• Aucun résultat trouvé

Chapitre 1 Revue de littérature

1.4. Utilisation de bactéries du genre Bacillus comme probiotiques

1.4.3 Effet sur le profil en acides gras du lait

L’effet de l’ajout de probiotiques à la ration des vaches sur le profil en acides gras du lait dépend encore une fois des conditions d’élevage et de la souche de probiotiques utilisés. À notre connaissance, aucune étude n’a évalué l’effet de Bacillus subtilis et de Bacillus

licheniformis sur le profil en acides gras et la concentration en AGCR du lait. Chez le porc,

l’ajout d’un mélange de Bacillus subtilis et de Bacillus licheniformis à la ration a cependant modifié significativement le profil en acides gras du foie des animaux, bien que les AGCR n’aient pas été dosés (Parra et al., 2010). Il est accepté qu’une part importante des acides

34

gras du lait provient directement de l’alimentation. Ainsi, on peut émettre l’hypothèse qu’une supplémentation en Bacillus subtilis et en Bacillus licheniformis augmentera la proportion en AGCR du lait.

En ce sens, Philippeau et al. (2017) ont réalisé une étude chez des vaches en utilisant des traitements de Propionibacterium P63 utilisé seul ou en mélange avec Lactobacillus

plantarum ou Lactobacillus rhamnosus à des doses de 1 × 1010 UFC/j sous une diète à

forte teneur en amidon et une autre à faible teneur en amidon. Les résultats de l’étude ne sont cependant pas concluants concernant la modification du profil en acides gras du lait. Il est possible que la dose utilisée n’ait pas été suffisamment importante, que les microorganismes utilisés n’aient pas été suffisamment riches en AGCR ou qu’ils n’aient pas été suffisamment adaptés pour croître dans le milieu ruminal. Ainsi, des études supplémentaires doivent être réalisées pour confirmer ces résultats.

35

Conclusion

Procéder à un enrichissement du lait en AGCR est une façon potentiellement intéressante de permettre une augmentation de la consommation de ces acides gras par la population en plus d’améliorer la qualité nutritionnelle du lait produit. Ces composés, presque uniques au gras laitier et aux vertus mal-connues et sous-estimées, peuvent être modulés de diverses manières, principalement via l’alimentation et la régie de troupeau, bien que les effets demeurent, sommes toutes, limités.

L’utilisation de Bacillus comme probiotique dans l’alimentation de nos vaches laitières pourrait, selon plusieurs études, augmenter leur productivité et leur efficacité. De plus, considérant leurs membranes extrêmement riches en AGCR et la possibilité pour ceux-ci de croître dans le rumen, les probiotiques de Bacillus spp. pourraient permettre d’enrichir facilement le lait des vaches en AGCR. À notre connaissance, aucune étude n’a évalué l’effet de bactéries de genre Bacillus utilisées comme probiotiques dans l’alimentation des vaches laitières sur le profil en acides gras du lait.

36

Bibliographie

Alberts, A. W. et M. D. Greenspan. 1984. Animal and bacterial fatty acid synthetase: structure, function and regulation. Pages 29–58 dans : Fatty Acid Metabolism and Its Regulation. S. Numa, ed., Elsevier Biomedical Press, Amsterdam, Pays Bas. Alexopoulos, C., I. E. Georgoulakis, A. Tzivara, S. K. Kritas, A. Siochu et S. C. Kyriakis.

2004. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J. Anim. Physiol. Anim. Nutr. 88:381-392.

Alonso, L., J. Fontecha, L. Lozada, M. J. Fraga et M. Juarez. 1999. Fatty acid composition of caprine milk: major, branched-chain, and trans fatty acids. J. Dairy Sci. 82:878- 884.

Bainbridge, M. L., L. Cersosimo, A-D. G. Wright et J. Kraft. 2016. Content and composition of branched-chain fatty acids in bovine milk are affected by lactation stage and breed of dairy cow. PLoS ONE 11:e0150386.

Bajagai Y. S., A. V. Klieve, P. J. Dart et W. L. Bryden. 2016. Probiotics in animal nutrition - Production, impact and regulation. H. P. S. Makkar, éd. FAO Animal Production and Health Paper No. 179. Rome, Italie.

Bas, P., H. Archimède, A. Rouzeau et D. Sauvant. 2003. Fatty acid composition of mixed- rumen bacteria: effect of concentration and type of forage. J. Dairy Sci. 86:2940- 2948.

Baumann, E., P. Y. Chouinard, Y. Lebeuf, D. E. Rico et R. Gervais. 2016. Effect of lipid supplementation on milk odd- and branched-chain fatty acids in dairy cows. J. Dairy Sci. 99:6311-6323.

Belanche, A., M. Doreau, J. E. Edwards, J. M. Moorby, E. Pinloche et C. J. Newbold. 2012. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J. Nutr. 142:1684-1692.

Bishop, D. G., L. Rutberg et B. Samuelsson. 1967. The chemical composition of the cytoplasmic membrane of Bacillus subtilis Eur. J. Biochem. 2:448-453.

Bourbonnais, G. 2014. Les molécules de la vie. Les phospholipides. http://www.cegep-ste foy.qc.ca/profs/gbourbonnais/pascal/fya/chimcell/notesmolecules/lipides_2.htm (Page consultée le 28 février 2018).

Cai, Q., H. Huang, D. Qian, K. Chen, J. Luo, Y. Tian, T. Lin et T. Lin. 2013. 13- methyltetradecanoic acid exhibits anti-tumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating caspase-3. PLoS ONE 8:e65308.

Chilliard, Y., A. Ferlay et M. Doreau. 2001. Contrôle de la qualité nutritionnelle des matières grasses du lait par l’alimentation des vaches laitières : acides gras trans, polyinsaturés, acide linoléique conjugué. INRA Prod. Anim. 14:323-335.

37

Chiquette, J. 2010. Le rôle des probiotiques en production laitière. 34e symposium sur les

bovins laitiers. Centre de référence en agriculture et agroalimentaire du Québec. https://www.agrireseau.net/bovinslaitiers/documents/Chiquette_J_AR.pdf.

Chouinard, P. Y. 2008. Le profil en acides gras du lait. Pages 873-884 dans Les Bovins Laitiers. Centre de références en agriculture et en agroalimentaire du Québec. Québec, QC, Canada.

Christie, W. W. et X. Han. 2010. Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis. 4e édition. The Oily Press, Bridgewater, UK.

Craninx, M., A. Steen, H. Van Laar, T. Van Nespen, J. Martin-Tereso, B. DeBaets et V. Fievez. 2008. Effect of lactation stage on the odd- and branched-chain milk fatty acids of dairy cattle under grazing and indoor conditions. J. Dairy Sci. 91:2662- 2677.

Dehority, B. A. 2003. Rumen Microbiology. Nottingham University Press. Royaume-Uni. 400 p.

Dewhurst, R. J., W. J. Fisher, J. K. S. Tweed et R. J. Wilkins. 2003. Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. J. Dairy Sci. 86:2598-2611.

Dingess, K. A., C. J. Valentine, N. J. Ollberding, B. S. Davidson, J. G. Woo, S. Summer, Y. M. Peng, M. L. Guerrero, G. M. Ruiz-Palacios, R. R. Ran-Ressler, R. J. McMahon, J. T. Brenna et A. Morrow. 2017. Branched-chain fatty acid composition of human milk and the impact of maternal diet: the Global Exploration of Human Milk (GEHM) Study. Am. J. Clin. Nutr. 105:177-184.

Doreau, M. et A. Ferlay. 1994. Digestion and utilisation of fatty acids by ruminants. Anim. Feed Sci. Technol. 45:379-396.

Elgersma, A., G. Ellen, H. van der Horst, H. Boer, P. R. Dekker, and S. Tamminga. 2004. Quick changes in milk fat composition from cows after transition from fresh grass to a silage diet. Anim. Feed Sci. Technol. 117:13-27.

Elshaghabee, F. M. F., N. Rokana, R. D. Gulhane, C. Sharma et H. Panwar. 2017. Bacillus as potential probiotics: status, concerns, and future perspectives. Front. Microbiol. 8:1490-1505.

Elwood, P. C., D. I. Givens, A. D. Beswick, A. M. Fehily, J. E. Pickering et J. Gallacher. 2010. The survival advantage of milk and dairy consumption: an overview of evidence from cohort studies of vascular diseases, diabetes and cancer. J. Am. Coll. Nutr. 27:723-734.

Ferguson, J. D., D. Sklan, W. V. Chalupa et D. S. Kronfeld. 1990. Effects of hard fats on in vitro and in vivo rumen fermentation, milk production, and reproduction in dairy cows. J. Dairy Sci. 73:2864-2879.

Fievez. V., E. Colman, J. M. Castro-Montoya, I. Stefanov et B. Vlaeminck. 2012. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 172:51-65.

38

French, E. A., S. J. Bertics et L. E. Armentano. 2012. Rumen and milk odd- and branched- chain fatty acid proportions are minimally influenced by ruminal volatile fatty acid infusions. J. Dairy Sci. 95:2015-2026.

Halmemies-Beauchet-Filleau, A., A. Vanhatalo, V. Toivonen, T. Heikkilä, M. R. F. Lee et K. J. Shingfield. 2014. Effect of replacing grass silage with red clover silage on nutrient digestion, nitrogen metabolism, and milk fat composition in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio. J. Dairy Sci. 97:3761- 3776.

Havenaar, R., B. ten Brink et J. H. J. Huis in’t Veld. 1992. Selection of strains for probiotic use. Pages 209-224 dans : Probiotics, the scientific basis. Fuller, R. (éd.). Chapman & Hall, London, UK.

Hirosuke, O., Y. Noriyasu, N. Junichi et C. Isao. 1994. Precursor role of branched-chain amino acids in the biosynthesis of iso and anteiso fatty acids in rat skin. Biochim. Biophys. Acta, Lipids Lipid Metab. 1214:279-287.

Ifkovits, R. W. et H. S. Ragheb. 1968. Cellular fatty acid composition and identification of rumen bacteria. Appl. Microbiol. 16:1406-1413.

Jensen, R. G. 2002. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85:295-350

Jia, F., M. Cui, M. T. Than et M. Han. 2016. Developmental defects of Caenorhabditis elegans lacking branched-chain α-ketoacid dehydrogenase are mainly caused by monomethyl branched-chain fatty acid deficiency. J. Biol. Chem. 291:2967-2973. Jørgensen, J. N., J. S. Laguna, C. Millán, O. Casabuena et M. I. Gracia. 2016. Effects of

a Bacillus-based probiotic and dietary energy content on the performance and nutrient digestibility of wean to finish pigs. Anim. Feed Sci. Technol. 221:54-61. Kaneda, T. 1977. Fatty acids of the genus Bacillus: an example of branched-chain

preference. Bacteriol. Rev. 41:391-418.

Kaneda, T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55:288-302.

Keeney, M., I. Katz et M. Allison. 1962. On probable origin of some milk fat acids in rumen microbial lipids. J. Am. Oil Chem. Soc. 39:198-201.

Kowalski, Z. M., P. Górka, A. Schlagheck, W. Jagusiak, P. Micek et J. Strzetelski. 2009. Performance of Holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. J. Anim. Feed Sci. 18:399-411.

Kritas, S. K., A. Govaris, G. Christodoulopoulos et A. R. Burriel. 2006. Effect of Bacillus

licheniformis and Bacillus subtilis supplementation of ewe’s feed on sheep milk

production and young lamb mortality. J. Vet. Med. 53:170-173.

Krehbiel, C. R., S. R. Rust, G. Zhang et S. E. Gilligand. 2003. Bacterial direct-fed microbial in ruminant diets: performance response and mode of action. J. Anim. Sci. 81:E120-E132.

39

Kreuzer, M., M. Kirchgessner et H. L. Muller. 1986. Effect of defaunation on the loss of energy in wethers fed different quantities of cellulose and normal or steamflaked maize starch. Anim. Feed Sci. Technol. 16:233-241.

Leduc, M., R. Gervais, G. F. Tremblay, J. Chiquette et P. Y. Chouinard. 2017. Milk fatty acid profile in cows fed red clover- or alfalfa-silage based diets differing in rumen- degradable protein supply. Anim. Feed Sci. Technol. 223:59-72.

Lee, S. H., S. L. Ingale, J. S. Kim, K. H. Kim, A. Lokhande, E. K. Kim, I. K. Kwon, Y. H. Kim et B. J. Chae. 2014. Effects of dietary supplementation with Bacillus

subtilis LS1—2 fermentation biomass on growth performance, nutrient digestibility,

cecal microbiota and intestinal morphology of weanling pig. Anim. Feed Sci. Technol. 188:102-110.

Lindmark Månsson, H. 2008. Fatty acids in bovine milk fat. Food Nutr. Res. 52:1, 1821. Link, R. et G. Kováč. 2006. The effect of probiotic BioPlus 2B on feed efficiency and

metabolic parameters in swine. Biologia. 61:783-787.

Logan, N. A. et P. De Vos. 2009. Genus I. Bacillus. Pages 21–128 dans Bergey’s Manual®

of Systematic Bacteriology—Volume Three: The firmicutes. P. De Vos, G. M. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. A. Rainey, K.-H. Schleifer et W. B. Whitman, éd. Springer, New-York, NY, États-Unis.

Luan, S., M. Duersteler, E. A. Galbraith et F. C. Cardoso. 2015. Effects of direct-fed

Bacillus pumilus 8G-134 on feed intake, milk yield, milk composition, feed

conversion, and health condition of pre- and postpartum Holstein cows. J. Dairy Sci. 98:6423-6432.

Maia, M. R. G., L. C. Chaudhary, L. Figueres et R. J. Wallace. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek. 91:303-314.

Mather I. H. et T. W. Keenan. 1998. Origin and secretion of milk lipids. J. Mammary Gland Biol. Neoplasia 3:273-259.

Mingmongkolchai, S. et W. Panbangred. 2018. Bacillus probiotics: an alternative to antibiotics for livestock production. J. Appl. Microbiol. 124:1334-1346.

Miura, H., M. Horiguchi et T. Matsumoto. 1980. Nutritional interdependence among rumen bacteria, Bacteroides amylophilus, Megasphaera elsdenii, and Ruminococcus

albus. Appl. Environ. Microbiol. 40:294-300.

Nagaraja, T. G. 2016. Microbiology of the rumen. Pages 39-62 dans Rumenology (première édition). D. D. Millen, M. De Beni Arrigoni et R. D. Lauritano Pacheco, éd. Springer International Publishing Switzerland. Cham, Suisse.

Nichols, D. S., T. B. Jordan et N. Kerr. 2011. The nomenclature and structure of lipids. Pages 1–23 dans Chemical, Biological, and Functional Aspects of Food Lipids (seconde édition). Z. E. Sikorski et A. Kolakowska, éd. CRC Press, Taylor and Francis Group. New York, États-Unis.

40

Nicolaides, N. et T. Ray. 1965. Skin Lipids. 3. Fatty chains in skin lipids. The use of vernix caseosa to differentiate between endogenous and exogenous components in human skin surface lipid. J. Am. Oil Chem. Soc. 42:702-707.

Nicolaides, N. 1974. Skin lipids: their biochemical uniqueness. Science 186:19-26. Or-Rashid, M. M., N. E. Odongo et B. W. McBride. 2007. Fatty acid composition of ruminal

bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids. J. Anim. Sci. 85:1228-1234. Palmquist, D. L. et T. C. Jenkins. 1980. Fat in lactation rations: review. J. Dairy Sci. 63:1–

14.

Palmquist D. L., A. D. Beaulieu et D. M. Barbano. 1993. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 76:1753-1771.

Parra, V., M. J. Petrón, L. Martín, J. M. Broncano et M. L. Timón. 2010. Modification of the fat composition of the Iberian pig using Bacillus licheniformis and Bacillus subtilis. Eur. J. Lipid Sci. Technol. 112:720-726.

Patel, M., E. Wredle et J. Bertilsson. 2013. Effect of dietary proportion of grass silage on milk fat with emphasis on odd- and branched-chain fatty acids in dairy cows. J. Dairy Sci. 96:390-397.

Peng, H., J. Q. Wang, H. Y. Kang, S. H. Dong, P. Sun, D. P. Bu et L. Y. Zhou. 2012. Effect of feeding Bacillus subtilis natto fermentation product on milk production and composition, blood metabolites and rumen fermentation in early lactation dairy cows. J. Anim. Physiol. Anim. Nutr. 96:506-512.

Philippeau, C., A. Lettat, C. Martin, M. Silberberg, D. P. Morgavi, A. Ferlay, C. Berger, and P. Nozière. 2017. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets. J. Dairy Sci. 100:2637-2650.

Pinloche, E., N. McEwan, J.- P. Marden, C. Bayourthe, E. Auclair et C. J. Newbold. 2013. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE 8:e67824.

Qiao, G. H., A. S. Shan, N. Ma, Q. Q. Ma et Z. W. Sun. 2010. Effect of supplemental

Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows.

J. Anim. Physiol. Anim. Nutr. 94:429-436.

Raeth-Knight, M. L., J. G. Linn et H. G. Jung. 2007. Effect of direct-fed microbial on performance, diet digestibility, and rumen characteristics of holstein dairy cows. J. Dairy Sci. 90:1802-1809.

Ran-Ressler, R. R., S. Devapatla, P. Lawrence et J. T. Brenna. 2008. Branched chain fatty acids are constituents of the normal healthy newborn gastrointestinal tract. Pediatr. Res. 64:605-609.

Ran-Ressler, R. R., L. Khailova, K. M. Arganbright, C. K. Adkins-Rieck, Z. E. Jouni, O. Koren, R. E. Ley, J. T. Brenna et B. Dvorak. 2011. Branched chain fatty acids

41

reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS ONE 6:e29032.

Ran-Ressler, R. R., S. Bae, P. Lawrence, D. H. Wang et J. T. Brenna. 2014. Branched- chain fatty acid content of foods and estimated intake in the USA. Br. J. Nutr. 112:565-572.

Riddell, J. B., A. J. Gallegos, D. L. Harmon et K. R. McLeod. 2010. Addition of a Bacillus based probiotic to the diet of preruminant calves: Influence on growth, health, and blood parameters. Intern. J. Appl. Res. Vet. Med. 8:78-85.

Rissmann, R., H. W. W. Groenink, A. M. Weerheim, S. B. Hoath, M. Ponec et J. A. Bouwstra. 2006. New insights into ultrastructure, lipid composition and organization of vernix caseosa. J. Invest. Dermatol. 126:1823-1833.

Russell J. B. et D. B. Wilson. 1993. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci 79:1503-1509.

Salawu, M. B., A. T. Adesogan et R. J. Dewhurst. 2002. Forage intake, meal patterns, and milk production of lactating dairy cows fed grass silage or pea-wheat bi-crop silages. J. Dairy Sci. 85:3035-3044.

Shaw, N. 1974. Lipid composition as a guide to the classification of bacteria. Adv. Appl. Microbiol. 17:68-108.

Schulz, F., E. Westreicher-Kristen, J. Molkentin, K. Knappstein et A. Susenbeth. 2018. Effect of replacing maize silage with red clover silage in the diet on milk fatty acid composition in cows. J. Dairy Sci. 101:1-12.

Shingfield, K. J., S. Ahvenjärvi, V. Toivonen, A. Ärölä, K. V. V. Nurmela, P. Huhtanen et J. M. Griinari. 2003. Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Sci. 77:165-179.

Stoop, W. M., H. Bovenhuis, J. M. L. Heck et J. A. M. van Arendonk. 2009. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 92:1469-1478.

Sun, P., J. Q. Wang et H. T. Zhang. 2011. Effects of supplementation of Bacillus subtilis

natto Na and N1 strains on rumen development in dairy calves. Anim. Feed Sci.

Technol. 164:154-160.

Sun, P., J. Q. Wang et L. F. Deng. 2013, Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal 7:216-222.

Sun, P., J. Li, D. Bu, X. Nan et H. Du. 2016. Effects of Bacillus subtilis natto and different components in culture on rumen fermentation and rumen functional bacteria in vitro. Curr. Microbiol. 72:589-595.

Toral P. G., Y. Chilliard, J. Rouel, H. Leskinen, K. J. Shingfield et L. Bernard. 2015. Comparison of the nutritional regulation of milk fat secretion and composition in cows and goats. J. Dairy Sci. 98:7277-7297.

42

Uyeno, Y., S. Shigemori et T. Shimosato. 2015. Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. 30:126-132.

Van Zanten, G. C., L. Krych, H. Röytio, S. Forssten, S. J. Lahtinen, W. A. Al-Soud, S. Sørensen, B. Svensson, L. Jespersen et M. Jakobsen. 2014. Synbiotic

Lactobacillus acidophilus NCFM and cellobiose does not affect human gut

bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial. FEMS Microbiol. Ecol. 90:225-236.

Vazirigohar, M., M. Dehghan-Banadaky, K. Rezayazdi, A. Nejati-Javaremi, H. Mirzaei- Alamouti et A. K. Patra. 2018. Short communication: Effects of diets containing supplemental fats on ruminal fermentation and milk odd- and branched-chain fatty acids in dairy cows. J. Dairy Sci. 101:6133-6141.

Villeneuve, M.-P., Y. Lebeuf, R. Gervais, G. F. Tremblay, J. C. Vuillemard, J. Fortin et P. Y. Chouinard. 2013. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage. J. Dairy Sci. 96:7181-7194.

Vlaeminck, B., V. Fievez, A. R. J. Cabrita, A. J. M. Fonseca et R. J. Dewhurst. 2006a. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 131:389-417.

Vlaeminck, B., V. Fievez, S. Tamminga, R. J. Dewhurst, A. van Vuuren, D. De Brabander et D. Demeyer. 2006b. Milk odd- and branched-chain fatty acids in relation to the rumen fermentation pattern. J. Dairy Sci. 89:3954-3964.

Vlaeminck, B., V. Fievez, D. Demeyer et J. Dewhurst. 2006c. Effect of forage: concentrate ratio on fatty acid composition of rumen bacteria isolated from ruminal and duodenal digesta. J. Dairy Sci. 89:2668-2678.

Vlaeminck, B., R. Gervais, M. M. Rahman, F. Gadeyne, M. Gorniak, M. Doreau et V. Fievez. 2015. Postruminal synthesis modifies the odd- and branched-chain fatty acid profile from the duodenum to milk. J. Dairy Sci. 98:4829-4840.

Wolin, M. J. et T. L. Miller. 1988. Microbe-microbe interactions. Pages 343-359 dans : The rumen Microbial Ecosystem. P. N. Hobson, éd. Elsevier Science Publishing Co., New York, NY, États-Unis.

Wongtangtintharn, S., H. Oku, H. Iwasaki, M. Inafuku, T. Toda et T. Yanagita. 2005. Incorporation of branched-chain fatty acid into cellular lipids and caspase- independent apoptosis in human breast cancer cell line, SKBR-3. Lipids Health Dis. 4:29-42.

Yakoob, M. Y., P. Shi, W. C. Willet, K. M. Rexrode, H. Campos, E. J. Orav, F. B. Hu, D. Mozaffarian. 2016. Circulating biomarkers of dairy fat and risk of incident diabetes mellitus among US men and women in two large prospective cohorts. Circulation 133:1645-1654.

Yamagishi, K., J. A. Nettleton et A. R. Folsom. 2008. Plasma fatty acid composition and incident heart failure in middle-aged adults: the atherosclerosis risk in communities (ARIC) study. Am. Heart J. 156:965-974.

43

Yan, Y., Z. Wang, J. Greenwald, K. S. D. Kothapalli, H. G. Park, R. Liu, E. Mendralla, P. Lawrence, X. Wang et J. T. Brenna. 2017. BCFA suppresses LPS induced IL-8 mRNA expression in human intestinal epithelial cells. Prostaglandins Leukot. Essent. Fatty Acids 116:27-31.

Yang, Z., S. Liu, X. Chen, H. Chen, M. Huang et J. Zheng. 2000. Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Cancer Res. 60:505-509. Yoon, I. K. et M. D. Stern. 1995. Influence of direct-fed microbials on ruminal microbial

44

Chapitre 2 : Effects of direct-fed Bacillus subtilis

and Bacillus licheniformis on production

performance and milk fat concentrations of

branched-chain fatty acids in mid-lactating

Holstein cows.

Résumé

Pour confirmer que les probiotiques du genre Bacillus peuvent améliorer les performances et modifier le profil en acides gras du lait, six vaches multipares canulées au rumen ont été utilisées dans un dispositif en chassé-croise. Les vaches ont reçu soit 200 g/j de poudre de lactosérum comme traitement témoin ou 200 g/j de BioPlus 2B (Chr Hansen, Milwaukee, WI), un probiotique commercial de Bacillus subtilis et de Bacillus licheniformisLa production laitière, la composition du lait, incluant son profil en acides gras, les paramètres de fermentation ruminale et la diversité du microbiote ruminal ont été évalués. Les traitements n’ont pas affecté les performances laitières. L’utilisation de Bacillus a cependant augmenté la concentration relative d’anteiso 13:0 et d’anteiso 15:0 et tendait à augmenter la concentration totale d’AGCR lorsque comparée au traitement témoin. Cette expérience a permis d’observer la sensibilité du profil en acides gras du lait face aux modifications du microbiote ruminal.

45

Abstract

The aim of the study was to determine the effect of a Bacillus-based direct-fed microbial on performance of mid-lactating Holstein dairy cows and on their milk fatty acid composition. Six multiparous cows fitted with a rumen cannula were used in a randomized replicated crossover design. Cows received 200 g/d of either whey powder as a control or BioPlus 2B (Chr Hansen, Milwaukee, WI), a commercial direct-fed microbial providing Bacillus subtilis and Bacillus licheniformis, representing a daily dose of 6.4 × 1011 cfu, and using whey

powder as a carrier. The two experimental periods lasted 14 d, and were separated by a 7- d washout interval. Samples were collected on days 0, 13 and 14 of each period. Milk production, composition and fatty acid profile as well as ruminal parameters and microbiota

Documents relatifs