• Aucun résultat trouvé

2 CROISSANCE EPITAXIALE

2.6 Conclusion

Nous avons ici présenté les caractéristiques et les conditions de fabrication des matériaux qui composent notre structure bipolaire. Les caractéristiques de ces matériaux, et en particulier leurs propriétés électriques (dopages, mobilités), déterminent les limitations auxquelles nous ferons face par la suite, lors de l'optimisation de la structure de couche.

lors de la croissance de la base, était crucial pour avoir une bonne homogénéité des caractéristiques de nos TBHs, ce qui est nécessaire à la fabrication de circuits sur des surfaces importantes. Par ailleurs, la réalisation de structures TBH plus performantes nécessite une optimisation de la croissance de la base aux très forts niveau de dopage. En particulier, le problème de la passivation du carbone par l'hydrogène devra être étudié en détail, et résolu par la mise au point d'un recuit compatible avec une bonne qualité de matériaux dans la base. Enfin, une méthode précise de contrôle de la gradualité de composition dans la base a été expérimentée.

2.7 Références

1 H.M. Manasevit, "Single-cristal gallium arsenide on insulating substrates", Applied Physics Letters, Vol. 12, 1968, pp. 156-159.

2 A.Y. Cho et J.R. Arthur, "Molecular beam epitaxy", Progress in Solid State Chemistry, Vol. 10, 1975, pp. 157-191.

3 J.F. Morris et H. Fukui, "A new GaAs, GaP, and GaAsxP1–x vacuum deposition technique using arsine and phosphine gas", Journal of Vacuum Science and Technology, Vol. 11, No. 2, 1974, pp. 506-510.

4 N. Kobayashi, J.L. Benchimol, F. Alexandre et Y. Gao, "Substrate temperature dependence of GaAs, GaInAs, and GaAlAs growth rates in metalorganic molecular beam epitaxy", Applied Physics Letters, Vol. 51, 1987, pp. 1907.

5 D.A. Andrews et G.J. Davies, "The influence of growth conditions on the growth rate and composition of GaAs and GaInAs alloys grown by chemical beam epitaxy", Journal of Applied Physics, Vol. 67, 1990, pp. 3187.

6 N. K. Singh, J.S. FoordP.J. Skevington et G.J. Davies, "Growth and MBMS studies of reaction mechanisms for InxGa1-xAs CBE", Journal of Crystal Growth, Vol. 120, 1992, pp. 33.

7 J.-C. Han, J.-I. Song, S.-W. Park et D. Woo, "Growth of ultrahigh carbon-doped InGaAs and its Application to InP/InGaAs(C) HBTs", IEEE Transaction on Electron Devices, Vol. 49, No. 1, pp. 1-6, Janvier 2002.

8 D. Cui, D. Pavlidis et A. Eisenbach, "Characterization of carbon induced lattice contraction of highly carbon doped InGaAs", Proceedings of 12th conference on Indium Phosphide and Related Materials, 2000, pp. 526-529.

9 R.A. Hamm, S. Chandrasekhar, L. Lunardi, M. Geva, R. Malik, D. Humphrey et R. Ryan, "Materials and electrical characteristics of carbon-doped Ga0.47In0.53As using carbontetrabromide by MOMBE for HBT device Appliedications", Journal of Crystal Growth, Vol. 164, 1996, pp. 362-370.

11 C.A. Verschuren*, M.R. Leys, R.T.H. Rongen, H. Vonk et J.H. Wolter, "Morphology of homo-epitaxial vicinal (1 0 0) III–V surfaces", Journal of Crystal Growth, Vol. 200, 1999, pp. 19-31.

12 A. Rudra, J.F. Carlin, M. Proctor et M. Ilegems, "Luminescence and transport properties of high quality InP grown by CBE between 450 and 550°C", Journal of Crystal Growth, Vol. 111, 1991, pp. 589-593.

13 H. Heinecke, B. Baur, H. Höger et A. Miklis, "Growth of high purity InP by metalorganic MBE (CBE)", Journal of Crystal Growth, Vol. 105, 1990, pp. 143-148.

14 D. Caffin, A.-M. Duchenois, F. Héliot, C. Besombes, J.-L. Benchimol et P. Launay, "Base-collector leakage currents in InP/InGaAs double heterojunction bipolar transistors", IEEE Transactions on Electron Devices, Vol. 44, No. 6, 1997, pp. 930-936.

15 S. Blayac, "Transistor bipolaire à double hétérojonctionInP/InGaAs pour circuits de communications optiques à très hauts débits", Thèse de doctorat de l"Université Montpelier 2, 2001.

16 W.-Y. Hwang, M. Micovic, D.L. Miller et M. Geva, "Carbon tetrabromide doping memory effect, incorporation efficiency, and InAlAs/InGaAs heterojunction bipolar transistor application", Journal of Vacuum Science and Technology B, Vol. 14, No. 3, 1996, pp. 2301-2304.

17 J.-L. Benchimol, J. Mba, A.M. Duchenois, B. Sermage, P. Launay, D. Caffin, M. Meghelli et M. Juhel, "CBE growth of carbon doped InGaAs/InP HBTs for 25 Gbit/s circuits", Journal of Crystal Growth, Vol. 188, 1998, pp. 349-354.

18 A. Sibai, F. Ducroquet, K. Hong, D. Cui et D. Pavlidis, "Fourier transform infrared spectroscopy (FTIR), SIMS and Raman scattering of heavily carbon doped MOCVD grown In0.53Ga0.47As", IEEE International Symposium on Compound Semiconductors, 1997, pp. 311 –314.

19 S.A. Stockman, A.W. Hanson et G.E. Stillman, "Growth of carbon-doped p-type InxGa1–xAs (0 < x < 0.53) by metalorganic chemical vapor deposition", Applied Physics Letters, Vol. 60, No. 23, 1992, pp. 2903.

20 S.L. Jackson, J. Baker et G.E. Stillman, "Influence of AsH3 cracking temperature on the H passivation of C acceptors in In0.53Ga0.47As grown by beam epitaxy techniques", Applied Physics Letters, Vol. 69, no. 13, 1996, pp. 1939-1941.

21 J. Mimila-Arroyo, "Burn-in effect on GaInP heterojunction bipolar transistors", Applied Physics Letters, Vol. 83, No. 15, 1994, pp. 3204-3206.

22 J. Mimila-Arroyo, V. Cabrera et S. W. Bland, " Dependence of burn-in effect on thermal annealing of the GaAs:C base layer in GaInP heterojunction bipolar transistors", Applied Physics Letters, Vol. 82, No. 17, 1994, pp. 2910-2912.

23 K. Kurishima, S. Yamajata, H. Nakajima, H. Ito et Y. Ishii, "Performance and stability of MOVPE-grown carbon-doped InP/InGaAs HBTs dehydrogenated by an anneal after emitter mesa formation", Japanese Journal of Applied Physics, Vol. 37, part. 1, No. 3B, 1998, pp. 1353-1358.

24 Y.-J. Chen, J.M. Kuo et B.H. Kear, "De-hydrogenation studies of carbon-doped In0.53Ga0.47As grown by gas-source MBE and their Appliedications to InP/In0.53Ga0.47As HBTs", IEEE International Conference on Indium Phosphide and Related Materials, 2000, pp. 37-40.

25 D. Caffin, "Filière technologique TBH InP/GaInAs pour Appliedication aux systèmes de communications à haut débit", thèse de doctorat de l"Ecole Centrale de Paris, 1996.

26 F. Alexandre, J.L. Benchimol, P. Launay, J. Dangla et C. Dubon-Chevallier, "Modern epitaxial techniques for HBT structures", Solid State Electronics, Vol. 38, No. 9, 1995, pp. 1667-1674.

27 B.W.-P. Hong, J.-I. Song, C.J. Palmstrom, B. Van der Gaag, K-B. Chough et J.R. Hayes, "DC, RF, and noise characteristics of carbon-doped base InP/InGaAs heterojunction bipolar transistors", Transactions on Electron Devices, Vol. 41, No. 1, 1994, pp. 19-25.

28 A. Kroemer, "Heterostructure bipolar transistors: What should we build?", Journal of Vacuum Science and Technology, Vol. B1, 1983, pp. 126-130.

29 K. Kurishima, H. Nakajima, S. Yamahata, T. Kobayashi et Y. Matsuoka, "Effects of a compositionally-graded InxGa1-xAs base in abrupt-mmitter InP/InGaAs heterojunction bipolar transistors", Japanese Journal of Applied Physics, Vol. 34, part 1, no 2B, 1995, pp.

30 S. L. Jackson, M. T. Fresina, J. E. Baker et G. E. Stillman, "High-efficiency silicon doping of InP and In0.53Ga0.47As in gas source and metalorganic molecular beam epitaxy using silicon tetrabromide", Applied Physics Letters, Vol. 64, No. 21, 1994, pp. 2867-2869.

31 S. L. Jackson, S. Thomas, M. T. Fresina, D. A. Ahmari, J. E. Baker et G. E. Stillman, "Silicon doping of InP, GaAs, In0.53Ga0.47As and In0.49Ga0.51P grown by gas source and metalorganic molecular beam epitaxy using a SiBr4 vapor source", IEEE International Conference on Indium Phosphide and Related Materials, 1994, pp. 57-60.