• Aucun résultat trouvé

Les approches traditionnelles de calcul du risque tel que la variance, les diff´erentes approches de calcul de la VaR et l’Exepected Shortfall ne s’av`erent pas suffisantes face `a un environnement en perp´etuelle mutation et ils ne tiennent pas compte de

l’attitude de l’investisseur vis `a vis du risque. Dans ce chapitre, on a d´etermin´e, `a par- tir d’un programme de maximisation de l’esp´erance d’utilit´e, une mesure du risque g´en´erale s’appliquant aux fonctions d’utilit´e exponentielle n´egative, iso´elastique ou ” utilit´es CRRA” (constant relative risk aversion) et hyperbolique ou ”utilit´es HARA” (Hyperbolic absolute risk aversion). A titre illustratif, on a appliqu´e ces mesures de risque aux principaux indices boursiers tout en les comparant par les mesures de risque traditionnelles. On a trouv´e que ces mesures sont sensibles au choix des diff´erentes param`etres d’aversion au risque. La variation de cette mesure du risque est une variation positive pour les fonctions d’utilit´e exponentielle n´egative et iso´elastique alors qu’elle change de sens pour la fonction d’utilit´e hyperbolique en fonction des diff´erents param`etres de l’aversion au risque.

Comme nous avons signal´e `a l’introduction g´en´erale, le deuxi`eme objectif de cette th`ese est de d´eterminer une strat´egie de couverture en faisant appel `a l’approche de l’utilit´e esp´er´ee. Une telle strat´egie de couverture s’obtient en minimisant le risque associ´e. Cependant, la litt´erature ´economique sugg`ere qu’il existe une relation entre l’aversion au risque et les densit´es de probabilit´es risque neutre et subjective.

Aat(xT) = p0t(xT) pt(xT) −q 0 t(xT) qt(xT) .

o`u p(.) la densit´e subjective et q(.) la densit´e neutre au risque.

L’estimation la densit´e neutre au risque selon les trois diff´erentes approches pa- ram´etrique, semi-param´etrique et non param´etrique fait l’objet du deuxi`eme cha- pitre. Et l’estimation de l’aversion au risque param`etre fait l’objet du troisi`eme chapitre.

Bibliographie

[1] Agarwal V. & Naik N. (2004), Risk and Portfolio Decisions Involving Hedge Funds, International Review of Economics and Finance 9(3), 209-222.

[2] Baillie R. T. & DeGennaro R. P. (1990), Stock Returns and Volatility, Journal of Financial and Quantitative Analysis, 25, 203-214.

[3] Bali T. G. & Gokcan S. (2004), Alternative Approaches to estimating VaR for Hedge Fund Portfolios, Edited by Barry Schachter, Intelligent Hedge Fund Investing, 253-277, Risk Books, Publisher : Incisive Media PLC.

[4] Bellalah M. & Selmi F. (2002), Les fonctions d’utilit´e et l’avantage informa- tionnel des moments d’ordre sup´erieurs : application `a la couverture d’options, Finance 23, 14-27.

[5] Bell D. E. (1988), One-switch utility function and a measure of risk, Mange- ment Science, vol. 34, 1416-1424.

[6] Bell D. E. (1995), Risk, return, and utility, Mangement Science, vol. 41, 23-30. [7] Beirlant J., Vynckier P. & Teugels J. L. (1996), Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics, Journal of the American Statistical Association, 91, 1659-1667.

[8] Bliss R. R. & Panigirtzoglou N. (2004), Option Implied Risk Aversion Estimates, The Journal Of Finance, Vol 1, 407-446.

[9] Bouchaud J. P. & Potters M. (1997), Th´eories des risques financiers, coll. ”Al´ea-Saclay”.

[10] Bouchaud J. P. & Selmi F. (2001), Risk business, Wilmott magazine. [11] Coles S. (2001), An Introduction to Statistical Modeling of Extreme Values,

Springer Verlag.

[12] Coombs C. H. & Lehner P. E. (1981), An evaluation of tow alternative models for a theory of risk : Part 1, Journal Experimental Psychology, Human Perception and Performance, N˚7, 1110-1123.

[13] Coombs C. H. & Lehner P. E. (1981), Conjoint design and analysis of the bilinear model : An application to judgments of risk, Journal Math. psychology, N˚28, 1-42.

[14] Coutant S. (1999), Implied risk aversion in option prices using hermite po- lynomials, CEREG Working Paper N˚9908.

[15] Danielsson J. & de Vries C. G. (1998), Beyond the Sample : Extreme Quantile and Probability Estimation, Discussion Paper 298, London School of Economics.

[16] Dowd K. (2000), Adjusting for Risk : An Improved Sharpe Ratio, Internatio- nal Review of Economics and Finance 9(3), 209-222.

[17] Dowd K. (2002), A Bootstrap Backtest, Risk, 15, N˚10, 93-94.

[18] Embrechts P., Kl¨uppelberg C. & Mikosch T. (1997), Modelling Extremal Events for Insurance and Finance, Springer Verlag.

[19] Embrechts P., McNeil A. & Straumann D. (2002), Correlation and De- pendence in Risk Management : Properties and Pitfalls, In Risk Management : Value at Risk and Beyond, ed. M.A.H. Dempster, Cambridge University Press, 176-223.

[20] Favre L. & Galeano J. (2002), Mean-Modified Value-at-Risk Optimization with Hedge Funds, Journal of Alternative Investment 5(2), 21-25.

[21] Fishburn P. C. (1982), Foundations of risk measurement, I, Risk as probable loss, Mangement Science, N˚30, 296-406.

[32] F¨uss R., Kaiser D. G. & Adams Z. (2007), Value at Risk, GARCH Mo- delling and Forcasting of Hedge Fund Return Volatility, Journal of Derivatives and Hedge Funds, Vol.13 N˚1, 2-25.

[23] Gregoriou G. & Gueyie J. (2003), Risk-Adjusted Performance of Funds of Hedge Funds Using a Modified Sharpe Ratio, Journal of Wealth Management 6(3), 77-83.

[24] Guidolin M. & Timmermann A.(2005a), Optimal portfolio choices under regime switching, skew and kurtosis preferences, Workin Paper, Federal Reserve Bank of St Louis, 35 pages.

[25] Guidolin M. & Timmermann A.(2005b), International asset allocation under regime switching, skew and kurtosis preferences, Workin Paper, Federal Reserve Bank of St Louis, 54 pages.

[26] Gupta A. & Liang B. (2005), Do Hedge Funds Have Enough Capital ? A Value at Risk Approach, Journal of Financial Economics 77, 219-253.

[27] Jia R. & Dyer J. S. (1996), A standard mesure of risk and risk-value models, Mangement Science, vol. 42 (12), 1691-1705.

[28] Jondeau E. & Rockinger M. (2003), How higher moments affect the allo- cation of asset, Finance Letters 1 (2), 1-5.

[29] Jondeau E. & Rockinger M. (2005), Conditional asset allocation under non-normality : How costly is the Mean-Variance criterion, Working Parper, HEC Lausanne, 42 pages.

[29] Jondeau E. & Rockinger M. (2006), Optimal portfolio allocation under higher moments, Journal of the European Financial Mangement Association 12, 29-67.

[30] Kellezi E.& Gilli M. (2000), Extreme Value Theory for Tail-Related Risk Measures,Working Paper, University of Geneva, Geneva.

[31] Kendall A. (1977), The advanced theory of statistics, Charles Griffin, Londan. [32] Kimball M. (1993), Standard risk aversion, Econometrica 61 (3), 589-611. [33] Levy H. & Kroll Y. (1978), Ordering Uncertain Options with Borrowing

and Lending, Journal of Finance, 553-574.

[34] Liang B. (1999), On the performance of hedge funds, Financial Analysts Jour- nal 55, 72-85.

[35] Luce R. D. (1980), Several possible measure of risk, Theory and decision, N˚12, 217-228.

[36] Maillet B. & Jurczenko E. (2006), Theoretical Foundations of Higher Mo- ments when Pricing Assets, Multi-moment Asset Allocation and Pricing Models 1-36.

[37] Markowitz H. M. (1952),The utility of wealth, journal Political Economy, 60, 151-158.

[38] Markowitz H. M. (1959), Portfolio selection, efficient diversification of in- vestment, New Haven, CT, Yale university Press.

[39] Ranaldo A. & Favre L. (2005), How to Price Hedge Funds : From Two- to Four-Moment CAPM, Working Paper, UBS Global Asset Management. [40] Sarin R. K. (1987), Some extensions of luce’s measures of risk, Theory and

decision, N˚22, 25-141.

[41] Scott R. & Horvath P. (1980), On the Direction of Reference for Moments of Higher Order than the Variance, Journal of Finance 35(4), 915-919.