolysis of human erythrocytes by transient electric field." Proc Natl Acad Sci U S A 74(5): 1923-7.

Kinosita, K., Jr. and T. Y. Tsong (1977). "Voltage-induced pore formation and hemolysis of human erythrocytes." Biochim Biophys Acta 471(2): 227-42.

Korkotian, E. and M. Segal (1997). "Calcium-containing organelles display unique reactivity to chemical stimulation in cultured hippocampal neurons." J Neurosci 17(5): 1670-82.

Koronkiewicz, S. and S. Kalinowski (2004). "Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies." Biochim Biophys Acta

Kozlovsky, Y. and M. M. Kozlov (2002). "Stalk model of membrane fusion: solution of energy crisis." Biophys J 82(2): 882-95.

Kucerka, N., Y. Liu, et al. (2005). "Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles." Biophys J 88(4): 2626-37.

Kucerka, N., J. F. Nagle, et al. (2008). "Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data." Biophys J 95(5): 2356- 67.

Kucerka, N., S. Tristram-Nagle, et al. (2005). "Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains." J Membr Biol 208(3): 193-202.

L

L

L

L

Leekumjorn, S. and A. K. Sum (2007). "Molecular characterization of gel and liquid- crystalline structures of fully hydrated POPC and POPE bilayers." J Phys Chem B

111(21): 6026-33.

Lentz, B. R. (1994). "Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events." Chem Phys Lipids 73(1-2): 91-106.

Lentz, B. R., V. Malinin, et al. (2000). "Protein machines and lipid assemblies: current views of cell membrane fusion." Curr Opin Struct Biol 10(5): 607-15.

Lipowsky, R. (1991). "The conformation of membranes." Nature 349(6309): 475-81.

Lis, L. J., M. McAlister, et al. (1982). "Interactions between neutral phospholipid bilayer membranes." Biophys J 37(3): 657-65.

Lopez, A., M. P. Rols, et al. (1988). "31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells." Biochemistry 27(4): 1222-8.

Luitel, P., D. F. Schroeter, et al. (2007). "Self-electroporation as a model for fusion pore formation." J Biomol Struct Dyn 24(5): 495-503.

M

M

M

M

Markin, V. S., M. M. Kozlov, et al. (1984). "On the theory of membrane fusion. The stalk mechanism." Gen Physiol Biophys 3(5): 361-77.

Martens, S. and H. T. McMahon (2008). "Mechanisms of membrane fusion: disparate players and common principles." Nat Rev Mol Cell Biol 9(7): 543-56.

Mathai, J. C., S. Tristram-Nagle, et al. (2008). "Structural determinants of water permeability through the lipid membrane." J Gen Physiol 131(1): 69-76.

Mathivet, L., S. Cribier, et al. (1996). "Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field." Biophys J

70(3): 1112-21.

McIntosh, T. J., A. D. Magid, et al. (1987). "Steric repulsion between phosphatidylcholine bilayers." Biochemistry 26(23): 7325-32.

McIntosh, T. J., A. D. Magid, et al. (1989). "Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes." Biochemistry 28(1): 17-25.

McLaughlin, S. (1977). "Electrostatic potentials at membrane solution interfaces." Curr. Top. Membr. Trans. 9: 71.

Morrot, G., S. Cribier, et al. (1986). "Asymmetric lateral mobility of phospholipids in the human erythrocyte membrane." Proc Natl Acad Sci U S A 83(18): 6863-7.

N

N

N

N

Nagle, J. F., J. C. Mathai, et al. (2008). "Theory of passive permeability through lipid bilayers." J Gen Physiol 131(1): 77-85.

Needham, D. and R. M. Hochmuth (1989). "Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility." Biophys J 55(5): 1001-9.

Neumann, E. and K. Rosenheck (1972). "Permeability changes induced by electric impulses in vesicular membranes." J Membr Biol 10(3): 279-90.

Neumann, E., A. Sowers, et al. (1989). "Electroporation and Electrofusion in Cell Biology." Plenum, New York.

P

P

P

P

Pakhomov, A. G., A. M. Bowman, et al. (2009). "Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane." Biochem Biophys Res Commun

385(2): 181-6.

Papahadjopoulos, D., K. Jacobson, et al. (1973). "Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol." Biochim Biophys Acta 311(3): 330-48.

Papahadjopoulos, D., W. J. Vail, et al. (1977). "Studies on membrane fusion. III. The role of calcium-induced phase changes." Biochim Biophys Acta 465(3): 579-98.

Parsegian, V. A. and D. Gingell (1972). "On the electrostatic interaction across a salt solution between two bodies bearing unequal charges." Biophys J 12(9): 1192-204.

Pasquale, L., A. Winiski, et al. (1986). "An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and

tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes." J Gen Physiol 88(6): 697-718.

Phez, E. (2005). "Mécanisme de l'électrotransfert de gènes dans les cellules animales : Caractérisation des domaines d'interaction de l'ADN à la membrane et étude des conséquences intra-cellulaires." Thèse de doctorat.

Pohl, H. A. (1951). "The motion and precipitation of suspensoids in divergent electric fields." J of Applied Physics 22(7): 869-71.

Pohl, H. A. (1958). "Some effects of nonuniform fields on dielectrics." J of Applied Physics

29(8): 1182-88.

Portet, T., F. Camps i Febrer, et al. (2009). "Visualization of membrane loss during the shrinkage of giant vesicles under electropulsation." Biophys J 96(10): 4109-21.

Portis, A., C. Newton, et al. (1979). "Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin." Biochemistry 18(5): 780-90.

Prachayasittikul, V., C. Isarankura-Na-Ayudhya, et al. (2007). "EDTA-induced membrane fluidization and destabilization: biophysical studies on artificial lipid membranes." Acta Biochim Biophys Sin (Shanghai) 39(11): 901-13.

R

R

R

R

Raffy, S. and J. Teissie (1997). "Electroinsertion of glycophorin A in interdigitation-fusion giant unilamellar lipid vesicles." J Biol Chem 272(41): 25524-30.

Raffy, S. and J. Teissie (1999). "Control of lipid membrane stability by cholesterol content." Biophys J 76(4): 2072-80.

Ramos, C. (2000). "Etude des mécanismes de fusion cellulaire : approche biophysique par electropulsation." Thèse de doctorat.

Rand, R. P. and V. A. Parsegian (1989). "Hydration forces between phospholipid bilayers." Biochim Biophys Acta 988: 351-376.

Riske, K. A., N. Bezlyepkina, et al. (2006). "Electrofusion of model lipid membranes viewed with high temporal resolution." Biophysical Reviews and Letters 1(4): 387-400.

Riske, K. A. and R. Dimova (2006). "Electric pulses induce cylindrical deformations on giant vesicles in salt solutions." Biophys J 91(5): 1778-86.

Rols, M. P. and J. Teissie (1989). "Ionic-strength modulation of electrically induced permeabilization and associated fusion of mammalian cells." Eur J Biochem 179(1): 109-15.

Rols, M. P. and J. Teissie (1998). "Electropermeabilization of mammalian cells to macromolecules: control by pulse duration." Biophys J 75(3): 1415-23.

Rosenheck, K. (1998). "Evaluation of the electrostatic field strength at the site of exocytosis in adrenal chromaffin cells." Biophys J 75(3): 1237-43.

Rothman, J. E. and J. Lenard (1977). "Membrane asymmetry." Science 195(4280): 743-53.

Rousselet, A., C. Guthmann, et al. (1976). "Study of the transverse diffusion of spin labeled phospholipids in biological membranes. I. Human red bloods cells." Biochim Biophys Acta 426(3): 357-71.

S

SS

S

Schechter, E. (2004). "Biochimie et biophysique des membranes. Aspects structuraux et fonctionnels." Dunod.

Shynkar, V. V., A. S. Klymchenko, et al. (2005). "Two-color fluorescent probes for imaging the dipole potential of cell plasma membranes." Biochim Biophys Acta 1712(2): 128- 36.

Soussan, E. (2007). "Conception de vésicules catanioniques dérivées de sucre et étude de leur mécanisme de délivrance de principes actifs." Thèse de doctorat: 163.

Soussan, E., S. Cassel, et al. (2009). "Drug delivery by soft matter: matrix and vesicular carriers." Angew Chem Int Ed Engl 48(2): 274-88.

Soussan, E., C. Mille, et al. (2008). "Sugar-Derived Tricatenar Catanionic Surfactant: Synthesis, Self-Assembly Properties, and Hydrophilic Probe Encapsulation by Vesicles." Langmuir 24: 2326-2330.

Sowers, A. E. (1986). "A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses." J Cell Biol 102(4): 1358-62.

Sparr, E., L. Hallin, et al. (2002). "Phospholipid-cholesterol bilayers under osmotic stress." Biophys J 83(4): 2015-25.

Spataro, G., F. Malecaze, et al. (2010). "Designing dendrimers for ocular drug delivery." Eur J Med Chem 45(1): 326-34.

Starke-Peterkovic, T., N. Turner, et al. (2006). "Cholesterol effect on the dipole potential of lipid membranes." Biophys J 90(11): 4060-70.

Stegmann, T., R. W. Doms, et al. (1989). "Protein-mediated membrane fusion." Annu Rev Biophys Biophys Chem 18: 187-211.

Steinberg, Y., A. Schroeder, et al. (2007). "Triggered release of aqueous content from liposome-derived sol-gel nanocapsules." Langmuir 23(24): 12024-31.

Stoicheva, N. G. and S. W. Hui (1994). "Dielectrophoresis of cell-size liposomes." Biochim Biophys Acta 1195(1): 39-44.

Stulen, G. (1981). "Electric field effects on lipid membrane structure." Biochim Biophys Acta

640(3): 621-7.

Sukhorukov, V. L., H. Mussauer, et al. (1998). "The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media." J Membr Biol 163(3): 235-45.

T

T

T

T

Tamm, L. K., J. Crane, et al. (2003). "Membrane fusion: a structural perspective on the interplay of lipids and proteins." Curr Opin Struct Biol 13(4): 453-66.

Tanford, C. (1978). "The hydrophobic effect and the organization of living matter." Science

200(4345): 1012-8

Teissie, J. (1987). "Polar head molecular packing of dipalmitoylglycerophosphocholine in the gel state: a fluorescence investigation." Biochemistry 26(3): 840-6.

Teissie, J., V. P. Knutson, et al. (1982). "Electric pulse-induced fusion of 3T3 cells in monolayer culture." Science 216(4545): 537-8.

Teissie, J. and M. P. Rols (1986). "Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization." Biochem Biophys Res Commun 140(1): 258-66.

Teissie, J. and M. P. Rols (1993). "An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization." Biophys J 65(1): 409-13.

Teissie, J. and T. Y. Tsong (1981). "Electric field induced transient pores in phospholipid bilayer vesicles." Biochemistry 20(6): 1548-54.

Tekle, E., R. D. Astumian, et al. (2001). "Asymmetric pore distribution and loss of membrane lipid in electroporated DOPC vesicles." Biophys J 81(2): 960-8.

Tocanne, J. F., L. Cezanne, et al. (1994). "Lipid domains and lipid/protein interactions in biological membranes." Chem Phys Lipids 73(1-2): 139-58.

Tocanne, J. F., L. Dupou-Cezanne, et al. (1989). "Lipid lateral diffusion and membrane organization." FEBS Lett 257(1): 10-6.

Tocanne, J. F. and J. Teissie (1990). "Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems." Biochim Biophys Acta 1031(1): 111-42.

Tondre, C. and C. Caillet (2001). "Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis." Adv Colloid Interface Sci 93(1-3): 115-34.

Tonsing, K., S. Kakorin, et al. (1997). "Annexin V and vesicle membrane electroporation." Eur Biophys J 26(4): 307-18.

Tristram-Nagle, S., Y. Liu, et al. (2002). "Structure of gel phase DMPC determined by X-ray diffraction." Biophys J 83(6): 3324-35.

Tu, K., D. J. Tobias, et al. (1996). "Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer." Biophys J 70(2): 595-608.

V

V

V

V

van Uitert, I., S. Le Gac, et al. (2010). "The influence of different membrane components on the electrical stability of bilayer lipid membranes." Biochim Biophys Acta 1798(1): 21-31.

Villemejane, J., G. Mottet, et al. (2010). "Nanomanipulation of Living Cells on a Chip Using Electric Field: General Concepts and Microdevices." Electronic Design, Test and Application: 229-232.

W

W

W

W

Weissenhorn, W., A. Hinz, et al. (2007). "Virus membrane fusion." FEBS Lett 581(11): 2150- 5.

Wilschut, J., N. Duzgunes, et al. (1981). "Calcium/magnesium specificity in membrane fusion: kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature." Biochemistry 20(11): 3126-33.

Wilschut, J. and D. Papahadjopoulos (1979). "Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents." Nature 281(5733): 690-2.

Y

YY

Y

Yu, Y. G., D. S. King, et al. (1994). "Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes." Science 266(5183): 274-6.

Z

Z

Z

Z

Zemb, T., M. Dubois, et al. (1999). "Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions." Science 283(5403): 816-9.

Zimmermann, U. (1982). "Electric field-mediated fusion and related electrical phenomena." Biochim Biophys Acta 694(3): 227-77.

Gene electrotransfer: from biophysical mechanisms to in vivo applications Part 1- Biophysical mechanisms

Escoffre, J. M., Mauroy, C., Portet, T., Wasungu, L., Rosazza, C., Gilbart, Y., Mallet, L., Bellard, E., Golzio, M., Rols, M. P. and Teissié, J.

Dans le document Fusion d'auto-assemblages lipidiques (Page 157-179)