• Aucun résultat trouvé

I. 6 : Positionnement de l’étude

V.III Expérimentation en laboratoire

Les variations d’aluminisation observées sur l’auto-aluminisation des vermiculites sont la conséquence directe des compétitions entre échanges et dissolution. Kalinowski et Schweda (2007) avaient montré l’importance du pH sur l’adsorption d’aluminium. En effet, 55 % de l’aluminium était adsorbé à pH 3 alors que 94 % de l’aluminium était adsorbé à pH 4 dans l’espace interfoliaire des vermiculites. Ces résultats montrent que lorsque l’acidité augmente, la dissolution prend le pas sur les processus d’échange et donc sur l’aluminisation. Lors de l’étude d’auto-aluminisation de la partie III, les compétitions entre l’échange interfoliaire et la dissolution ont pu être exacerbées grâce aux variations observées à travers la taille des particules. Une autre façon d’observer ces différences pourrait donc être de faire varier le pH de la solution entrante. La combinaison des effets de taille de particules et de variations de pH permettrait donc d’exacerber particulièrement les différences entre les processus d’échange des cations interfoliaires et la dissolution des vermiculites. Ainsi, les conditions préférentielles d’aluminisation ou de dissolution pourraient être définies pour des particules représentatives d’échantillons de sols et dans des gammes de pH qui sont rencontrées dans les sols.

Les systèmes étudiés dans ces expériences de laboratoire sont très simples par rapport aux conditions observées dans les milieux naturels. L’expérience réalisée par Hinsinger (1993) sur l’auto-aluminisation de phlogopites montre que les phlogopites avec une taille comprise entre 2 et 105 µm sont facilement transformées en HIV par l’action des racines de colza alors que la majorité des expériences en laboratoire avec des acides simples n’ont pas

170 montrées de transformations des phlogopites (Clemency and Lin, 1981; Lin and Clemency, 1981b; Kalinowski and Schweda, 1996; Kalinowski and Schweda, 2007). L’effet de la taille des particules sur les transformations minéralogiques liées à l’action des racines des plantes n’a pas été testée. Ce travail pourrait permettre de mieux comprendre l’action des racines des plantes et déterminer si les minéraux argileux potassiques, notamment ceux de taille infra micrométrique, rencontrés dans les sols peuvent constituer une ressource en potassium.

Bibliographie

Acker J. G. and Bricker O. P. (1992) The influence of pH on biotite dissolution and alteration kinetics at low temperature. Geochimica Et Cosmochimica Acta 56, 3073–3092. Alva A. K., Edwards D. G., Asher C. J. and Blamey F. P. C. (1986) Effects of

Phosphorus/Aluminum Molar Ratio and Calcium Concentration on Plant Response to Aluminum Toxicity1. Soil Science Society of America Journal 50, 133-137.

Amram K. and Ganor J. (2005) The combined effect of pH and temperature on smectite dissolution rate under acidic conditions. Geochimica Et Cosmochimica Acta 69, 2535– 2546.

Aplin A. C., Matenaar I. F., McCarty D. K. and Pluijm B. A. V. D. (2006) Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones. Clays and Clay Minerals 54, 500-514.

April R. H. (1986) The Nature of Vermiculite in Adirondack Soils and Till. Clays and Clay

Minerals 34, 549–556.

Argüelles A., Leoni M., Blanco J. A. and Marcos C. (2010) Semi-ordered crystalline structure of the Santa Olalla vermiculite inferred from X-ray powder diffraction. American

Mineralogist 95, 126–134.

Augusto L., Ranger J., Turpault M.-P. and Bonnaud P. (2001) Experimental in situ transformation of vermiculites to study the weathering impact of tree species on the soil. European Journal of Soil Science 52, 81–92.

Bain D. C. and Fraser A. R. (1994) An unusually interlayered clay mineral from the eluvial horizon of a humus-iron Podzol. Clay Minerals 29, 69–76.

Bain D. C., Mellor A. and Wilson M. J. (1990) Nature and origin of an aluminous vermiculitic weathering product in acid soils from upland catchments in scotland. Clay

Minerals 25, 467–475.

Baize D., Girard M. C., Jabiol B., Rossignol J. P., Eimberck M. and Beaudou, A. (2009) Référentiel Pédologique 2008. Quae ed., Versailles.

Banfield J. F., Barker W. W., Welch S. A. and Taunton A. (1999) Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. PNAS 96, 3404–3411.

Barnhisel R. I. (1969) Changes in specific areas of clays treated with hydroxy-aluminium.

Soil Science 107, 126–130.

Barnhisel R. I. and Rich C. I. (1963) Gibbsite Formation From Aluminum-Interlayers in Montmorillonite. Soil Science Society of America Journal 27, 632–635.

172 Barnishel R. I. and Bertsch P. M. (1989) Chlorites and hydroxy-interlayered vermiculite and smectite. In Minerals in Soil Environments Soil Science Society of America, Madison. pp. 729–788.

Barshad I. (1970) Factors affecting the rate of the interchange reaction of adsorbed H+ on the 2:1 clay minerals. Soil Science 110, 52–60.

Barshad I. (1960) Significance of the Presence of Exchangeable Magnesium Ions in Acidified Clays. Science 131, 988–990.

Barshad I. (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X Ray analyses, differential thermal curves, and water content. American

Mineralogist 33, 655–678.

Beaucaire C., Tertre E., Ferrage E., Grenut B., Pronier S. and Madé B. (2012) A thermodynamic model for the prediction of pore water composition of clayey rock at 25 and 80 °C — Comparison with results from hydrothermal alteration experiments.

Chemical Geology 334, 62–76.

Bibi I., Singh B. and Silvester E. (2011) Dissolution of illite in saline–acidic solutions at 25 °C. Geochimica Et Cosmochimica Acta 75, 3237–3249.

Bortoluzzi E. C., Velde B., Pernes M., Dur J. C. and Tessier D. (2008) Vermiculite, with hydroxy-aluminium interlayer, and kaolinite formation in a subtropical sandy soil from south Brazil. Clay Minerals 43, 185–193.

Bray A. W., Oelkers E. H., Bonneville S., Wolff-Boenisch D., Potts N. J., Fones G. and Benning L. G. (2015) The effect of pH, grain size and organic ligands on biotite weathering rates. Geochimica Et Cosmochimica Acta 164, 127-145.

Breemen N. van, Finlay R., Lundström U., Jongmans A. G., Giesler R. and Olsson M. (2000) Mycorrhizal weathering: A true case of mineral plant nutrition? Biogeochemistry 49, 53–67.

Brindley G. W. and Sempels R. E. (1977) Preparation and properties of some hydroxy-aluminium beidellites. Clay Minerals 12, 229-237.

Brown G. (1953) The diocthedral analogue of vermiculite. Clay Minerals Bulletin 2, 64–70. Calvaruso C., Mareschal L., Turpault M.P. and Leclerc, E., (2009) Rapid clay weathering in

the rhizosphere of norway spruce and oak in an acid forest ecosystem. Soil Science

Society of America Journal 73(1), 331-338.

Cama J., Ganor J., Ayora C. and Lasaga C. A. (2000) Smectite dissolution kinetics at 80°C and pH 8.8. Geochimica Et Cosmochimica Acta 64, 2701–2717.

Cama J., Metz V. and Ganor J. (2002) The effect of pH and temperature on kaolinite dissolution rate under acidic conditions. Geochimica Et Cosmochimica Acta 66, 3913– 3926.

Cartesa D. D. (1967) Formation of hydroxy-Al and -Fe Interlayers in montmorillonite and vermucilte: influence of particule size and temperature. Clays and Clay Minerals 16, 231–238.

173 Charlet L., Schindler P. W., Spadini L., Furrer G. and Zysset M. (1993) Cation adsorption on

oxides and clays: The aluminum case. Aquatic Science 55, 291–303.

Cheshire M. V., Berrow M. L., Goodman B. A. and Mundie C. M. (1977) Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochimica Et Cosmochimica Acta 41, 1131–1138.

Chernov V.A. (1947) The nature of soil acidity. English translation Soil Science Society of

America, Madison, Wisconsin, 170 pp.

Claret F., Sakharov B. A., Drits V. A., Velde B., Meunier A., Griffault L. and Lanson B. (2004) Clay minerals in the Meuse-Haute Marne underground laboratory (France): Possible influence of organic matter on clay mineral evolution. Clays and Clay

Minerals 52, 515–532.

Clemency C. V. and Lin F.-C. (1981) Dissolution Kinetics of Phlogopite. II. Open System Using an Ion-Exchange Resin. Clays and Clay Minerals 29, 107–112.

Coleman N. T. and Harward M. E. (1953) The Heats of Neutralization of Acid Clays and Cation-exchange Resins. Journal of the American Chemical Society 75, 6045–6046. Collignon C. (2011) Evolution saisonnière des minéraux dans un sol forestier acide : influence

de l’altération abiotique et biotique des minéraux. Thèse Université de Nancy, Henri Poincarré.

Collignon C., Boudot J.-P. and Turpault M.-P. (2012) Time change of aluminium toxicity in the acid bulk soil and the rhizosphere in Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) stands. Plant Soil 357, 259–274.

Collignon C., Ranger J. and Turpault M. P. (2012) Seasonal dynamics of Al- and Fe-bearing secondary minerals in an acid forest soil: influence of Norway spruce roots (Picea abies (L.) Karst.). European Journal of Soil Science 63, 592–602.

Cradwick P. D. and Wilson W. J. (1978) Calculated X-Ray Diffraction Curves for the Interpretation of a Three-Component Interstratified System. Clay Minerals 13, 53–65. Daikuhara G. (1914) Acid mineral soils. The Bulletin of the Imperial Central Agricultural

Experiment Station, Japan. 2, 1

Dambrine E., Party J. P., Pollier B., Nicolaï M., Probst A., Rozin C. and Duc M. (1999) Acidification des eaux de source et saturnisme dans le massif vosgien. Revue

Forestière Française 51, 173–183.

Dambrine E., Robert M. and Ranger J. (1989) Influence of seasonal climatic changes on the process of podzolization in the sbalpine zone. Compte rendus de l’académie des

sciences, 1797–1802.

Daval D., Hellmann R., Martinez I., Gangloff S. and Guyot F. (2013) Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. Chemical Geology 351, 245–256.

174 David M. B. and Driscoll C. T. (1984) Aluminum speciation and equilibria in soil solutions of a Haplorthod in the Adirondack Mountains (New York, U.S.A.). Geoderma 33, 297– 318.

De La Calle C., Pezerat H. and Gasperin M. (1977) Problèmes d’ordre - désordre dans les vermiculites structure du minéral calcique hydraté à 2 couches. Journal de Physique

Colloques 38, 128–133.

De la Calle C. (1988) Stacking order in a 14.30 Mg-vermiculite. Clays and Clay Minerals 36, 481-490.

De la Calle C. and Suquet, H. (1988) Vermiculite. In: S.W. Bailey (Ed.), Hydrous Phyllosilicates (Exclusive of Micas). Reviews in Mineralogy 19. Mineralogical Society of America, Chantilly, V.A., pp. 455-496.

Dixon J. B. A. and Weed S. B. A. (1989) Minerals in soil environments. Soil Science Society

of America.

Dixon J. B. and Jackson M. L. (1959) Dissolution of Interlayers from Intergradient Soil Clays after Preheating at 400°C. Science 129, 1616–1617.

Dixon J. B. and Jackson M. L. (1962) Properties of Intergradient Chlorite-Expansible Layer Silicates of Soils. Soil Science Society of America Journal 26, 358.

Dougan W. K. and Wilson A. L. (1974) The absorptiometric determination of aluminium in water. A comparison of some chromogenic reagents and the development of an improved method. Analyst 99, 413–430.

Dumon M., Tolossa, A. R., Capon B., Detavemier C. and Van Ranst E., (2014) Quantitative clay mineralogy of a Vertic Planosol in southwestern Ethiopia: Impact on soil formation hypotheses. Geoderma 214, 184-196.

Driscoll C. T. and Postek K. M. (1995) The chemistry of Aluminium in surface Waters. In

The Environmental Chemistry of Aluminum, Second Edition CRC Press. pp. 363–418. Drits V. A. and Tchoubar C. (1990) X-Ray Diffraction by Disordered Lamellar Structures.,

Springer Berlin Heidelberg, Berlin, Heidelberg.

Drits V. A., (2003) Structural and chemical heterogeneity of layer silicates and clay minerals.

Clay Minerals 38, 403-432.

Drits V. A., Srodon J. and Eberl D. D. (1997) XRD measurement of mean crystallite thickness of illite and illite/smectite; reappraisal of the Kubler index and the Scherrer equation.

Clays and Clay Minerals 45, 461-475.

Egli M., Fitze P. and Mirabella A. (2001) Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swiss alpine environments.

Catena 45, 19–47.

Egli M., Mirabella A., Mancabelli A. and Sartori G. (2004) Weathering of soils in alpine areas as influenced by climate and parent material. Clays and clay minerals 52, 287–303.

175 Egli M., Mirabella A., Sartori G. and Fitze P. (2003) Weathering rates as a function of climate: results from a climosequence of the Val Genova (Trentino, Italian Alpes).

Geoderma 111, 99–121.

Egli M., Mirabella A., Sartori G., Giaccai D., Zanelli R. and Plötze M. (2007) Effect of slope aspect on transformation of clay minerals in Alpine soils. Clay Minerals 42, 373–398. Egli M., Sartori G., Mirabella A., Giaccai D., Favilli F., Scherrer D., Krebs R. and Delbos E.

(2010) The influence of weathering and organic matter on heavy metals lability in silicatic, Alpine soils. Science of the Total Environment. 408, 931–946.

Espiau P. and Peyronel A. (1976) L’acidité d’échange des sols, le taux d’acidité d’échange et sa signification pédologique sous climat tempéré. Annales Agronomiques 33, 363– 383.

Ezzaı̈m A., Turpault M.-P. and Ranger J. (1999) Quantification of weathering processes in an acid brown soil developed from tuff (Beaujolais, France): Part II. Soil formation.

Geoderma 87, 155–177.

Ferrage E., Lanson B., Malikova N., Plancon A., Sakharov B. A. and Drits V. A. (2005a) New insights on the distribution of interlayer water in bi-hydrated smectite from X-ray diffraction profile modeling of 00l reflections. Chemistry of Materials 17, 3499–3512. Ferrage E., Lanson B., Sakharov B. A., Drits V. A., (2005b) Investigation of smectite

hydration properties by modeling of X-ray diffraction profiles. Part 1. Montmorillonite hydration properties. American Mineralogist 90, 1358-1374.

Ferrage E., Kirk C. A. Cressey, G. and Cuadros, J. (2007) Dehydration of Ca-montmorillonite at the crystal scale. Part 1. Structure evolution. American Mineralogist 92, 994-1006. Ferrage E., Vidal O., Mosser-Ruck R., Cathelineau M. and Cuadros, J. (2011) A

reinvestigation of smectite illitization in experimental hydrothermal conditions: Results from X-ray diffraction and transmission electron microscopy. American

Mineralogist 96, 207-223.

Gadd G. M. (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, 3–49. George R. Holdren Jr P. M. S. (1985) Reaction rate-surface area relationships during the early

stages of weathering--I. Initial observations. Geochimica Et Cosmochimica Acta - 49, 675–681.

Griffith S. M. and Schnitzer M. (1975) Analytical Characteristics of Humic and Fulvic Acids Extracted from Tropical Volcanic Soils. Soil Science Society of America Journal 39, 861–867.

Grim R. E. (1942) Modern Concepts of Clay Materials. The Journal of Geology 50, 225–275. Grybos M., Michot L. J., Skiba M., Billard P. and Mustin C. (2010) Dissolution of anisotropic

colloidal mineral particles: Evidence for basal surface reactivity of nontronite. Journal

176 Harris W. G., Hollien K. A., Yuan T. L., Bates S. R. and Acree W. A. (1988) Nonexchangeable Potassium Associated with Hydroxy-Interlayered Vermiculite from Coastal Plain Soils. Soil Science Society of America Journal 52, 1486–1492.

Hetier J. and Tardy Y. (1969) Présence de Vermiculite-Al, Montmorillonite-Al et Chlorite-Al et leur répartition dans quelques sols des Vosges. Compte Rendus de l’Académie des

Sciences de Paris 268, 259–261.

Hinsinger P., Elsass F., Jaillard B. and Robert M. (1993) Root-induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape. Journal of Soil

Science 44, 535–545.

Hinsinger P. and Jaillard B. (1993) Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. Journal of Soil Science 44, 525–534.

Holdren Jr G. R. and Berner R. A. (1979) Mechanism of feldspar weathering—I. Experimental studies. Geochimica Et Cosmochimica Acta 43, 1161–1171.

Hortenstine C. C. and Fiskell J. G. A. (1961) Effects of Aluminum on Sunflower Growth and Uptake of Boron and Calcium from Nutrient Solution1. Soil Science Society of

America Journal 25, 304.

Howard J. and Preston, K.D. (1989) Profile fitting of powder diffraction patterns. In: D.L. Bish, J.E. Post (Eds.), Modern powder diffraction. Reviews in mineralogy 20.

Mineralogical Society of America, Chantilly, V.A., pp. 217-275.

Hsu, Pa Ho and Bates T. F. (1964) Fixation of hydroxy-aluminium polymers in vermiculite.

Proceeding Soil Science of America 28, 763–769.

Hsu P. H. (1968) Heterogeneity of Montmorillonite Surface and Its Effect on the Nature of Hydroxy-Aluminum Interlayers. Clays and Clay Minerals 16, 303–311.

Hsu P. H. and Bates T. F. (1964) Formation of X-ray Amorphous and Crystalline Aluminium Hydroxides. Mineralogical Magazine 33, 749–768.

Huang P. M. (1987) Aluminium and the fate of nutrients and toxic substances in terrestrial and fresh water environnements. In Systems and Control Encyclopedia M. Singh, Oxford, U. K. pp. 262–268.

Huang P. M. (1988) Ionic Factors Meeting Aluminum Transformations and the Impact on Soil and Environmental Sciences. In Advances in Soil Science Springer-Verlag New York Inc, USA. pp. 1–78.

Huang P. M. and Jackson M. L. (1965) Mechanism of Reaction of Neutral Fluoride Solution with Layer Silicates and Oxides of Soils1. Soil Science Society of America Journal 29, 661.

Huang P. M. and Kozak L. M. (1970) Adsorption of Hydroxy-aluminium Polymers by Muscovite and Biotite. Nature 228, 1084–1085.

177 Huang P. M., Schnitzer M., Robert M. and Berthelin J. (1986) Role of Biologicaland Biochemical Factors in Soil Mineral Weathering. In SSSA Special Publication Soil Science Society of America.

Hubert F., Caner L., Meunier A. and Ferrage E. (2012) Unraveling complex <2 µm clay mineralogy from soils using X-ray diffraction profile modeling on particle-size sub-fractions: Implications for soil pedogenesis and reactivity. American Mineralogist 97, 384–398.

Inoue A., Lanson B., Marques-Fernandes M., Sakharov B. A., Murakami, T., Meunier A. and Beaufort, D. (2005) Illite-smectite mixed-layer minerals in the hydrothermal alteration of volcanic rocks: I. One-dimensional XRD structure analysis and characterization of component layers. Clays and Clay Minerals 53, 423-439.

Jackson M. L. (1963) Aluminum Bonding in Soils: a Unifying Principle in Soil Science. Soil

Science Society of America Journal 27, 1-10.

Jackson M. L. (1962) Interlayering of Expansible Layer Silicates in Soils by Chemical Weathering. Clays and Clay Minerals 11, 29–46.

Jackson M. L., Hseung Y., Corey R. B., Evans E. J. and Heuvel R. C. V. (1952) Weathering Sequence of Clay-size Minerals in Soils and Sediments. Soil Science Society of

America Journal 16, 3–6.

Jackson M. L., Whittig L. D., Vanden Heuvel R. C., Kaufman A. and Brown B. E. (1953) Some Analyses of Soil Montmorin, Vermiculite, Mica, Chlorite, and Interstratified Layer Silicates. Clays and Clay Minerals 2, 218–240.

Jagodzinski H. (1949) Eindimensionale fehlordnung in kristallen und ihr einfluss auf die röntgeninterferenzen. I. Berechnung des fehlordnungsgrades aus den röntgenintensitäten. Acta Crystallographica 2, 201-207.

Janek M. (1997) Effect of Autotransformation on the Layer Charge of Smectites Determined by the Alkylammonium Method. Clay Minerals 32, 623–632.

Jenny H. (1961) Reflections on the Soil Acidity Merry-Go-Round. Soil Science Society of

America Journal 25, 428.

Jones D. L. (1998) Organic acids in the rhizosphere – a critical review. Plant and Soil 205, 25–44.

Kalinowski B. E. and Schweda P. (1996) Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature. Geochimica Et Cosmochimica

Acta 60, 367–385.

Kalinowski B. E. and Schweda P. (2007) Rates and nonstoichiometry of vermiculite dissolution at 22°C. Geoderma 142, 197–209.

Kappen H. (1929) Die boden azididat Verlag. J Springer Berlin, 361 pp.

Karathanasis A. (1988) Compositional and Solubility Relationships Between Aluminum-Hydroxyinterlayered Soil-Smectites and Vermiculites. Soil Science Society of America

178 Keren R. (1980) Effects of Titration Rate, pH, and Drying Process on Cation Exchange Capacity Reduction and Aggregate Size Distribution of Montmorillonite Hydroxy-Aluminum Complexes. Soil Science Society of America Journal 44, 1209–1212. Kerr G. T., Zimmerman R. H., Fox H. A. and Wells F. H. (1955) Degradation of hectorite by

hydrogen ion. Clays and Clay Minerals 4, 322–329.

Kinraide T. B (1991) Identity of the rhizotoxic aluminium species. Plant and Soil 134, 167– 178.

Kinriade T. B. and Parker D. R. (1989) Assessing the phytotoxicity of mononuclear hydroxy-aluminum. Plant, Cell & Environment 12, 479–487.

Kirkland D. L. and Hajek B. F. (1972) Formula derivation of al-interlayered vermiculite in selected soil clays. Soil Science 114, 317–322.

Klages M. G. and White J. L. (1957) A Chlorite-Like Mineral in Indiana Soils. Soil Science

Society of America Journal 21, 16-20.

Köhler S. J., Bosbach D. and Oelkers E. H. (2005) Do clay mineral dissolution rates reach steady state? Geochimica et Cosmochimica Acta 69, 1997–2006.

Kozak L. M. and Huang P. M. (1971) Adsorption of Hydroxy-Al by Certain Phyllosilicates and its Relation to K/Ca Cation Exchange Selectivity. Clays and Clay Minerals 19, 95–102.

Laird D. A., Barak P., Natar E. A. and Dowdy R. H. (1991) Chemistry of smectitic and illitic phases in interstratified soil smectite. Soil Science Society of America Journal 55, 1499–1504.

Lanson B. (1993) DECOMPXR, X-Ray deomposition program. ERM (sarl.) Poitiers, France. Lanson B., Ferrage E., Hubert F., Prêt D., Mareschal L., Turpault M.-P. and Ranger J. (2015) Experimental aluminization of vermiculite interlayers: An X-ray diffraction perspective on crystal chemistry and structural mechanisms. Geoderma 249–250, 28– 39.

Lanson B., Sakharov B. A., Claret F. and Drits V. A. (2009) Diagenetic smectite-to-illite transition in clay-rich sediments: A reappraisal of X-ray diffraction results using the multi-specimen method. American Journal of Science 309, 476-516.

Legout A. and Ranger J. (2001) Base de données du site ORE de Breuil-Chenue. Institut

Nationnal de la Recherche Agronomique (INRA), Biogéochimie des écosystèmes Forestiers, Nancy.

Lee S. Y., Jackson M. L., and Brown J. L. (1975) Micaceous occlusions in kaolinite observed by ultramicrotomy and high resolution electron microscopy. Clays and Clay Minerals, 23, 125–129.

Lin F. C. and Clemency C. V. (1981a) Dissolution kinetics of phlogopite.1. Closed system.

179 Lin F. C and Clemency C. V. (1981b) The dissolution kinetics of brucite, antigorite, talc, and

phlogopite at room temperature and pressure. American Mineralogist 66, 801–806. Lindgreen H., Drits V. A., Sakharov B. A., Salyn A. L., Wrang P. and Dainyak L.G. (2000)

Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area. American Mineralogist 85, 1223-1238.

Lindgreen H., Drits V. A., Sakharov B. A., Jakobsen H. J., Salyn A. L., Dainyak L. G., Krøyer H., (2002) The structure and diagenetic transformation of illite-smectite and chlorite-smectite from North Sea Cretaceous-Tertiary chalk. Clay Minerals 37, 429-450.

Low P. F. (1955) The Role of Aluminum in the Titration of Bentonite. Soil Science Society of

America Journal 19, 135-140.

MacEwan D. M. C. (1950) Some Notes on the Recording and Interpretation of X-Ray Diagrams of Soil Clays. Journal of Soil Science 1, 90–103.

Malmström M. and Banwart S. (1997) Biotite dissolution at 25°C: The pH dependence of dissolution rate and stoichiometry. Geochimica Et Cosmochimica Acta 61, 2779 – 2799.

Mareschal L. (2008) Effet des substitutions d’essences forestières sur l’évolution des sols et de leur minéralogie. Henri Poincarré.

Mareschal L., Ranger J. and Turpault M. P. (2009) Stoichiometry of a dissolution reaction of a trioctahedral vermiculite at pH 2.7. Geochimica Et Cosmochimica Acta 73, 307–319. Mareschal L., Turpault M.-P., Bonnaud P. and Ranger J. (2013) Relationship between the weathering of clay minerals and the nitrification rate: a rapid tree species effect.

Biogeochemistry 112, 293–309.

Mathers A. C. (1954) The Effect of Acid and Heat Treatment on Montmorillonoids. Clays

and Clay Minerals 3, 403–412.

Mavris C., Goetze J., Ploetze M. and Egli M. (2012) Weathering and mineralogical evolution in a high Alpine soil chronosequence: A combined approach using SEM-EDX, cathodoluminescence and Nomarski DIC microscopy. Sediment Geology 280, 108– 118.

Mavris C., Plötze M., Mirabella A., Giaccai D., Valboa G. and Egli M. (2011) Clay mineral evolution along a soil chronosequence in an Alpine proglacial area. Geoderma 165, 106–117.

McBride M. B. (1994) Environmental Chemistry of Soils. Oxford University Press, New

York.

McCarty D. K., Drits V. A., Sakharov B., Zviagina B. B., Ruffell A. and Wach, G. (2004) Heterogeneous mixed-layer clays from the Cretaceous, Greensand, Isle of Wight, southern England. Clays and Clay Minerals 52, 552-575.

180 McCarty D. K., Sakharov B. A. and Drits, V. A., (2008) Early clay diagenesis in gulf coast sediments: New insights from XRD profile modeling. Clays and Clay Minerals 56, 359-379.

McCarty D. K., Sakharov B. and Drits V. (2009) New insights into smectite illitization: A zoned K-bentonite revisited. American Mineralogist 94, 1653-1671.

McKeague J. A. and Day J. H. (1966) Dithionite and oxalate extractable Fe and Al as AIDS in differentiating various classes of soils. Canadian Journal of Soil Science 46, 13–22. Mehra O. P. and Jackson M. L. (1960) Iron oxide removal from soils and clay by

dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals 7, 317– 327.

Metz V. and Ganor J. (2001) Stirring effect on kaolinite dissolution rate. Geochimica Et

Cosmochimica Acta 65, 3475–3490.

Meunier A. (2007) Soil Hydroxy-Interlayered Minerals: A Re-Interpretation of Their Crystallochemical Properties. Clays and Clay Minerals 55, 380–388.

Miller R. J. (1965) Mechanisms for Hydrogen to Aluminum Transformations in Clays. Soil

Science Society of America Journal 29, 36.

Mirabella A. and Egli M. (2003) Structural transformations of clay minerals in soils of a climosequence in an Italian Alpine environment. Clays and Clay Minerals 51, 264–

Documents relatifs