• Aucun résultat trouvé

L’étude de la régulation transcriptionnelle de l’expression du gène GATA4 est indispensable à notre compréhension des processus biologiques entourant son activité, autant dans un contexte sain que pathologique. En effet, le facteur de transcription GATA4 agit en tant qu’activateur ou répresseur de gènes cibles spécifiques à chaque tissu au cours du développement. Il occupe donc une place de choix dans la suite d’événements allant de la différenciation et l’identité cellulaire à la morphogenèse de plusieurs organes et la survie cellulaire à l’âge adulte. Puisqu’il est un facteur primordial, il semble évident qu’un défaut dans l’expression du gène ou dans la fonction de la protéine soit lié à certaines pathologies ou anomalies du développement.

Les séquences régulatrices telles que des enhancers sont plus fréquemment l’hôte de SNP ou de mutations, lesquelles sont associées à diverses maladies. Dans ce contexte, il apparait primordial qu’une meilleure compréhension des mécanismes de régulation entourant ces enhancers ait une importance marquée pour plusieurs applications cliniques. L’étude des mécanismes compensatoires mis en place par la cellule pour assurer un niveau protéique adéquat est également un phénomène important qui se doit d’être étudié plus en profondeur. Une dérégulation de ces mécanismes pourrait avoir des conséquences importantes dans l’expression du facteur et dans ses fonctions. Les résultats de cette maîtrise sont un pas en avant vers la compréhension des mécanismes moléculaires à l’origine de la régulation transcriptionnelle de l’expression gène Gata4. Ces informations permettront d’ouvrir une voie dans la compréhension des conséquences pathologiques qui découlent d’une altération de ces mécanismes lors du développement.

86

Bibliographie

Ali, A., Christie, P.T., Grigorieva, I.V., Harding, B., Van Esch, H., Ahmed, S.F., Bitner- Glindzicz, M., Blind, E., Bloch, C., Christin, P., et al. (2007). Functional characterization of GATA3 mutations causing the hypoparathyroidism-deafness-renal (HDR) dysplasia syndrome: insight into mechanisms of DNA binding by the GATA3 transcription factor. Hum Mol Genet 16, 265-275.

Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., Chen, Y., Zhao, X., Schmidl, C., Suzuki, T., et al. (2014). An atlas of active enhancers across human cell types and tissues. Nature 507, 455-461.

Anttonen, M., Ketola, I., Parviainen, H., Pusa, A.K., and Heikinheimo, M. (2003). FOG-2 and GATA-4 Are coexpressed in the mouse ovary and can modulate mullerian-inhibiting substance expression. Biol Reprod 68, 1333-1340.

Aronson, B.E., Rabello Aronson, S., Berkhout, R.P., Chavoushi, S.F., He, A., Pu, W.T., Verzi, M.P., and Krasinski, S.D. (2014). GATA4 represses an ileal program of gene expression in the proximal small intestine by inhibiting the acetylation of histone H3, lysine 27. Biochim Biophys Acta 1839, 1273-1282.

Asnagli, H., Afkarian, M., and Murphy, K.M. (2002). Cutting edge: Identification of an alternative GATA-3 promoter directing tissue-specific gene expression in mouse and human. J Immunol 168, 4268-4271.

Bachtrog, D., Mank, J.E., Peichel, C.L., Kirkpatrick, M., Otto, S.P., Ashman, T.L., Hahn, M.W., Kitano, J., Mayrose, I., Ming, R., et al. (2014). Sex determination: why so many ways of doing it? PLoS Biol 12, e1001899.

Battle, M.A., Bondow, B.J., Iverson, M.A., Adams, S.J., Jandacek, R.J., Tso, P., and Duncan, S.A. (2008). GATA4 is essential for jejunal function in mice. Gastroenterology 135, 1676- 1686 e1671.

Beau, C., Rauch, M., Joulin, V., Jegou, B., and Guerrier, D. (2000). GATA-1 is a potential repressor of anti-Mullerian hormone expression during the establishment of puberty in the mouse. Mol Reprod Dev 56, 124-138.

Bennett, J., Baumgarten, S.C., and Stocco, C. (2013). GATA4 and GATA6 silencing in ovarian granulosa cells affects levels of mRNAs involved in steroidogenesis,

extracellular structure organization, IGF-I activity, and apoptosis. Endocrinology 154, 4845-4858.

Bennett, J., Wu, Y.G., Gossen, J., Zhou, P., and Stocco, C. (2012). Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility. Endocrinology 153, 2474- 2485.

87

Bergeron, F., Nadeau, G., and S Viger, R. (2015). GATA4 knockdown in MA-10 Leydig cells identifies multiple target genes in the steroidogenic pathway. Reproduction 149, 245-257.

Beuling, E., Bosse, T., aan de Kerk, D.J., Piaseckyj, C.M., Fujiwara, Y., Katz, S.G., Orkin, S.H., Grand, R.J., and Krasinski, S.D. (2008). GATA4 mediates gene repression in the mature mouse small intestine through interactions with friend of GATA (FOG) cofactors. Dev Biol 322, 179-189.

Bielinska, M., Seehra, A., Toppari, J., Heikinheimo, M., and Wilson, D.B. (2007). GATA-4 is required for sex steroidogenic cell development in the fetal mouse. Dev Dyn 236, 203- 213.

Birk, O.S., Casiano, D.E., Wassif, C.A., Cogliati, T., Zhao, L., Zhao, Y., Grinberg, A., Huang, S., Kreidberg, J.A., Parker, K.L., et al. (2000). The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403, 909-913.

Bonnefond, A., Sand, O., Guerin, B., Durand, E., De Graeve, F., Huyvaert, M., Rachdi, L., Kerr-Conte, J., Pattou, F., Vaxillaire, M., et al. (2012). GATA6 inactivating mutations are associated with heart defects and, inconsistently, with pancreatic agenesis and diabetes. Diabetologia 55, 2845-2847.

Borok, M.J., Papaioannou, V.E., and Sussel, L. (2016). Unique functions of Gata4 in mouse liver induction and heart development. Dev Biol 410, 213-222.

Bossard, P., and Zaret, K.S. (1998). GATA transcription factors as potentiators of gut endoderm differentiation. Development 125, 4909-4917.

Bosse, T., Piaseckyj, C.M., Burghard, E., Fialkovich, J.J., Rajagopal, S., Pu, W.T., and

Krasinski, S.D. (2006). Gata4 is essential for the maintenance of jejunal-ileal identities in the adult mouse small intestine. Mol Cell Biol 26, 9060-9070.

Boulende Sab, A., Bouchard, M.F., Beland, M., Prud'homme, B., Souchkova, O., Viger, R.S., and Pilon, N. (2011). An Ebox element in the proximal Gata4 promoter is required for Gata4 expression in vivo. PLoS One 6, e29038.

Bresnick, E.H., Lee, H.Y., Fujiwara, T., Johnson, K.D., and Keles, S. (2010). GATA switches as developmental drivers. J Biol Chem 285, 31087-31093.

Brewer, A., Gove, C., Davies, A., McNulty, C., Barrow, D., Koutsourakis, M., Farzaneh, F., Pizzey, J., Bomford, A., and Patient, R. (1999). The human and mouse GATA-6 genes utilize two promoters and two initiation codons. J Biol Chem 274, 38004-38016. Bulger, M., and Groudine, M. (2010). Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev Biol 339, 250-257.

Bullejos, M., and Koopman, P. (2001). Spatially dynamic expression of Sry in mouse genital ridges. Dev Dyn 221, 201-205.

Burch, J.B. (2005). Regulation of GATA gene expression during vertebrate development. Semin Cell Dev Biol 16, 71-81.

88

Carrasco, M., Delgado, I., Soria, B., Martin, F., and Rojas, A. (2012). GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest 122, 3504-3515.

Chen, B., Yates, E., Huang, Y., Kogut, P., Ma, L., Turner, J.R., Tao, Y., Camoretti-Mercado, B., Lang, D., Svensson, E.C., et al. (2009). Alternative promoter and GATA5 transcripts in mouse. Am J Physiol Gastrointest Liver Physiol 297, G1214-1222.

Chen, S.R., Tang, J.X., Cheng, J.M., Li, J., Jin, C., Li, X.Y., Deng, S.L., Zhang, Y., Wang, X.X., and Liu, Y.X. (2015). Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget 6, 37012-37027.

Cirillo, L.A., Lin, F.R., Cuesta, I., Friedman, D., Jarnik, M., and Zaret, K.S. (2002). Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Molecular cell 9, 279-289.

Crispino, J.D., Lodish, M.B., Thurberg, B.L., Litovsky, S.H., Collins, T., Molkentin, J.D., and Orkin, S.H. (2001). Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15, 839-844.

Crispino, J.D., and Weiss, M.J. (2014). Erythro-megakaryocytic transcription factors associated with hereditary anemia. Blood 123, 3080-3088.

Daems, C., Di-Luoffo, M., Paradis, E., and Tremblay, J.J. (2015). MEF2 Cooperates With Forskolin/cAMP and GATA4 to Regulate Star Gene Expression in Mouse MA-10 Leydig Cells. Endocrinology 156, 2693-2703.

Dai, Y.S., and Markham, B.E. (2001). p300 Functions as a coactivator of transcription factor GATA-4. J Biol Chem 276, 37178-37185.

Dame, C., Sola, M.C., Lim, K.C., Leach, K.M., Fandrey, J., Ma, Y., Knopfle, G., Engel, J.D., and Bungert, J. (2004). Hepatic erythropoietin gene regulation by GATA-4. J Biol Chem 279, 2955-2961.

Davis, D.L., Wessels, A., and Burch, J.B. (2000). An Nkx-dependent enhancer regulates cGATA-6 gene expression during early stages of heart development. Dev Biol 217, 310- 322.

Decker, K., Goldman, D.C., Grasch, C.L., and Sussel, L. (2006). Gata6 is an important regulator of mouse pancreas development. Dev Biol 298, 415-429.

Delgado, I., Carrasco, M., Cano, E., Carmona, R., Garcia-Carbonero, R., Marin-Gomez, L.M., Soria, B., Martin, F., Cano, D.A., Munoz-Chapuli, R., et al. (2014). GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. Hepatology 59, 2358- 2370.

Denson, L.A., McClure, M.H., Bogue, C.W., Karpen, S.J., and Jacobs, H.C. (2000). HNF3beta and GATA-4 transactivate the liver-enriched homeobox gene, Hex. Gene 246, 311-320.

89

Deutsch, G., Jung, J., Zheng, M., Lora, J., and Zaret, K.S. (2001). A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871-881.

Drissen, R., Guyot, B., Zhang, L., Atzberger, A., Sloane-Stanley, J., Wood, B., Porcher, C., and Vyas, P. (2010). Lineage-specific combinatorial action of enhancers regulates mouse erythroid Gata1 expression. Blood 115, 3463-3471.

Duncan, S.A. (2005). Generation of embryos directly from embryonic stem cells by tetraploid embryo complementation reveals a role for GATA factors in organogenesis. Biochem Soc Trans 33, 1534-1536.

Durocher, D., Charron, F., Warren, R., Schwartz, R.J., and Nemer, M. (1997). The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 16, 5687-5696. Efimenko, E., Padua, M.B., Manuylov, N.L., Fox, S.C., Morse, D.A., and Tevosian, S.G. (2013). The transcription factor GATA4 is required for follicular development and normal ovarian function. Dev Biol 381, 144-158.

Evans, S.M., Yelon, D., Conlon, F.L., and Kirby, M.L. (2010). Myocardial lineage development. Circ Res 107, 1428-1444.

Fabian, M.R., Sonenberg, N., and Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79, 351-379.

Feng, Z.M., Wu, A.Z., and Chen, C.L. (1998). Testicular GATA-1 factor up-regulates the promoter activity of rat inhibin alpha-subunit gene in MA-10 Leydig tumor cells. Mol Endocrinol 12, 378-390.

Frazer, K.A., Pachter, L., Poliakov, A., Rubin, E.M., and Dubchak, I. (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res 32, W273-279. Fujita, T., and Fujii, H. (2014). Identification of proteins associated with an IFNgamma- responsive promoter by a retroviral expression system for enChIP using CRISPR. PLoS One 9, e103084.

Fujita, T., and Fujii, H. (2015). Isolation of specific genomic regions and identification of associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Methods Mol Biol 1288, 43-52.

Fujita, T., and Fujii, H. (2016). Isolation of Specific Genomic Regions and Identification of Associated Molecules by enChIP. J Vis Exp, e53478.

Fujita, T., Yuno, M., Okuzaki, D., Ohki, R., and Fujii, H. (2015). Identification of non- coding RNAs associated with telomeres using a combination of enChIP and RNA sequencing. PLoS One 10, e0123387.

Fujiwara, Y., Browne, C.P., Cunniff, K., Goff, S.C., and Orkin, S.H. (1996). Arrested

development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A 93, 12355-12358.

90

Fujiwara, Y., Chang, A.N., Williams, A.M., and Orkin, S.H. (2004). Functional overlap of GATA-1 and GATA-2 in primitive hematopoietic development. Blood 103, 583-585. George, K.M., Leonard, M.W., Roth, M.E., Lieuw, K.H., Kioussis, D., Grosveld, F., and Engel, J.D. (1997). Embryonic expression and cloning of the murine GATA-3 gene.

Development 120, 2673-2686.

Greulich, F., Rudat, C., and Kispert, A. (2011). Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 91, 212-222.

Gross, D.S., and Garrard, W.T. (1988). Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 57, 159-197.

Guiu, J., and Jensen, K.B. (2015). From Definitive Endoderm to Gut-a Process of Growth and Maturation. Stem Cells Dev 24, 1972-1983.

Hahn, S. (2004). Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11, 394-403.

Han, M., Yang, Z., Sayed, D., He, M., Gao, S., Lin, L., Yoon, S., and Abdellatif, M. (2012). GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy. Cardiovasc Res 93, 645-654.

Harvey, R.P. (2002). Patterning the vertebrate heart. Nat Rev Genet 3, 544-556.

Harvey, R.P., Lai, D., Elliott, D., Biben, C., Solloway, M., Prall, O., Stennard, F., Schindeler, A., Groves, N., Lavulo, L., et al. (2002). Homeodomain factor Nkx2-5 in heart

development and disease. Cold Spring Harb Symp Quant Biol 67, 107-114. Hasegawa, S.L., Moriguchi, T., Rao, A., Kuroha, T., Engel, J.D., and Lim, K.C. (2007). Dosage-dependent rescue of definitive nephrogenesis by a distant Gata3 enhancer. Dev Biol 301, 568-577.

Haveri, H., Westerholm-Ormio, M., Lindfors, K., Maki, M., Savilahti, E., Andersson, L.C., and Heikinheimo, M. (2008). Transcription factors GATA-4 and GATA-6 in normal and neoplastic human gastrointestinal mucosa. BMC Gastroenterol 8, 9.

He, A., Kong, S.W., Ma, Q., and Pu, W.T. (2011). Co-occupancy by multiple cardiac

transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci U S A 108, 5632-5637.

He, A., Shen, X., Ma, Q., Cao, J., von Gise, A., Zhou, P., Wang, G., Marquez, V.E., Orkin, S.H., and Pu, W.T. (2012). PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev 26, 37-42.

He, B., Chen, C., Teng, L., and Tan, K. (2014). Global view of enhancer-promoter interactome in human cells. Proc Natl Acad Sci U S A 111, E2191-2199.

Heikinheimo, M., Scandrett, J.M., and Wilson, D.B. (1994). Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol 164, 361-373.

91

Heintzman, N.D., and Ren, B. (2009). Finding distal regulatory elements in the human genome. Curr Opin Genet Dev 19, 541-549.

Hiramatsu, R., Matoba, S., Kanai-Azuma, M., Tsunekawa, N., Katoh-Fukui, Y., Kurohmaru, M., Morohashi, K., Wilhelm, D., Koopman, P., and Kanai, Y. (2009). A critical time window of Sry action in gonadal sex determination in mice. Development 136, 129-138.

Hosoya-Ohmura, S., Lin, Y.H., Herrmann, M., Kuroha, T., Rao, A., Moriguchi, T., Lim, K.C., Hosoya, T., and Engel, J.D. (2011). An NK and T cell enhancer lies 280 kilobase pairs 3' to the gata3 structural gene. Mol Cell Biol 31, 1894-1904.

Hu, Y., Dong, C., Chen, M., Chen, Y., Gu, A., Xia, Y., Sun, H., Li, Z., and Wang, Y. (2015). Effects of monobutyl phthalate on steroidogenesis through steroidogenic acute regulatory protein regulated by transcription factors in mouse Leydig tumor cells. J Endocrinol Invest 38, 875-884.

Hu, Y.C., Okumura, L.M., and Page, D.C. (2013). Gata4 is required for formation of the genital ridge in mice. PLoS Genet 9, e1003629.

Huang, H.N., Chen, S.Y., Hwang, S.M., Yu, C.C., Su, M.W., Mai, W., Wang, H.W., Cheng, W.C., Schuyler, S.C., Ma, N., et al. (2014). miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation. Stem Cell Res 12, 338-353. Hwang, E.S., Choi, A., and Ho, I.C. (2002). Transcriptional regulation of GATA-3 by an intronic regulatory region and fetal liver zinc finger protein 1. J Immunol 169, 248-253. Ishihara, H., Engel, J.D., and Yamamoto, M. (1995). Structure and regulation of the chicken GATA-3 gene. J Biochem 117, 499-508.

Island, M.L., Fatih, N., Leroyer, P., Brissot, P., and Loreal, O. (2011). GATA-4 transcription factor regulates hepatic hepcidin expression. Biochem J 437, 477-482.

Ito, E., Toki, T., Ishihara, H., Ohtani, H., Gu, L., Yokoyama, M., Engel, J.D., and Yamamoto, M. (1993). Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature 362, 466-468.

Jacobsen, C.M., Mannisto, S., Porter-Tinge, S., Genova, E., Parviainen, H., Heikinheimo, M., Adameyko, II, Tevosian, S.G., and Wilson, D.B. (2005). GATA-4:FOG interactions regulate gastric epithelial development in the mouse. Dev Dyn 234, 355-362.

Jacobsen, C.M., Narita, N., Bielinska, M., Syder, A.J., Gordon, J.I., and Wilson, D.B. (2002). Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Dev Biol 241, 34-46.

Jakob, S., and Lovell-Badge, R. (2011). Sex determination and the control of Sox9 expression in mammals. FEBS J 278, 1002-1009.

Jiang, J.Q., Li, R.G., Wang, J., Liu, X.Y., Xu, Y.J., Fang, W.Y., Chen, X.Z., Zhang, W., Wang, X.Z., and Yang, Y.Q. (2013). Prevalence and spectrum of GATA5 mutations associated with congenital heart disease. Int J Cardiol 165, 570-573.

92

Kala, K., Haugas, M., Lillevali, K., Guimera, J., Wurst, W., Salminen, M., and Partanen, J. (2009). Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 136, 253-262.

Kerkela, R., Pikkarainen, S., Majalahti-Palviainen, T., Tokola, H., and Ruskoaho, H. (2002). Distinct roles of mitogen-activated protein kinase pathways in GATA-4 transcription factor-mediated regulation of B-type natriuretic peptide gene. J Biol Chem 277, 13752- 13760.

Ketola, I., Otonkoski, T., Pulkkinen, M.A., Niemi, H., Palgi, J., Jacobsen, C.M., Wilson, D.B., and Heikinheimo, M. (2004). Transcription factor GATA-6 is expressed in the endocrine and GATA-4 in the exocrine pancreas. Mol Cell Endocrinol 226, 51-57.

Ketola, I., Rahman, N., Toppari, J., Bielinska, M., Porter-Tinge, S.B., Tapanainen, J.S., Huhtaniemi, I.T., Wilson, D.B., and Heikinheimo, M. (1999). Expression and regulation of transcription factors GATA-4 and GATA-6 in developing mouse testis. Endocrinology

140, 1470-1480.

Khandekar, M., Brandt, W., Zhou, Y., Dagenais, S., Glover, T.W., Suzuki, N., Shimizu, R., Yamamoto, M., Lim, K.C., and Engel, J.D. (2007). A Gata2 intronic enhancer confers its pan-endothelia-specific regulation. Development 134, 1703-1712.

Khandekar, M., Suzuki, N., Lewton, J., Yamamoto, M., and Engel, J.D. (2004). Multiple, distant Gata2 enhancers specify temporally and tissue-specific patterning in the developing urogenital system. Mol Cell Biol 24, 10263-10276.

Kiecker, C., Bates, T., and Bell, E. (2016). Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 73, 923-947.

Kiiveri, S., Liu, J., Westerholm-Ormio, M., Narita, N., Wilson, D.B., Voutilainen, R., and Heikinheimo, M. (2002). Differential expression of GATA-4 and GATA-6 in fetal and adult mouse and human adrenal tissue. Endocrinology 143, 3136-3143.

Kim, P.T., and Ong, C.J. (2012). Differentiation of definitive endoderm from mouse embryonic stem cells. Results Probl Cell Differ 55, 303-319.

Kim, T.H., and Shivdasani, R.A. (2016). Stomach development, stem cells and disease. Development 143, 554-565.

Kitta, K., Day, R.M., Kim, Y., Torregroza, I., Evans, T., and Suzuki, Y.J. (2003). Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells. J Biol Chem 278, 4705-4712.

Kobayashi, A., Chang, H., Chaboissier, M.C., Schedl, A., and Behringer, R.R. (2005). Sox9 in testis determination. Ann N Y Acad Sci 1061, 9-17.

Kobayashi, M., and Yamamoto, M. (2007). Regulation of GATA1 gene expression. J Biochem 142, 1-10.

93

Kodzius, R., Kojima, M., Nishiyori, H., Nakamura, M., Fukuda, S., Tagami, M., Sasaki, D., Imamura, K., Kai, C., Harbers, M., et al. (2006). CAGE: cap analysis of gene expression. Nat Methods 3, 211-222.

Kohlnhofer, B.M., Thompson, C.A., Walker, E.M., and Battle, M.A. (2016). GATA4 regulates epithelial cell proliferation to control intestinal growth and development in mice. Cell Mol Gastroenterol Hepatol 2, 189-209.

Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R., and Grosveld, F. (1999). The transcription factor GATA6 is essential for early extraembryonic development.

Development 126, 723-732.

Kreidberg, J.A., Sariola, H., Loring, J.M., Maeda, M., Pelletier, J., Housman, D., and Jaenisch, R. (1993). WT-1 is required for early kidney development. Cell 74, 679-691.

Kuo, C.T., Morrisey, E.E., Anandappa, R., Sigrist, K., Lu, M.M., Parmacek, M.S., Soudais, C., and Leiden, J.M. (1997). GATA4 transcription factor is required for ventral

morphogenesis and heart tube formation. Genes Dev 11, 1048-1060.

Kusaka, M., Katoh-Fukui, Y., Ogawa, H., Miyabayashi, K., Baba, T., Shima, Y., Sugiyama, N., Sugimoto, Y., Okuno, Y., Kodama, R., et al. (2010). Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads. Endocrinology 151, 5893-5904.

Kwintkiewicz, J., Cai, Z., and Stocco, C. (2007). Follicle-stimulating hormone-induced activation of Gata4 contributes in the up-regulation of Cyp19 expression in rat granulosa cells. Mol Endocrinol 21, 933-947.

Kyronlahti, A., Euler, R., Bielinska, M., Schoeller, E.L., Moley, K.H., Toppari, J.,

Heikinheimo, M., and Wilson, D.B. (2011a). GATA4 regulates Sertoli cell function and fertility in adult male mice. Mol Cell Endocrinol 333, 85-95.

Kyronlahti, A., Vetter, M., Euler, R., Bielinska, M., Jay, P.Y., Anttonen, M., Heikinheimo, M., and Wilson, D.B. (2011b). GATA4 deficiency impairs ovarian function in adult mice. Biol Reprod 84, 1033-1044.

Laforest, B., Andelfinger, G., and Nemer, M. (2011). Loss of Gata5 in mice leads to bicuspid aortic valve. J Clin Invest 121, 2876-2887.

Lakshmanan, G., Lieuw, K.H., Grosveld, F., and Engel, J.D. (1998). Partial rescue of GATA- 3 by yeast artificial chromosome transgenes. Dev Biol 204, 451-463.

Lakshmanan, G., Lieuw, K.H., Lim, K.C., Gu, Y., Grosveld, F., Engel, J.D., and Karis, A. (1999). Localization of distant urogenital system-, central nervous system-, and

endocardium-specific transcriptional regulatory elements in the GATA-3 locus. Mol Cell Biol 19, 1558-1568.

Lango Allen, H., Flanagan, S.E., Shaw-Smith, C., De Franco, E., Akerman, I., Caswell, R., International Pancreatic Agenesis, C., Ferrer, J., Hattersley, A.T., and Ellard, S. (2012). GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 44, 20-22.

94

Lavoie, H.A., McCoy, G.L., and Blake, C.A. (2004a). Expression of the GATA-4 and GATA-6 transcription factors in the fetal rat gonad and in the ovary during postnatal

development and pregnancy. Mol Cell Endocrinol 227, 31-40.

LaVoie, H.A., Singh, D., and Hui, Y.Y. (2004b). Concerted regulation of the porcine steroidogenic acute regulatory protein gene promoter activity by follicle-stimulating hormone and insulin-like growth factor I in granulosa cells involves GATA-4 and CCAAT/enhancer binding protein beta. Endocrinology 145, 3122-3134.

Lee, S., and Vasudevan, S. (2013). Post-transcriptional stimulation of gene expression by microRNAs. Adv Exp Med Biol 768, 97-126.

Lee, T.I., and Young, R.A. (2013). Transcriptional regulation and its misregulation in disease. Cell 152, 1237-1251.

Li, B., Carey, M., and Workman, J.L. (2007). The role of chromatin during transcription. Cell 128, 707-719.

Li, G., Ruan, X., Auerbach, R.K., Sandhu, K.S., Zheng, M., Wang, P., Poh, H.M., Goh, Y., Lim, J., Zhang, J., et al. (2012a). Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84-98.

Li, T., Liu, Z., Hu, X., Ma, K., and Zhou, C. (2012b). Involvement of ERK-RSK cascade in phenylephrine-induced phosphorylation of GATA4. Biochim Biophys Acta 1823, 582- 592.

Li, W., Notani, D., Ma, Q., Tanasa, B., Nunez, E., Chen, A.Y., Merkurjev, D., Zhang, J., Ohgi, K., Song, X., et al. (2013). Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516-520.

Liang, Q., Wiese, R.J., Bueno, O.F., Dai, Y.S., Markham, B.E., and Molkentin, J.D. (2001). The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol Cell Biol 21, 7460-7469.

Liang, W., Guo, J., Li, J., Bai, C., and Dong, Y. (2016). Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochem Biophys Res Commun.

Lieuw, K.H., Li, G., Zhou, Y., Grosveld, F., and Engel, J.D. (1997). Temporal and spatial control of murine GATA-3 transcription by promoter-proximal regulatory elements. Dev Biol 188, 1-16.

Lillevali, K., Haugas, M., Pituello, F., and Salminen, M. (2007). Comparative analysis of Gata3 and Gata2 expression during chicken inner ear development. Dev Dyn 236, 306- 313.

Lindeboom, F., Gillemans, N., Karis, A., Jaegle, M., Meijer, D., Grosveld, F., and Philipsen, S. (2003). A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in the mouse. Nucleic Acids Res 31, 5405-5412.

95

Lints, T.J., Parsons, L.M., Hartley, L., Lyons, I., and Harvey, R.P. (1993). Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119, 969.

Liu, X., Bushnell, D.A., and Kornberg, R.D. (2013). RNA polymerase II transcription: structure and mechanism. Biochim Biophys Acta 1829, 2-8.

Liu, Y., Wang, Z., and Xiao, W. (2016). MicroRNA-26a protects against cardiac

hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes. Mol Med Rep 14, 2860-2866.

Lizio, M., Harshbarger, J., Shimoji, H., Severin, J., Kasukawa, T., Sahin, S., Abugessaisa, I., Fukuda, S., Hori, F., Ishikawa-Kato, S., et al. (2015). Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16, 22.

Lourenco, D., Brauner, R., Rybczynska, M., Nihoul-Fekete, C., McElreavey, K., and

Bashamboo, A. (2011). Loss-of-function mutation in GATA4 causes anomalies of human testicular development. Proc Natl Acad Sci U S A 108, 1597-1602.

Lowry, J.A., and Atchley, W.R. (2000). Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol 50, 103- 115.

Lucas-Herald, A.K., and Bashamboo, A. (2014). Gonadal development. Endocr Dev 27, 1- 16.

Luo, X., Ikeda, Y., and Parker, K.L. (1994). A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481-490.

Ma, Y., Wang, J., Yu, Y., and Schwartz, R.J. (2016). PKG-1alpha mediates GATA4 transcriptional activity. Cell Signal 28, 585-594.

MacNeill, C., Ayres, B., Laverriere, A.C., and Burch, J.B.E. (1997). Transcripts for functionally distinct isoforms of chicken GATA-5 are differentially expressed from alternative first exons. J Biol Chem 272, 8396-8401.

Maitra, M., Koenig, S.N., Srivastava, D., and Garg, V. (2010). Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr Res 68, 281-285. Manna, P.R., Eubank, D.W., Lalli, E., Sassone-Corsi, P., and Stocco, D.M. (2003).

Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J Mol

Endocrinol 30, 381-397.

Manuylov, N.L., Zhou, B., Ma, Q., Fox, S.C., Pu, W.T., and Tevosian, S.G. (2011). Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian

Documents relatifs