• Aucun résultat trouvé

Les résultats de cette étude confirment que l’entraînement par intervalles inframaximal est un entraînement approprié pour les individus déjà entraînés en endurance qui souhaitent améliorer davantage leur performance. En effet, six semaines d’entraînement par intervalles inframaximal permettent d’améliorer le VO2max, l’endurance et la puissance de pédalage à VO2max. Cette étude indique aussi que l’entraînement

par intervalles supramaximal à des intensités intermédiaires (115 % PAM) permet d’améliorer le VO2max

autant que l’entraînement par intervalles inframaximal, mais avec près de la moitié du volume d’entraînement. En prime, contrairement à l’entraînement inframaximal, il permet d’améliorer la capacité anaérobie.

L’entraînement par intervalles supramaximal est donc approprié chez des individus entraînés en endurance souhaitant améliorer à la fois leur aptitude aérobie et anaérobie. Toutefois, l’amélioration du VO2max avec

l’entraînement supramaximal semble grandement influencée par le VO2max de départ, de sorte que les

athlètes ayant des VO2max extrêmement élevés pourraient ne pas bénéficier de cette forme d’entraînement.

En somme, tant l’entraînement par intervalles inframaximal que supramaximal sont appropriés pour améliorer les déterminants de la performance chez le sportif d’endurance. Ces deux formes d’entraînement semblent avoir des cibles d’améliorations différentes, ce qui pourrait rendre leur combinaison intéressante.

Bibliographie

1. Hawley, J.A., et al., Training techniques to improve fatigue resistance and enhance endurance

performance. J Sports Sci, 1997. 15(3): p. 325-33.

2. Jacobs, R.A., et al., Determinants of time trial performance and maximal incremental exercise in

highly trained endurance athletes. J Appl Physiol (1985), 2011. 111(5): p. 1422-30.

3. Péronnet, F., G. Thibault, and D.L. Cousineau, A theoretical analysis of the effect of altitude on

running performance. J Appl Physiol, 1991. 70(1): p. 399-404.

4. di Prampero, P.E., Factors limiting maximal performance in humans. Eur J Appl Physiol, 2003. 90(3- 4): p. 420-9.

5. Levine, B.D., VO2max: what do we know, and what do we still need to know? J Physiol, 2008. 586(1):

p. 25-34.

6. Bassett, D.R. and E.T. Howley, Limiting factors for maximum oxygen uptake and determinants of

endurance performance. Med Sci Sports Exerc, 2000. 32(1): p. 70-84.

7. Dempsey, J.A. and P.D. Wagner, Exercise-induces arterial hypoxemia. J Appl Physiol, 1985. 87(6): p. 1997-2006.

8. Gledhill, N., The influence of altered blood volume and oxygen transport capacity on aerobic

performance. Exerc Sport Sci Rev, 1985. 13: p. 75-93.

9. Saltin, B., et al., Fiber types and metabolic potentials of skeletal muscles in sedentary man and

endurance runers. Ann N Y Acad Sci, 1977. 301: p. 3-29.

10. Hollosky, J.O., Biochemical adaptations to exercise: aerobic metabolism. Exerc Sport Sci Rev, 1973.

1: p. 45-71.

11. Saltin, B., Hemodynamic adaptations to exercise. Am J Cardiol, 1985. 55(10): p. 42D-47D. 12. Taylor, C.R. and E.R. Weibel, Learning from comparative physiology, in The Lung: Scientific

Foundations, R.G. Crystal, Editor. 1991, Raven Press: New York, NY, US. p. 1595-1607.

13. Wagner, P.D., H. Hoppeler, and B. Saltin, Determinants of maximal oxygen uptake, in The Lung:

Scientific Foundations, R.G. Crystal, Editor. 1991, Raven Press: New York, NY, US. p. 1585-1593.

14. Noakes, T.D., Physiological models to understand exercise fatigue and the adaptations that predict or

enhance athletic performance. Scand J Med Sci Sports, 2000. 10(3): p. 123-145.

15. Noakes, T.D., The central governor model of exercise regulation applied to the marathon. Sports Med, 2007. 37(4-5): p. 374-377.

16. Hawkins, M.N., et al., Maximal Oxygen Uptake as a Parametric Measure of Cardiorespiratory

Capacity. Medicine & Science in Sports & Exercise, 2007. 39(1): p. 103-107.

17. Péronnet, F., et al., Correlation between ventilatory threshold and endurance capacility in marathon

runners. Med Sci Sports Exerc, 1987. 19(6): p. 610-615.

18. Svedahl, K. and R. MacIntosh, Anaerobic threshold: The concept and methods of measurement. Can J Appl Physiol, 2003. 28(2): p. 299-323.

19. Joyner, M.J. and E.F. Coyle, Endurance exercise performance: the physiology of champions. J Physiol, 2008. 586(1): p. 35-44.

20. Coyle, E.F., et al., Determinants of endurance in well-trained cyclists. J Appl Physiol, 1988. 64(6): p. 2633-2630.

21. Kindermann, W., G. Simon, and J. Keul, The significance of the aerobic-anaerobic transitions for the

determination of work load intensities during endurance taining. Eur J Appl Physiol Occup Physiol,

1979. 42(1): p. 25-34.

22. Faude, O., W. Kindermann, and T. Meyer, Lactate threshold concepts: How valid are they? Sports Med, 2009. 39(6): p. 469-490.

23. Hopker, J.G., et al., The effects of training on gross efficiency in cycling: A review. Int J Sports Med, 2009. 30(12): p. 845-850.

24. Nickleberry, B.L. and G.A. Brooks, No effect of cycling experience on leg cycle ergometer efficiency. Med Sci Sports Exerc, 1996. 28(11): p. 1396-1401.

25. Coyle, E.F., Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol, 2005. 98(6): p. 2191-2196.

26. Hopker, J.G., D. Coleman, and L. Passfield, Changes in cycling efficiency over a competitive season. Med Sci Sports Exerc, 2009. 41(4): p. 912-919.

27. Jeukendrup, A.E., N. Craig, and J.A. Hawley, The bioenergetics of world class cycling. J Sci Med Sport, 2000. 3(4): p. 414-433.

28. Coyle, E.F., et al., Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc, 1992. 24(7): p. 782-788.

29. Jansson, E. and L. Kajiser, Muscle adaptation to extreme endurance training in man. Acta Physiol Scand 1977. 100(3): p. 315-324.

30. Saltin, B. and P.D. Gollnick, Skeletal mucle adaptability: significance for metabolism and

performance, in Handbook of Physiology, A.L. Rowell and J.T. Shepherd, Editors. 2010, American

Physiological Society. p. 555-631.

31. Jacobs, R.D., et al., The effect of cadence on cycling efficiency and local tissue oxygenation. J Strenght Cond Res, 2013. 27(3): p. 637-642.

32. Moseley, L. and A.E. Jeukendrup, The reliability of cycling efficiency. Med Sci Sports Exerc, 2001.

33(4): p. 621-627.

33. Bulbulian, R., J.-W. Jeong, and M. Murphy, Comparison of anaerobic components of the Wingate and

Critical Power tests in males and females. Med Sci Sports Exerc, 1996. 28(10): p. 1336-1341.

34. Baker, U.C., et al., Development of wingate anaerobic test norms for highly-trained women. J Exerc Physiol, 2011. 14(2): p. 68-79.

35. Faria, E.W., D.L. Parker, and I.E. Faria, The science of cycling: Physiology and training - Part 1. Sports Med, 2005. 35(4): p. 285-312.

36. Bulbulian, R., A.R. Wilcox, and B.L. Darabos, Anaerobic contribution to distance running performance

of trained cross-country athletes. Med Sci Sports Exerc, 1986. 18(1): p. 107-113.

37. Esteve-Lanao, J., et al., How do endurance runners actually train? Relationship with competition

performance. Med Sci Sports Exerc, 2005. 37(3): p. 496-504.

38. Seiler, K.S. and G.Ø. Kjerland, Quantifying training intensity distribution in elite endurance athletes: is

there evidence for an ‘‘optimal’’ distribution? Scand J Med Sci Sports, 2006. 16(1): p. 49-56.

39. Laursen, P.B. and D.G. Jenkins, The scientific basis for high-intensity interval training: Optimising

training programmes and maximising performance in highly trained endurance athletes. Sports Med,

2002. 32(1): p. 53-73.

40. Green, H.J., L.L. Jones, and D.C. Painter, Effects of short-term training on cardiac function during

prolonged exercise. Med Sci Sports Exerc, 1990. 22(4): p. 488-493.

41. Rowell, A.L., Human cardiovascular control. 1993, New York, NY, US: Oxford University Press. 500. 42. Fritzsche, R.G. and E.F. Coyle, Cutaneous blood flow during exercise is higher in endurance-trained

humans. J Appl Physiol (1985), 2000. 88(2): p. 738-744.

43. Green, H.J., et al., Metabolic adaptations to training precede changes in muscle mitochondrial

capacity. J Appl Physiol (1985), 1992. 72(2): p. 484-491.

44. Fiskerstrand, A. and K.S. Seiler, Training and performance characteristics among Norwegian

international rowers 1970–2001. Scand J Med Sci Sports, 2004. 14(5): p. 303-310.

45. Costill, D.L., et al., Effects of repeated days of intensified training on muscle glycogen and swimming

performance. Med Sci Sports Exerc, 1988. 20(3): p. 249-254.

46. Londeree, B.R., Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc, 1997. 29(6): p. 837-843.

47. Laursen, P.B., Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports, 2010. 20 Suppl 2: p. 1-10.

48. Mujika, I., et al., Effects of training on performance in competitive swimming. Can J Appl Physiol, 1995. 20(4): p. 395-406.

49. Billat, V., Interval training for performance: A scientific and Empirical Practice. Special

recommendations for middle- and long-distance running. Part I: Aerobic Interval Training. Sports

Med, 2001. 31(1): p. 13-31.

50. Hickson, R.C., H.A. Bomze, and J.O. Hollosky, Linear increase in aerobic power induced by a

strenuous program of endurance exercise. J Appl Physiol, 1977. 42(3): p. 372-376.

51. Essen, B., L. Hagenfeldt, and L. Kajiser, Utilization of blood-borne and intramuscular substrates

during continuous and intermittent exercise in man. J Physiol, 1977. 265(2): p. 489-506.

52. Henriksson, J. and J.J. Reitman, Quantitative measures of enzyme activities in type I and type II

muscle fibres of man after training. Acta Physiol Scand, 1976. 97(3): p. 392-397.

53. Chilibeck, P.D., et al., Higher mitochondrial fatty acid oxidation following intermittent versus

continuous endurance exercise training. Can J Physiol Pharmacol, 1998. 76(9): p. 891-894.

54. Billat, V., Interval training for performance: A scientific and Empirical Practice. Special

recommendations for middle- and long-distance running. Part II: Anaerobic Interval Training. Sports

Med, 2001. 31(2): p. 75-90.

55. Buchheit, M. and P.B. Laursen, High-intensity interval training, solutions to the programming puzzle:

Part I: cardiopulmonary emphasis. Sports Med, 2013. 43(5): p. 313-38.

56. Iaia, F.M., et al., Four weeks of speed endurance training reduces energy expenditure during

exercise and maintains muscle oxidative capacity despite a reduction in training volume. J Appl

Physiol (1985), 2009. 106(1): p. 73-80.

57. Saltin, B., B. Essen, and P.K. Pedersen, Intermittent exercise: its physiology and some practical

applications, in Advances in exercise physiology, E. Jokl, R.L. Anand, and H. Stoboy, Editors. 1976,

Karger Publishers: Basel. p. 23-51.

58. Achten, J. and A.E. Jeukendrup, Heart rate monitoring: applications and limitations. Sports Med, 2003. 33(7): p. 517-538.

59. Groslambert, A. and A.D. Mahon, Perceived exertion: influence of age and cognitive development. Sports Med, 2006. 36(11): p. 911-928.

60. Garcin, M., L. Mille-Hamard, and V. Billat, Influence of aerobic fitness level on measured and

estimated perceived exertion during exhausting runs. Int J Sports Med, 2004. 25(4): p. 270-7.

61. Cabanac, M.E., Exertion and pleasure from an evolutionary perspective, in Psychobiology of physical

activity, E.O. Acevedo and P. Ekkekakis, Editors. 2006, Human Kinetics: Champaign, IL, US. p. 79-

89.

62. Billat, V. and J.-P. Koralsztein, Significance of the velocity at VO2max and time to exhaustion at this

velocity. Sports Med, 1996. 22(2): p. 90-108.

63. Buchheit, M. The 30-15 intermittent fitness test: 10 year review. Myorobie J, 2010. 64. Branch, J.D., R.R. Pate, and S.P. Bourque, Moderate intensity exercise training improves

cardiorespiratory fitness in women. J Womens Health, 2000. 9(1): p. 65-73.

65. Wenger, H.A. and G.J. Bell, The interactions of intensity, frequency and duration of exercise training

in altering cardiorespiratory fitness. Sports Med, 1986. 3(5): p. 346-356.

66. Midgley, A.W., L.R. McNaughton, and M. Wilkinson, Is there and optimal training intensity for

enhancing the maximal oxygen uptake of distance runners? Empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med, 2006. 36(2): p. 117-

132.

67. Egan, B., et al., Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor

coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol, 2010. 588(Pt 10): p. 1779-90.

68. Weston, A.R., et al., Skeletal muscle buffering capacity and endurance performance after high-

intensity interval training by well-trained cyclists. Eur J Physiol Occup Physiol, 1997. 75(1): p. 7-13.

69. Lindsay, F.H., et al., Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc, 1996. 28(11): p. 1427-1434.

70. Westgarth-Taylor, C., et al., Metabolic and performance adaptations to interval training in endurance-

71. Nimmerichter, A., et al., Effects of low and high cadence interval training on power output in flat and

uphill cycling time-trials. Eur J Appl Physiol, 2012. 112(1): p. 69-78.

72. Yeo, W.K., et al., Skeletal muscle adaptation and performance responses to once a day versus twice

every second day endurance training regimens. J Appl Physiol (1985), 2008. 105(5): p. 1462-70.

73. Stöggl, T. and B. Sperlich, Polarized training has greater impact on key endurance variables than

threshold, high intensity, or high volume training. Front Physiol, 2014. 5: p. 33.

74. Acevedo, E.O. and A.H. Goldfard, Increase training intensity effects on plasma lactate, ventilatory

threshold, and endurance. Med Sci Sports Exerc, 1989. 21(5): p. 563-569.

75. Driller, M.W., et al., The effects of high-intensity interval training in well-trained rowers. Int J Sports Physiol Perf, 2009. 4(1): p. 110-121.

76. Adams, O.P., The impact of brief high-intensity exercise on blood glucose levels. Diabetes Metab Syndr Obes, 2013. 6: p. 113-22.

77. Poortmans, J.R. and N. Boisseau, Biochimie des activités sportives. 2 ed. Sciences et pratiques du sport. 2003, Bruxelles, Belgium: de Boeck Université. 585.

78. Midgley, A.W. and L.R. McNaughton, Time at or near VO2max during continuous and intermittent

running: a review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fitness, 2006. 46(1): p. 1-14.

79. Astrand, I., et al., Intermittent muscular work. Acta Physiol Scand, 1960. 48: p. 448-453. 80. Laursen, P.B., M.A. Blanchard, and D.G. Jenkins, Acute high-intensity interval training improves

Tvent and peak power output in highly-trained males. Can J Appl Physiol, 2002. 27(4): p. 336-348.

81. Laursen, P.B., et al., Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strenght Cond Res, 2005. 19(3): p. 527-533.

82. Laursen, P.B., et al., Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc, 2002. 34(11): p. 1801-7.

83. Brooks, G.A., T.D. Fahey, and T.P. White, Exercise physiology: human bioenergetics and its

application. 2nd ed. 1996, CA, US: McGraw-Hill Humanities.

84. Sloth, M., et al., Effects of sprint interval training on VO2max and aerobic exercise performance: A

systematic review and meta-analysis. Scand J Med Sci Sports, 2013. 23(6): p. e341-52.

85. Astorino, T.A., et al., Effect of high-intensity interval training on cardiovascular function, VO2max, and

muscular function. J Strenght Cond Res, 2012. 26(1): p. 138-145.

86. Bailey, S.J., et al., Influence of repeated sprint training on pulmonary O2 uptake and muscle

deoxygenation kinetics in humans. J Appl Physiol (1985), 2009. 106(6): p. 1875-87.

87. Barnett, C., et al., Muscle metabolism during sprint exercise in man: influence of sprint training. J Sci Med Sport, 2004. 7(3): p. 314-322.

88. Bayati, M., et al., A practical model of low-volume high-intensity interval training induces performance

and metabolic adaptations that resemble 'all-out' sprint interval training. J Sports Sci Med, 2011. 10(3): p. 571-576.

89. Burgomaster, K.A., et al., Similar metabolic adaptations during exercise after low volume sprint

interval and traditional endurance training in humans. J Physiol, 2008. 586(1): p. 151-60.

90. Burgomaster, K.A., et al., Six sessions of sprint interval training increases muscle oxidative potential

and cycle endurance capacity in humans. J Appl Physiol (1985), 2005. 98(6): p. 1985-90.

91. MacDougall, J.D., et al., Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol, 1998. 84(6): p. 2138-2142.

92. Macpherson, R.E., et al., Run sprint interval training improves aerobic performance but not maximal

cardiac output. Med Sci Sports Exerc, 2011. 43(1): p. 115-22.

93. McKenna, M.J., et al., Enhanced pulmonary and active skeletal muscle gas exchange during intense

exercise after sprint training in men. J Physiol, 1997. 501(3): p. 703-716.

94. Trilk, J.L., et al., Effect of sprint interval training on circulatory function during exercise in sedentary,

overweight/obese women. Eur J Appl Physiol, 2011. 111(8): p. 1591-7.

95. Whyte, L.J., J.M. Gill, and A.J. Cathcart, Effect of 2 weeks of sprint interval training on health-related

96. Hazell, T.J., et al., 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic

performance. Eur J Appl Physiol, 2010. 110(1): p. 153-60.

97. Metcalfe, R.S., et al., Towards the minimal amount of exercise for improving metabolic health:

beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol, 2012. 112(7):

p. 2767-75.

98. Gist, N.H., et al., Sprint interval training effects on aerobic capacity: a systematic review and meta-

analysis. Sports Med, 2014. 44(2): p. 269-79.

99. Burgomaster, K.A., G.J. Heigenhauser, and M.J. Gibala, Effect of short-term sprint interval training on

human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl

Physiol (1985), 2006. 100(6): p. 2041-7.

100. Gibala, M.J., et al., Short-term sprint interval versus traditional endurance training: similar initial

adaptations in human skeletal muscle and exercise performance. J Physiol, 2006. 575(Pt 3): p. 901-

11.

101. Liljedahl, M.E., Different responses of skeletal muscle following sprint training in men and women. Eur J Appl Physiol Occup Physiol, 1996. 74: p. 375-383.

102. Esfarjani, F. and P.B. Laursen, Manipulating high-intensity interval training: effects on VO2max, the

lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport,

2007. 10(1): p. 27-35.

103. Stepto, N.K., et al., Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc, 1999. 31(5): p. 736-741.

104. Creer, A.R., et al., Neural, metabolic, and performance adaptations to four week of high intensity

sprint-interval training in trained cyclists. Int J Sports Med, 2004. 25(2): p. 92-98.

105. Tschakert, G. and P. Hofmann, High-intensity intermittent exercise: Methodological and physiological

aspects. J Sports Physiol Perform, 2013. 8(6): p. 600-610.

106. Parolin, M.L., et al., Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal

intermittent exercise. Am J Physiol 1999. 277(5 Pt 1): p. E890-900.

107. Christensen, E.H., R. Hedman, and B. Saltin, Intermittent and continuous running. Acta Physiol Scand, 1960. 50: p. 269-286.

108. Hill, D.W., C.S. Williams, and S.E. Burt, Responses to exercise at 92% and 100% of the velocity

associated with VO2max. Int J Sports Med, 1997. 18(5): p. 325-329.

109. Billat, V., et al., Reproducibility of tunning time to exhaustion at VO2max in subelite runners. Med Sci

Sports Exerc, 1994. 26(2): p. 254-257.

110. Rozenek, R., et al., Physiological responses to interval training sessions at velocities associated with

VO2max. J Strenght Cond Res, 2007. 21(1): p. 188-192.

111. Seiler, S. and J.E. Sjursen, Effect of work duration on physiological and rating scale of perceived

exertion responses during self-paced interval training. Scand J Med Sci Sports, 2004. 14(5): p. 318-

325.

112. Jemni, M., et al., Effect of active and passive recovery on blood lactate and performance during

simulated competition in high level gymnasts. Can J Appl Physiol, 2003. 28(2): p. 240-256.

113. Seiler, S. and K.J. Hetlelid, The impact of rest duration on work intensity and RPE during interval

training. Med Sci Sports Exerc, 2005. 37(9): p. 1601-1607.

114. Buchheit, M., et al., Physiological strain associated with high-intensity hypoxic intervals in highly

trained young runners. J Strenght Cond Res, 2012. 26(1): p. 94-105.

115. Kristoffersen, M., et al., Low cadence interval training at moderate intensity does not improve cycling

performance in highly trained veteran cyclists. Front Physiol, 2014. 5: p. 34.

116. Tabata, I., et al., Effects of moderate-intensiy endurance and high-intensity intermittent training on

anaerobic capacity and VO2max. Med Sci Sports Exerc, 1996. 28(10): p. 1327-1330.

117. McArdle, W.D., F.I. Katch, and V.L. Katch, Exercise Physiology: Nutrition, energy and human

performance. 7th ed. Point (Lippincott Williams & Wilkins). 2009, Riverwoods, IL, US: Lippincott

118. Bosquet, L., et al., Effects of tapering on performance: a meta-analysis. Med Sci Sports Exerc, 2007.

39(8): p. 1358-65.

119. Hopker, J., et al., The effect of training volume and intensity on competitive cyclists' efficiency. Appl Physiol Nutr Metab, 2010. 35(1): p. 17-22.

120. Chavarren, J. and J.A.L. Calbet, Cycling efficiency and pedalling frequency in road cyclists. Eur J Appl Physiol, 1999. 80(6): p. 555-563.

121. Millet, G., et al., Influence of ultra-long-term fatigue on the oxygen cost of two types of locomotion. Eur J Appl Physiol, 2000. 83(4-5): p. 376-380.

122. Sahlin, K. and J. Henriksson, Buffer capacity and lactate accumulation in skeletal muscle of trained

and untrained men. Acta Physiol Scand, 1984. 122(3): p. 331-339.

123. Parkhouse, W.S., et al., Buffering capacity in deproteinised human vastus lateralis muscle. J Appl Physiol, 1985. 58(1): p. 14-17.

124. Poole, D.C. and A.M. Jones, Oxygen uptake kinetics. Compr Physiol, 2012. 2(2): p. 933-96. 125. Shepard, R.J., et al., The maximum oxygen intake: An international reference standard of

cardiorespiratory fitness. Bull Wld Hlth Org, 1968. 38: p. 757-764.

126. Ronnestad, B.R., et al., Short intervals induce superior training adaptations compared with long

intervals in cyclists - An effort-matched approach. Scand J Med Sci Sports, 2014. [Epub ahead of print].

127. Helgerud, J., et al., Aerobic High-Intensity Intervals Improve VO2max More Than Moderate Training.

Med Sci Sports Exerc, 2007. 39(4): p. 665-671.

128. Borg, G., Borg's perceived exertion and pain scales. 1998, Champaign, IL, US: Human Kinetics. 104. 129. Rønnestad, B.R., J. Hansen, and S. Ellefsen, Block periodization of high-intensity aerobic intervals

provides superior training effects in trained cyclists. Scand J Med Sci Sports, 2014. 24(1): p. 34-42.

130. Impellizzeri, F.M. and S.M. Marcora, The physiology of moutain biking. Sports Med, 2007. 37(1): p. 59-71.

131. Losnegard, T., H. Myklebust, and J. Hallen, Anaerobic capacity as a determinant of performance in

sprint skiing. Med Sci Sports Exerc, 2012. 44(4): p. 673-81.

132. Issurin, V.B., Block periodization versus traditional training theory: a review. J Sports Med Phys Fitness, 2008. 48(1): p. 65-75.

133. Bompa, T.O. and G. Haff, Periodization: Theory and methodology of training. 5th ed. 2009, Champaign, IL, US: Human Kinetics.

Documents relatifs