• Aucun résultat trouvé

B. Traitements séquentiels

V. Conclusion

Les thérapies ciblées chez les patients très âgés atteints de mélanome représentent donc un challenge nouveau. Cette étude monocentrique et rétrospective ne nous permet pas de tirer des conclusions certaines mais témoigne d’une pratique en “vie réelle” et reflète ainsi les interrogations du quotidien. Elle laisse entrevoir une bonne tolérance globale avec cependant un profil de tolérance un peu différent de la population générale, ainsi qu’un impact plus important des effets indésirables sur la qualité de vie et l’observance du traitement. Une adaptation de la posologie initiale selon la concentration résiduelle des traitements, et non uniquement lors de la survenue d’effets indésirables, semble être une piste intéressante pour améliorer ces deux derniers points.

Une prise en charge globale doit être proposée à cette population très âgée, impliquant oncodermatologues, oncogériatres, pharmaciens et infirmières afin de mieux identifier et de mieux accompagner les patients très pouvant tirer un bénéfice de ces thérapies ciblées.

86

BIBLIOGRAPHIE

1 Incidence et mortalité estimées par classe d’âge et par localisation cancéreuse en 2012 [WWW Document]. URL http://lesdonnees.e-cancer.fr/Themes/epidemiologie/Incidence- mortalite-nationale/Estimations-2012-incidence-mortalite-tendances-1980-

2012/Incidence-et-mortalite-estimees-par-classe-d-age-et-par-localisation-cancereuse [accessed on 2 August 2017].

2 Grob J-J, Amonkar MM, Martin-Algarra S, et al. Patient perception of the benefit of a BRAF inhibitor in metastatic melanoma: quality-of-life analyses of the BREAK-3 study comparing dabrafenib with dacarbazine. Ann Oncol Off J Eur Soc Med Oncol 2014;

25:1428–36.

3 Les cancers en France en 2013. Boulogne-Billancourt: Collec-tion état des lieux et des connaissances, ouvrage collectif éditépar l’INCa; 2014. [WWW Document]. .

4 Binder-Foucard F, Bossard N, Delafosse P, et al. Cancer incidence and mortality in France over the 1980–2012 period: Solid tumors. Rev DÉpidémiologie Santé Publique 2014; 62:95–108.

5 INPES - Baromètre cancer 2010 [WWW Document]. URL http://inpes.santepubliquefrance.fr/nouveautes-editoriales/2012/barometre-cancer-

2010.asp [accessed on 3 August 2017].

6 Gandini S, Sera F, Cattaruzza MS, et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer Oxf Engl 1990 2005; 41:45–60.

7 Fears TR, Scotto J, Schneiderman MA. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. Am J Epidemiol 1977; 105:420–7.

8 Elwood JM, Jopson J. Melanoma and sun exposure: an overview of published studies. Int

J Cancer 1997; 73:198–203.

9 Whiteman DC, Pavan WJ, Bastian BC. The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell Melanoma Res 2011; 24:879–97. 10 International Agency for Research on Cancer Working Group on artificial ultraviolet

(UV) light and skin cancer. The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers: A systematic review. Int J Cancer 2007; 120:1116–22. 11 Grange F, Mortier L, Crine A, et al. Prevalence of sunbed use, and characteristics and

knowledge of sunbed users: results from the French population-based Edifice Melanoma survey. J Eur Acad Dermatol Venereol JEADV 2015; 29 Suppl 2:23–30.

12 Greene MH. The genetics of hereditary melanoma and nevi. 1998 update. Cancer 1999;

87

13 Kamb A, Shattuck-Eidens D, Eeles R, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 1994; 8:23–6. 14 Holland EA, Schmid H, Kefford RF, Mann GJ. CDKN2A (P16(INK4a)) and CDK4 mutation analysis in 131 Australian melanoma probands: effect of family history and multiple primary melanomas. Genes Chromosomes Cancer 1999; 25:339–48.

15 Harbour JW, Onken MD, Roberson EDO, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010; 330:1410–3.

16 Wiesner T, Obenauf AC, Murali R, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet 2011; 43:1018–21.

17 Titus-Ernstoff L, Perry AE, Spencer SK, et al. Pigmentary characteristics and moles in relation to melanoma risk. Int J Cancer 2005; 116:144–9.

18 Hazen BP, Bhatia AC, Zaim T, Brodell RT. The clinical diagnosis of early malignant melanoma: expansion of the ABCD criteria to improve diagnostic sensitivity. Dermatol

Online J 1999; 5:3.

19 Vestergaard ME, Macaskill P, Holt PE, Menzies SW. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br J Dermatol 2008; 159:669–76.

20 Rajpara SM, Botello AP, Townend J, Ormerod AD. Systematic review of dermoscopy and digital dermoscopy/ artificial intelligence for the diagnosis of melanoma. Br J

Dermatol 2009; 161:591–604.

21 Salerni G, Terán T, Puig S, et al. Meta-analysis of digital dermoscopy follow-up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society. J

Eur Acad Dermatol Venereol JEADV 2013; 27:805–14.

22 McGovern VJ, Mihm MC, Bailly C, et al. The classification of malignant melanoma and its histologic reporting. Cancer 1973; 32:1446–57.

23 Ivan D, Prieto VG. Use of immunohistochemistry in the diagnosis of melanocytic lesions: applications and pitfalls. Future Oncol Lond Engl 2010; 6:1163–75.

24 Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification. In Vivo 2014; 28:1005–11.

25 Higgins HW, Lee KC, Galan A, Leffell DJ. Melanoma in situ: Part I. Epidemiology, screening, and clinical features. J Am Acad Dermatol 2015; 73:181–90, NaN-192.

26 Goydos JS, Shoen SL. Acral Lentiginous Melanoma. Cancer Treat Res 2016; 167:321–9. 27 Patrick RJ, Fenske NA, Messina JL. Primary mucosal melanoma. J Am Acad Dermatol

2007; 56:828–34.

28 Chen LL, Jaimes N, Barker CA, et al. Desmoplastic melanoma: a review. J Am Acad

88

29 Balch CM, Gershenwald JE, Soong S-J, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol Off J Am Soc Clin Oncol 2009; 27:6199–206. 30 Serrone L, Zeuli M, Sega FM, Cognetti F. Dacarbazine-based chemotherapy for

metastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res CR 2000;

19:21–34.

31 Avril MF, Aamdal S, Grob JJ, et al. Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. J Clin Oncol Off J Am Soc Clin

Oncol 2004; 22:1118–25.

32 Middleton MR, Grob JJ, Aaronson N, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol Off J Am Soc Clin Oncol 2000; 18:158–66.

33 Dariavach P, Mattéi MG, Golstein P, Lefranc MP. Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur J Immunol 1988; 18:1901–5.

34 Karandikar NJ, Vanderlugt CL, Walunas TL, et al. CTLA-4: a negative regulator of autoimmune disease. J Exp Med 1996; 184:783–8.

35 Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 2003; 100:8372–7.

36 Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996; 183:2541–50.

37 Kyi C, Postow MA. Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett 2014; 588:368–76.

38 McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy. Cancer Med 2013; 2:662–73.

39 Wong RM, Scotland RR, Lau RL, et al. Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int

Immunol 2007; 19:1223–34.

40 Blank C, Brown I, Peterson AC, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 2004; 64:1140–5. 41 Almagro BM, Steyls MC, Navarro NL, et al. Occurrence of subacute cutaneous lupus erythematosus after treatment with systemic fluorouracil. J Clin Oncol Off J Am Soc Clin

Oncol 2011; 29:e613-615.

42 Blank C, Kuball J, Voelkl S, et al. Blockade of PD-L1 (B7-H1) augments human tumor- specific T cell responses in vitro. Int J Cancer 2006; 119:317–27.

43 Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271:1734–6.

89

44 Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011; 364:2517–26.

45 Prieto PA, Yang JC, Sherry RM, et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res Off J Am Assoc

Cancer Res 2012; 18:2039–47.

46 Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363:711–23.

47 Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose- comparison cohort of a phase 1 trial. Lancet Lond Engl 2014; 384:1109–17.

48 Ribas A, Hamid O, Daud A, et al. Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma. JAMA 2016; 315:1600–9. 49 Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice

chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 2015; 16:908–18.

50 Weber J, Gibney G, Kudchadkar R, et al. Phase I/II Study of Metastatic Melanoma Patients Treated with Nivolumab Who Had Progressed after Ipilimumab. Cancer

Immunol Res 2016; 4:345–53.

51 Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015; 16:375–84.

52 Larkin J, Lao CD, Urba WJ, et al. Efficacy and Safety of Nivolumab in Patients With BRAF V600 Mutant and BRAF Wild-Type Advanced Melanoma: A Pooled Analysis of 4 Clinical Trials. JAMA Oncol 2015; 1:433–40.

53 Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372:320–30.

54 Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol 2016; 39:98–106.

55 Abdel-Malek ZA, Kadekaro AL, Swope VB. Stepping up melanocytes to the challenge of UV exposure. Pigment Cell Melanoma Res 2010; 23:171–86.

56 Hirobe T. How are proliferation and differentiation of melanocytes regulated? Pigment

Cell Melanoma Res 2011; 24:462–78.

57 Sullivan RJ, Flaherty K. MAP kinase signaling and inhibition in melanoma. Oncogene 2013; 32:2373–9.

58 Matallanas D, Birtwistle M, Romano D, et al. Raf Family Kinases. Genes Cancer 2011;

90

59 Buscà R, Abbe P, Mantoux F, et al. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J 2000; 19:2900– 10.

60 Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer.

Nature 2002; 417:949–54.

61 Menzies AM, Haydu LE, Visintin L, et al. Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res

Off J Am Assoc Cancer Res 2012; 18:3242–9.

62 Solus JF, Kraft S. Ras, Raf, and MAP kinase in melanoma. Adv Anat Pathol 2013;

20:217–26.

63 Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010; 467:596–9.

64 Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of Mutated, Activated BRAF in Metastatic Melanoma. N Engl J Med 2010; 363:809–19.

65 Hauschild A, Grob J-J, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. The Lancet 2012; 380:358–65.

66 Chapman PB, Hauschild A, Robert C, et al. Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. N Engl J Med 2011; 364:2507–16.

67 McArthur GA, Chapman PB, Robert C, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol 2014; 15:323–32. 68 Hauschild A, Grob JJ, Demidov LV, et al. An update on BREAK-3, a phase III,

randomized trial: Dabrafenib (DAB) versus dacarbazine (DTIC) in patients with BRAF V600E-positive mutation metastatic melanoma (MM). J Clin Oncol 2013; 31:9013–9013. 69 Grippo JF, Zhang W, Heinzmann D, et al. A phase I, randomized, open-label study of the

multiple-dose pharmacokinetics of vemurafenib in patients with BRAF V600E mutation- positive metastatic melanoma. Cancer Chemother Pharmacol 2014; 73:103–11.

70 Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 2012; 366:707–14.

71 Zhang W, Heinzmann D, Grippo JF. Clinical Pharmacokinetics of Vemurafenib. Clin

Pharmacokinet 2017; 56:1033–43.

72 Falchook GS, Long GV, Kurzrock R, et al. Dose selection, pharmacokinetics, and pharmacodynamics of BRAF inhibitor dabrafenib (GSK2118436). Clin Cancer Res Off J

Am Assoc Cancer Res 2014; 20:4449–58.

73 COTELLIC-European public assessment report-European Medicines Agency [WWW Document]. URL http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-

91

_Public_assessment_report/human/003960/WC500198565.pdf [accessed on 7 September 2017].

74 Goldinger SM, Rinderknecht J, Dummer R, et al. A single-dose mass balance and metabolite-profiling study of vemurafenib in patients with metastatic melanoma.

Pharmacol Res Perspect 2015; 3:e00113.

75 Ouellet D, Kassir N, Chiu J, et al. Population pharmacokinetics and exposure-response of trametinib, a MEK inhibitor, in patients with BRAF V600 mutation-positive melanoma.

Cancer Chemother Pharmacol 2016; 77:807–17.

76 Bollag G, Tsai J, Zhang J, et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 2012; 11:873–86.

77 Tafinlar-European public assessment report -European Medicines Agency [WWW

Document]. URL

http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/00260 4/human_med_001683.jsp&mid=WC0b01ac058001d124 [accessed on 8 September 2017].

78 Zelboraf- European public assessment report. European Medicines Agency [WWW

Document]. URL

http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/00240 9/human_med_001544.jsp&mid=WC0b01ac058001d124 [accessed on 8 September 2017].

79 MEKINIST-European public assessment report-European Medicines Agency [WWW Document]. URL http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_- _Public_assessment_report/human/002643/WC500169708.pdf [accessed on 7 September 2017].

80 Bershas DA, Ouellet D, Mamaril-Fishman DB, et al. Metabolism and disposition of oral dabrafenib in cancer patients: proposed participation of aryl nitrogen in carbon-carbon bond cleavage via decarboxylation following enzymatic oxidation. Drug Metab Dispos

Biol Fate Chem 2013; 41:2215–24.

81 Ho MYK, Morris MJ, Pirhalla JL, et al. Trametinib, a first-in-class oral MEK inhibitor mass balance study with limited enrollment of two male subjects with advanced cancers.

Xenobiotica Fate Foreign Compd Biol Syst 2014; 44:352–68.

82 Park JJ, Boddy AV, Liu X, et al. Pharmacokinetics of dabrafenib in a patient with metastatic melanoma undergoing haemodialysis. Pigment Cell Melanoma Res 2017;

30:68–71.

83 Ascierto PA, Minor D, Ribas A, et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol Off J Am

Soc Clin Oncol 2013; 31:3205–11.

84 Anforth RM, Blumetti TCMP, Kefford RF, et al. Cutaneous manifestations of dabrafenib (GSK2118436): a selective inhibitor of mutant BRAF in patients with metastatic melanoma. Br J Dermatol 2012; 167:1153–60.

92

85 Curry JL, Torres-Cabala CA, Kim KB, et al. Dermatologic toxicities to targeted cancer therapy: shared clinical and histologic adverse skin reactions. Int J Dermatol 2014;

53:376–84.

86 Young K, Minchom A, Larkin J. BRIM-1, -2 and -3 trials: improved survival with vemurafenib in metastatic melanoma patients with a BRAF(V600E) mutation. Future

Oncol Lond Engl 2012; 8:499–507.

87 Lacouture ME, Duvic M, Hauschild A, et al. Analysis of dermatologic events in vemurafenib-treated patients with melanoma. The Oncologist 2013; 18:314–22.

88 Larkin J, Del Vecchio M, Ascierto PA, et al. Vemurafenib in patients with BRAF(V600) mutated metastatic melanoma: an open-label, multicentre, safety study. Lancet Oncol 2014; 15:436–44.

89 Peuvrel L, Quéreux G, Saint-Jean M, et al. Profile of vemurafenib-induced severe skin toxicities. J Eur Acad Dermatol Venereol JEADV 2016; 30:250–7.

90 Wantz M, Spanoudi-Kitrimi I, Lasek A, et al. [Vemurafenib-induced toxic epidermal necrolysis]. Ann Dermatol Venereol 2014; 141:215–8.

91 Teixeira A, Morlière P, Ferreira J, et al. Interplay Between Membrane Lipid Peroxidation and Photoproduct Formation in the Ultraviolet A-Induced Phototoxicity of Vemurafenib in Skin Keratinocytes. Toxicol Sci Off J Soc Toxicol 2016; 154:289–95.

92 Gabeff R, Dutartre H, Khammari A, et al. Phototoxicity of B-RAF inhibitors: Exclusively due to UVA radiation and rapidly regressive. Eur J Dermatol EJD 2015; 25:452–6. 93 Boussemart L, Routier E, Mateus C, et al. Prospective study of cutaneous side-effects

associated with the BRAF inhibitor vemurafenib: a study of 42 patients. Ann Oncol 2013;

24:1691–7.

94 Anforth R, Carlos G, Clements A, et al. Cutaneous adverse events in patients treated with BRAF inhibitor-based therapies for metastatic melanoma for longer than 52 weeks. Br J

Dermatol 2015; 172:239–43.

95 Su F, Viros A, Milagre C, et al. RAS Mutations in Cutaneous Squamous-Cell Carcinomas in Patients Treated with BRAF Inhibitors. N Engl J Med 2012; 366:207–15.

96 Oberholzer PA, Kee D, Dziunycz P, et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J

Clin Oncol Off J Am Soc Clin Oncol 2012; 30:316–21.

97 Heidorn SJ, Milagre C, Whittaker S, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010; 140:209–21.

98 Hodis E, Watson IR, Kryukov GV, et al. A Landscape of Driver Mutations in Melanoma.

Cell 2012; 150:251–63.

99 Poulikakos PI, Zhang C, Bollag G, et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 2010; 464:427–30.

93

100 Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010; 468:973–7.

101 Villanueva J, Vultur A, Lee JT, et al. Acquired Resistance to BRAF Inhibitors Mediated by a RAF Kinase Switch in Melanoma Can Be Overcome by Cotargeting MEK and IGF- 1R/PI3K. Cancer Cell 2010; 18:683–95.

102 Das Thakur M, Salangsang F, Landman AS, et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 2013; 494:251–5.

103 Shi H, Moriceau G, Kong X, et al. Melanoma whole-exome sequencing identifies V600EB- RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 2012; 3:ncomms1727.

104 Johannessen CM, Boehm JS, Kim SY, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010; 468:968–72.

105 Poulikakos PI, Persaud Y, Janakiraman M, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 2011; 480:387–90.

106 Choi J, Landrette SF, Wang T, et al. Identification of PLX4032-resistance mechanisms and implications for novel RAF inhibitors. Pigment Cell Melanoma Res 2014; 27:253–62. 107 Wagenaar TR, Ma L, Roscoe B, et al. Resistance to vemurafenib resulting from a novel mutation in the BRAFV600E kinase domain. Pigment Cell Melanoma Res 2014; 27:124– 33.

108 Charles J, Martel C, de Fraipont F, et al. Mécanismes de résistance aux inhibiteurs de BRAF. Ann Dermatol Vénéréologie 2014; 141:671–81.

109 Sansal I, Sellers WR. The Biology and Clinical Relevance of the PTEN Tumor Suppressor Pathway. J Clin Oncol 2004; 22:2954–63.

110 Dankort D, Curley DP, Cartlidge RA, et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41:544–52.

111 Paraiso KHT, Xiang Y, Rebecca VW, et al. PTEN Loss Confers BRAF Inhibitor Resistance to Melanoma Cells through the Suppression of BIM Expression. Cancer Res 2011; 71:2750–60.

112 Wilson TR, Fridlyand J, Yan Y, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012; 487:505–9.

113 Smalley KSM, Lioni M, Palma MD, et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E–mutated melanomas. Mol Cancer Ther 2008;

7:2876–83.

114 Maertens O, Johnson B, Hollstein P, et al. Elucidating Distinct Roles for NF1 in Melanomagenesis. Cancer Discov 2013; 3:338–49.

94

115 Larkin J, Ascierto PA, Dréno B, et al. Combined vemurafenib and cobimetinib in BRAF- mutated melanoma. N Engl J Med 2014; 371:1867–76.

116 Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 2014; 371:1877–88.

117 Long GV, Stroyakovskiy D, Gogas H, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. The Lancet 2015; 386:444–51.

118 Sanlorenzo M, Choudhry A, Vujic I, et al. Comparative profile of cutaneous adverse events: BRAF/MEK inhibitor combination therapy versus BRAF monotherapy in melanoma. J Am Acad Dermatol 2014; 71:1102–1109.e1.

119 Kim KB, Kefford R, Pavlick AC, et al. Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol Off J Am Soc Clin Oncol 2013;

31:482–9.

120 Long GV, Fung C, Menzies AM, et al. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat

Commun 2014; 5:5694.

121 Shi H, Hugo W, Kong X, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 2014; 4:80–93.

122 Beadling C, Jacobson-Dunlop E, Hodi FS, et al. KIT Gene Mutations and Copy Number in Melanoma Subtypes. Clin Cancer Res 2008; 14:6821–8.

123 Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a Therapeutic Target in Metastatic Melanoma. JAMA J Am Med Assoc 2011; 305:2327–34.

124 Lee SJ, Kim TM, Kim YJ, et al. Phase II Trial of Nilotinib in Patients With Metastatic Malignant Melanoma Harboring KIT Gene Aberration: A Multicenter Trial of Korean Cancer Study Group (UN10-06). The Oncologist 2015; 20:1312–9.

125 Guo J, Si L, Kong Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin

Oncol Off J Am Soc Clin Oncol 2011; 29:2904–9.

126 Delyon J, Chevret S, Jouary T, et al. STAT3 mediates Nilotinib response in KIT-altered Melanoma: a Phase II Multicenter Trial of the French Skin Cancer Network. J Invest

Dermatol 2017. doi:10.1016/j.jid.2017.07.839.

127 Platz A, Egyhazi S, Ringborg U, Hansson J. Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site.

Mol Oncol 2008; 1:395–405.

128 Johnson DB, Puzanov I. Treatment of NRAS-Mutant Melanoma. Curr Treat Options

95

129 Dummer R, Schadendorf D, Ascierto PA, et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2017; 18:435–45.

130 Balducci L, Extermann M. Management of cancer in the older person: a practical approach. The Oncologist 2000; 5:224–37.

131 Soubeyran P, Bellera C, Goyard J, et al. Screening for Vulnerability in Older Cancer Patients: The ONCODAGE Prospective Multicenter Cohort Study. PLoS ONE 2014; 9. doi:10.1371/journal.pone.0115060.

132 Corre R, Greillier L, Le Caër H, et al. Use of a Comprehensive Geriatric Assessment for

Documents relatifs