• Aucun résultat trouvé

CHAPITRE I : INTRODUCTION SUR LA

I.5. CONCLUSION PARTIELLE

L’étude théorique et bibliographique présentée dans ce chapitre est basée essentiellement sur les notions fondamentales du phénomène de solidification des alliages métalliques binaires, et directement inspiré de la littérature classique telle que Kurz et Fisher [1], Flemings [2], ou encore Rappaz et al. [29] et [41], sur lesquelles se construira le reste du travail. Ces notions permettront d’appréhender les problématiques développées par la suite. Elle permettra également de faire un bref état des lieux sur la thématique étudiée, les modèles d’équations et l’intérêt porté à l’étude analytique et expérimentale qui sera basée sur une installation expérimentale ( benchmark) de solidification afin de situer les travaux menés dans un cadre scientifique plus global.

-49-

REFERENCES BIBLIOGRAPHIQUES DU CHAPITRE I

[01] W. Kurz and D. J. Fisher, “fundamentals of solidification”, fourth revised edition, Trans Tech Publication ltd., 1998.

[02] M. C. Flemings, “Solidification Processing”, McGraw-Hill, INC., 1974.

[03] G. Lesoult, « Solidification, cristallisation et microstructures », Techniques de l’ingénieur, M 58, pp. 1-26.

[04] D. J. Allen, J. D. Hunt, “Discussion of the nucleation and solidification of Al-Ti

alloys”, Met Trans. A, 10A, p.1389, 1979.

[05] H. D. Brody and M. C. Flemings, “Solute Redistribution in Dendritic Solidification”, Transactions of the metallurgical society of AIME. Vol 236, (1966), p. 615.

[06] P. Prescott, F. Incropera, “Convection heat and mass transfer in alloy solidification”, Advances in Heat Transfer, Vol 28, pp. 231-337, 1996.

[07] J. R. Sarazin, A. Hellawell, “Channel formation in Pb-Sn, Pb-Sb and Pd-Sn-Pb alloy

ingots and comparison with the system”, Metallurgical Transactions A19 (1988), p.

1861-1871.

[08] P. Lehmann, G. Lesoult, S. Denis, « Ségrégations héritées de la solidification dans les

matériaux de structure : mécanisme de formation et conséquences sur les traitements thermiques et thermomécaniques», Journées du Programme Matériaux, Colloque

d’étape, 13-15 décembre 2000, p. 91-95.

[09] A. F. Giamei, B. H. Kear, "On the nature of freckles in nickel base superalloys" Metall. Trans. Vol 1, pp. 2185-92, 1970.

[10] L. Hachani, B. Saadi, X. D. Wang, A. Nouri, K. Zaidat, A. Belgacem-Bouzida, L. Ayouni-Derouiche, G. Raimondi, Y. Fautrelle, “Experimental analysis of the

solidification of Sn-3 wt.%Pb alloy under natural convection”. Int. J. of Heat and Mass

Transfer Vol 55, (2012), p. 1986-1996.

[11] G. H. Gulliver, “Metallic Alloy: their structure and constitution”, London, Griffin, 1922.

[12] E. Scheil, “Bemerkungen zur Schichtkristallbildung”, Z Metallforschung.Vol 34, (1942), p. 70.

[13] T. W. Clyne and W. Kurz, “Solute Redistribution during Solidification with Rapid

Solid State Diffusion”, Met Trans. Vol 12A, (1981), p. 965.

[14] S. Kobayashi, “Solute Redistribution during Solidification with Diffusion in Solid

Phase: A Theoritical Analysis”, Journal of crystal growth. Vol 88, (1988), p. 87.

[15] J. D. Hunt, “Steady-state columnar and equiaxed growth of dendrites and eutectics”, Mater. Sci. Eng. Vol 65. (1984).p. 75.

[16] M.C. Flemings and G.E. Nereo, “Macrosegregation: Part 1”, Trans. Met. Soc. AIME, Vol 239, 1967, p 1449–1461

-50-

[17] R. Mehrabian, M. Keane, and M.C. Flemings, “Interdendritic Fluid Flow and

Macrosegregation: Influence of Gravity”, Metall. Trans., Vol 1, 1979, p 1209–1220

[18] Ch. Beckermann, “Macrosegregation”, ASM Handbook, Vol 15, 2008, p 348-352 [19] D. R. Poirier, “Permeability for Flow of Interdendritic Liquid in Columnar-Dendritic

Alloys”, Metall. Trans. B, Vol 18, 1987, p 245–255

[20] I. Ohnaka and M. Matsumoto, “Computer Simulation of Macrosegregation in Ingots”, Tetsu-to-Hagane (J. Iron Steel Inst. Jpn.), Vol 73, 1987, p 1698–1705

[21] J.S. Kirkaldy and W.V. Youdelis, “Contribution to the Theory of Inverse

Segregation”, Trans. Met. Soc. AIME, Vol 212, 1958, p 833–840

[22] M.C. Schneider, J.P. Gu, C. Beckermann, W.J. Boettinger, and U.R. Kattner, “modelling of Micro- and Macrosegregation and Freckle Formation in Single-Crystal

Nickel-Base Superalloy Directional Solidification”, Metall. Mater. Trans. A, Vol 28,

1997, p 1517–1531

[23] Ch. Beckermann, “Modelling of Macrosegregation: Applications and Future Needs”, Int. Mater. Rev., Vol 47, 2002, p 243–261

[24] M.C. Flemings, “Principles of Control of Soundness and Homogeneity of Large

Ingots”, Scand. J. Metall., Vol 5, 1976, p 1–15

[25] G. Lesoult, “Macrosegregation in Steel Strands and Ingots: Characterization,

Formation and Consequences”, Mater. Sci. Eng. A, Vol 413–414, 2005, p 19–29

[26] J. P. Gu and C. Beckermann, “Simulation of Convection and Macrosegregation in a

Large Steel Ingot”, Metall. Mater. Trans. A, Vol 30, 1999, p 1357–1366

[27] A.V. Reddy and C. Beckermann, “Modeling of Macrosegregation due to

Thermosolutal Convection and Contraction Driven Flow in Direct Chill Continuous Casting of an Al-Cu Round Ingot”, Metall. Mater. Trans. B, Vol 28, 1997, p 479–489

[28] J. D. Hunt, "Steady-State Columnar and Equiaxed Growth of Dendrites and

Eutectics", Mater. Sci. Eng. V. 65. (1984). p. 75.

[29] P. D. Grasso, J. M. Dreset and M. Rappaz, “Hot Tear Formation and coalescence

Observations in Organic Alloys”, Journal of metals – electronic edition. Jan (2002).

[30] G. P. Ivantsov, Doklady Akademii Nauk SSSR., Vol 58 (1947), p. 567.

[31] J. S. Langer and H. Muller-Krumbhaar, “Theory of Dendritic Gowth I. II. and III.”, Acta Met Vol 26, (1978), p. 1681.

[32] W. Kurz, B. Giovanola and R. Trivedi, “Theory of Microstructural Development

-51-

[33] W. Kurz and D. J. Fisher, "Dendrite Growth at the Limit of Stability: Tip Radius and

Spacing", Acta Met. Vol 29, (1986), p. 11.

[34] T.Z. Kattamis and M. C. Flemings, "Dendrite Morphology Microsegregation and

Homogeneization of Low-Alloy Steel", (1965), p. 992.

[35] U. Feurer and R. Wunderlin, "fundamentals of solidification", Trans, Tech. Publication LTD. Aedermannsdorf, Switzerland. (1986)

[36] J. Lipton, W. Heinemann and W. Kurz, "Columnar to Equiaxed Transition (CET) in

castings - Part I: Determination of the CET from Cooling Curves", Arch.

Eisenhunttenwes. Vol 55. (1984). p. 195.

[37] S. C. Flood and J. D. Hunt, "Columnar and Equiaxed Growth II. Equiaxed growth

ahead of a columnar front", J. Crystal Growth, 82, (1987), p. 552.

[38] M. Gäumann, R. Trivedi and W. Kurz, "Nucleation Ahead of the Advancing Interface

in Directional Solidification", Mater. Sci. Eng., A226-228, (1997), p. 763.

[39] C. Y. Wang and C. Berckermann, "A Multiphase Solute Diffusion Model for Dendritic

Alloy Solidification", Met. Trans A, Vol 24, (1993), p. 2787.

[40] M. Gaümann, C. Bezençon, P. Canalis and W. Kurz, “Single-Crystal Laser Deposition

of Superalloys : Processing-Microstructure Maps”, Acta Mater, V49, (2001), p. 1051.

[41] Ch.-A. Gandin and M. Rappaz, "A Coupled Finite Element-Cellular Automaton Model

for the Prediction of Dendritic Grain Structures in Solidification Processes", Acta

Metall Mater, Vol 42, (1994), p. 2233.

[42] Ch.-A. Gandin, J.-L. Desbiolles, M. Rappaz and Ph. Thévoz, "A Three-Dimensional

Cellular Automaton-Finite Element Model for the Prediction of Solidification Grain Structures", 30A, (1999), p. 3153.

[43] P. Lehmann, R. Moreau, D. Camel, R. Bolcato, “Modelisation of interdendritic

convection in directional solidification by a uniform magnetic field”, Acta Mater, V.

46, n° 11, (1998), p. 4067-4079.

[44] C. J. Paradies, R. N. Smith and M. E. Glicksman, “The Influence of Convection during

solidification on Fragmentation of the Mushy Zone of a Model Alloy”, Metall. Mater.

Trans. A. Vol 28, (1997), p. 875.

[45] T. Sato, W. Kurz and K. lkawa, “Experiments on Dendrite Branch Detachment in the

Succinonitrile-Camphor Alloy”, Trans Of the Japan institute of metals, Vol 28, (1987),

p. 1012.

[46] K. A. Jackson, J. D. Hunt, D. R. Uhlmann and T. P. Seward, “On the Origin of the

Equiaxed Zone in Castings”, Transaction of the Metallurgical Society of AIME, Vol

236 (1966), p. 149.

[47] S. Liu, S.-Z. Lu and A. Hellawell, “Dendritic Array Growth in the System

NH4Cl-H2O and [CH2CN]2-H2O: The Detachment of Dendrite Side Arms Induced by Deceleration”, J. Crystal Growth, Vol 234, (2002), p. 740.

-52-

[48] J. P. Gu, C. Beckermann and A. F. Giamei, “Motion and Remelting of Dendrite

Fragments during Directional Solidification of a Nickel-Base Superalloy”, Metall.

Mater. Trans. A, Vol 28, (1997), p. 1533.

[49] A. Hellawell, J. R. Sarazin and R. S. Steube, “Channel Convection in Partly Solidified

Systems”, Phil. Trans. R. Soc. Lond. A, V345, (1993), p. 507.

[50] J. Pilling and A. Hellawell, “Mechanical deformation of dendrites by fluid flow”, Metal. Mater. Trans. A, Vol 27, (1996), p. 229.

[51] M.A. Martorano, C. Beckermann, Ch.-A Gandin, “A solutale interaction mechanism

for the Columnar to Equiaxed Transition in alloy solidification”, Metall. Mater. Trans.

A, Vol 25, (2003), p.1657.

[52] A. Badillo, C. Beckermann, “Phase-field simulation of the columnar-to-equiaxed

transition in alloy solidification’’, Acta Mater. Vol 54, (2006), p. 2015-2026.

[53] Thèse de Ghislain QUILLET, « Influence de la convection, naturelle ou forcée, sur

l’apparition des mésoségrégations lors de la solidification des alliages métalliques »,

Institut National polytechnique de Grenoble, 2003.

[54] Thèse de Thomas CAMPANELLA, «Etude de l’effet du brassage électromagnétique

sur les microstructures d’alliages cuivreux», École polytechnique fédérale de

Lausanne, 2003.

[55] Thèse de Guillaume REINHART, « Dynamique de formation de la microstructure de

solidification d’alliages métalliques : caractérisation par imagerie X synchrotron»,

-53-