• Aucun résultat trouvé

Définition d’indicateurs

Dans le document The DART-Europe E-theses Portal (Page 93-98)

CHAPITRE 4 : Influence de la morphologie urbaine

2. Caractérisation de la morphologie et de la climatologie urbaine

2.3. Définition d’indicateurs

2.3.1. Outil SIG

Parmi les outils aujourd’hui incontournables des études à l’échelle urbaine se trouvent les outils de Système d’Information Géographique (SIG) dont l’utilisation et l’accessibilité ont augmenté ces dernières années. Les outils SIG permettent d’acquérir des données géographiques, de stocker et combiner des informations de différentes natures, et d’en cartographier l’analyse

CHAPITRE 4 : Influence de la morphologie urbaine

87

spatiale. Cette dernière spécificité en fait un outil majeur en matière de communication et de concertation autour des enjeux des projets d’aménagement (Dubus, Helle, and Masson-Vincent 2010).

Devenu un outil de planification urbaine pour les mairies ou communautés d’agglomération, l’outil SIG est utilisé en recherche en combinant les fichiers de formes au LIDAR data ou aux hauteurs de bâtiment et permet de générer des modèles de villes extrudés aussi appelé 2.5D (Reinhart and Cerezo Davila 2016). Il permet alors grâce aux données de géométrie urbaine le calcul d’indicateurs de morphologie ou encore d’être utilisé comme base de données pour différents outils de simulations des phénomènes physiques urbains.

2.3.2. Indicateurs de morphologie urbaine

Les indicateurs de morphologie urbaine permettent de décrire simplement le tissu urbain.

L’objectif est de pouvoir comparer différents éléments urbains que ce soit à l’échelle de la paroi, de la rue ou d’un quartier. A l’échelle de la rue, cette simplification propose le concept de rue canyon ou canyon urbain introduit par (Oke 1987). Ce concept correspond à une rue d’une longueur infinie bordée de part et d’autre par une rangée de bâtiments.

La majorité des indicateurs résultent d’un calcul géométrique plus ou moins complexe et sont obtenus grâce aux données disponibles dans ArcGIS pour certains, et pour d’autres calculés à l’aide de logiciels complémentaires. L’ensemble des indicateurs sont résumés dans le Tableau 14.

a) Indicateurs morphologiques à l’échelle d’un bâtiment ou d’un quartier

 Compacité

L’indicateur de compacité évalue la surface de l’enveloppe extérieure du bâtiment qui est exposée aux effets climatiques extérieurs.

 Contiguïté

La contiguïté traduit entre autres le taux de mitoyenneté entre deux bâtiments. Une contiguïté élevée est spécifique des centres anciens. D’après (L. Adolphe 2001), la contiguïté urbaine va permettre de réduire les pertes thermiques mais va également jouer sur l’éclairage naturel.

 Densité

- à l’échelle de l’ilot, le périmètre est limité par l’espace public, la densité caractérise donc plus la morphologie urbaine (densité nette) ;

- à l’échelle de la parcelle, on parle de coefficient d’occupation du sol (COS). Cet indicateur est celui des règlements d’urbanismes. Il est notamment utilisé dans les plans locaux d’urbanisme pour définir un «droit à bâtir» maximal sur une parcelle.

88

Notons cependant que des formes urbaines très différentes peuvent avoir des densités comparables, la densité doit donc être évaluée en même temps que d’autres critères (coefficient d’emprise au sol, hauteur des bâtiments).

Ces indicateurs apportent des informations quant à la caractéristique globale d’un quartier. Le comportement thermique d’un bâtiment peut être fortement influencé par son environnement immédiat, qui se traduit entre autres par la densité, la contigüité et la compacité. Si ces indicateurs ont fréquemment été corrélés pour étudier leur relation avec la consommation énergétique du bâti, lorsque l’on s’intéresse à la climatologie urbaine, d’autres indicateurs, se plaçant à une autre échelle sont utilisés.

b) Indicateurs surfaciques et à l’échelle de la rue

La morphologie tridimensionnelle est en partie responsable de la modification du flux radiatif et de la modification des profils de vent. Effet de masque solaire, piégeage radiatif, diminution de la proportion de ciel visible sont autant de caractéristiques que les indicateurs urbains essayent de traduire.

 Rapport d’aspect

Il donne une information morphologique concernant la section du canyon urbain.

Dans le cas d’un canyon parfait, il se définit de la façon suivante :

AR = H/W (23)

Avec H (m) la hauteur des bâtiments de part et d’autre de la rue, et W (m) la largeur de la rue.

Dans le cas d’une rue où la hauteur des bâtiments et la largeur de la rue varient, des valeurs moyennes de h et W sont calculées. À l’échelle de l’îlot ou du quartier, nous proposons le calcul de rapport d’aspect suivant :

𝑆𝑒𝑥𝑡

𝑆𝑎− ∑ 𝑆𝑠𝑜𝑙 (24)

Avec Svertical (m²) la somme de toutes les surfaces verticales de la zone de calcul, Sa (m²) l’aire de la zone de calcul et

∑Ssol (m²) la somme de toutes les zones occupées par des bâtiments dans la zone de calcul.

 Facteur de Vue du Ciel

Le Facteur de Vue du Ciel, noté FVC, représente la proportion de ciel visible en un point particulier du canyon urbain ce qui correspond à l’angle solide sous lequel est vu le ciel depuis ce point. Cela exprime le ratio entre les radiations reçues par une surface plane et celle des radiations en provenance de la voute céleste (Watson & Johnson 1987). C’est une grandeur adimensionnelle comprise entre 0 et 1, 1 correspondant au cas d’une surface plane sans obstacle où les radiations émises émettent librement vers le ciel (Brown, Grimmond, and Ratti 2001).

Pour des parois verticales, le FVC maximal est de 0.5.

Le facteur de vue du ciel est fréquemment utilisé pour un point d’observation placé au niveau du sol d’une rue canyon. Il peut également être placé au niveau de la paroi d’un bâtiment.

Dans les analyses de morphologies urbaines, le FVC devient un paramètre incontournable des analyses de potentiel solaire et de lumière disponible (Ratti, Raydan, and Steemers 2003). Plus la ville est dense, plus le FVC est faible et plus l’ensoleillement est réduit (Luc Adolphe 2002).

CHAPITRE 4 : Influence de la morphologie urbaine

89

Le FVC est un important paramètre pour décrire les rayonnements GLO, car en milieu urbain le flux radiatif ascendant sera limité de par la morphologie tridimensionnelle de la ville.

Le calcul du FVC en milieu urbain peut s’effectuer selon plusieurs approches (photographies fish-eyes, différentes équations selon les données géométriques) (Brown, Grimmond, and Ratti 2001).

Dans le cas présent, le facteur de vue du ciel a été calculé de façon automatique pour chaque paroi du quartier étudié en utilisant un algorithme implémenté dans le logiciel EnergyPlus.

 Orientation de la paroi

Cet indicateur informe sur l’existence d’orientations privilégiées, avec 0° pour le Nord et 180°

pour le Sud.

 Hauteur moyenne des bâtiments

La hauteur moyenne des bâtiments et la dispersion de ces hauteurs influencent le profil aéraulique au sein du milieu urbain.

 Durée d’ensoleillement (analyse de la fraction d’irradiation), (h/an)

Cet indicateur représente la durée pendant laquelle la paroi extérieure reçoit des radiations solaires directes (non réfléchies) par ciel clair. Il permet de décrire un cas idéal de rayonnement, indépendamment des conditions climatiques locales. Il est calculé à l’aide du logiciel EnergyPlus 8.6.

 Irradiation solaire globale annuelle (kWh/m² pour un an)

L'éclairement solaire est le flux énergétique issu du rayonnement solaire incident reçu par unité de surface exprimé en watts par mètre carré (W/m²).

L’irradiation solaire est la quantité d’énergie solaire horaire issue du rayonnement solaire incident reçu par unité de surface, exprimée usuellement en Watt-heures par mètre carré (Wh/m²) ou en Joules par mètre carré (J/m2) selon le système international d'unités.

A l’échelle de la France métropolitaine, l’irradiation globale horizontale annuelle varie de 1100 kWh/m² dans le nord à près de 1700 kWh/m² dans le sud. Cet indicateur est calculé à l’aide du logiciel EnergyPlus 8.6.

90

Tableau 14: Récapitulatif des indicateurs utilisés

Indicateurs morphologiques à l’échelle d’un bâtiment ou d’un quartier Compacité Compacité d’un bâtiment :

𝑆𝑒𝑥𝑡+ 𝑆𝑡𝑜𝑖𝑡

(𝑉𝑜𝑙𝑢𝑚𝑒 𝑑𝑢 𝑏â𝑡𝑖𝑚𝑒𝑛𝑡)2/3

A l’échelle du quartier, on fait une moyenne des compacités des bâtiments pondérées par la surface au sol des bâtiments :

∑ 𝐶𝑜𝑚𝑝𝑎𝑐𝑖𝑡é𝑏𝑎𝑡,𝑖∗ 𝑆𝑠𝑜𝑙,𝑖

∑ 𝑆𝑠𝑜𝑙,𝑖

Contiguïté La contiguïté d’un bâtiment est calculée comme la surface de murs mitoyens sur la surface de murs totale:

Densité nette La densité nette du bâtiment se définie comme sa surface de plancher divisée par sa surface au sol:

𝑆𝑝𝑙𝑎𝑛𝑐ℎ𝑒𝑟 d’étages d’un bâtiment est sera utilisé comme tel.

Densité brute La densité brute se calcule sur la superficie étudiée:

𝑆𝑠𝑜𝑙 𝑆𝑎

Indicateurs à l’échelle de la paroi ou de la rue/décrivant la paroi ou la rue ? Rapport d’aspect A l’échelle de la rue :

Orientation Calcul de l’angle de la paroi par rapport au Nord = 0°.

Durée

d’ensoleillement Calcul à l’aide d’EnergyPlus Irradiation annuelle Calcul à l’aide d’EnergyPlus

Smitoyen (m²) représente la surface de parois mitoyennes du bâtiment, Ssol (m²) l’emprise d’un bâtiment

Sext (m²) la surface verticale de l’enveloppe qui englobe le bâtiment.

Sa (m²) l’aire de la zone de calcul

CHAPITRE 4 : Influence de la morphologie urbaine

91

Dans le document The DART-Europe E-theses Portal (Page 93-98)