• Aucun résultat trouvé

Chapitre 2. Prélèvements, matériels et méthodes analytiques

7. Conclusion du chapitre 2

Au cours de ce chapitre, nous avons détaillé les méthodologies mises en œuvre pour caractériser les profils verticaux de spéciation en phase aqueuse et la distribution en phase solide de nombreux composants des sédiments de surface. Ces données générales sont essentielles dans un premier temps pour caractériser l’état d’avancement des processus diagénétiques au fur et à mesure de l’enfouissement de la matière organique particulaire, et dans un second temps pour identifier les paramètres clés affectant la dynamique sédimentaire d’As et de Cr. Les outils de

modélisation contribuent à l’interprétation des résultats par l’évaluation de la distribution des différentes espèces en phase aqueuse, mais également par la détermination du niveau de saturation des eaux interstitielles vis-à-vis d’un cortège minéralogique (minéraux arséniés, chromés, sulfurés, etc.).

Si les calculs d’équilibres thermodynamiques peuvent aider à l’interprétation, l’étude expérimentale de la spéciation redox d’As et de Cr reste nécessaire pour bien comprendre le devenir de ces deux éléments sous gradient redox. Des méthodes analytiques ont été spécifiquement développés pour caractériser la distribution des espèces arséniées et chromées présentes dans les eaux interstitielles.

Références bibliographiques

NF T 90-015-2 (1975) Qualité de l'eau - Dosage de l'ammonium - Partie 2 : méthode spectrophotométrique au bleu d'indophénol., pp. 118-122.

AEAP. Bassin hydrographique de la Marque - Occupation des sols (Agence de l'eau Artois- Picardie), 2006.

Allison JD, Brown DS, Kevin J. MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3.0 user's manual: Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency Athens, GA, 1991.

Álvarez-Salgado XA, Miller AEJ. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements. Marine Chemistry 1998; 62: 325-333.

Anschutz P, Dedieu K, Desmazes F, Chaillou G. Speciation, oxidation state, and reactivity of particulate manganese in marine sediments. Chemical Geology 2005; 218: 265-279. Bennett WW, Teasdale PR, Panther JG, Welsh DT, Jolley DF. New Diffusive Gradients in a

Thin Film Technique for Measuring Inorganic Arsenic and Selenium(IV) Using a Titanium Dioxide Based Adsorbent. Analytical Chemistry 2010; 82: 7401-7407. Bennett WW, Teasdale PR, Panther JG, Welsh DT, Jolley DF. Speciation of Dissolved

Inorganic Arsenic by Diffusive Gradients in Thin Films: Selective Binding of AsIII by 3-Mercaptopropyl-Functionalized Silica Gel. Analytical Chemistry 2011; 83: 8293- 8299.

Billon G, Ouddane B, Boughriet A. Artefacts in the speciation of sulfides in anoxic sediments. Analyst 2001a; 126: 1805-1809.

Billon G, Ouddane B, Boughriet A. Chemical speciation of sulfur compounds in surface sediments from three bays (Fresnaye, Seine and Authie) in northern France, and identification of some factors controlling their generation. Talanta 2001b; 53: 971-981. Canfield DE, Raiswell R, Westrich JT, Reaves CM, Berner RA. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology 1986; 54: 149-155.

Chaillou G, Anschutz P, Lavaux G, Blanc G. Rare earth elements in the modern sediments of the Bay of Biscay (France). Marine Chemistry 2006; 100: 39-52.

Charriau A, Lesven L, Gao Y, Leermakers M, Baeyens W, Ouddane B, et al. Trace metal behaviour in riverine sediments: role of organic matter and sulfides. Applied Geochemistry 2011; 26: 80-90.

116 Cooper DC, Morse JW. Extractability of Metal Sulfide Minerals in Acidic Solutions:  Application to Environmental Studies of Trace Metal Contamination within Anoxic Sediments. Environmental Science & Technology 1998; 32: 1076-1078.

Cornwell JC, Morse JW. The characterization of iron sulfide minerals in anoxic marine sediments. Marine Chemistry 1987; 22: 193-206.

Damris M, O'Brien GA, Price WE, Chenhall BE. Fractionation of sedimentary arsenic from Port Kembla Harbour, NSW, Australia. Journal of Environmental Monitoring 2005; 7: 621-630.

Dang DH, Tessier E, Lenoble V, Durrieu G, Omanović D, Mullot J-U, et al. Key parameters controlling arsenic dynamics in coastal sediments: An analytical and modeling approach. Marine Chemistry 2014; 161: 34-46.

Frayret J, Mermet J-M, Paucot H. ICP-OES : couplage plasma induit par haute fréquence – spectrométrie optique: Ed. Techniques Ingénieur, 2012.

Gorny J, Dumoulin D, Lesven L, Noiriel C, Madé B, Billon G. Development and application of a HPIC-ICP-MS method for the redox arsenic speciation in river sediment pore waters. Journal of Analytical Atomic Spectrometry 2015a; 30: 1562-1570.

Gorny J, Lesven L, Billon G, Dumoulin D, Noiriel C, Pirovano C, et al. Determination of total arsenic using a novel Zn-ferrite binding gel for DGT techniques: Application to the redox speciation of arsenic in river sediments. Talanta 2015b; 144: 890-898.

Gustafsson J. Visual MINTEQ ver. 3.0. KTH Department of Land and Water Resources Engineering, Stockholm, Sweden. Based on de Allison JD, Brown DS, Novo-Gradac KJ, MINTEQA2 ver 2011; 4: 1991.

Haese R, Schramm J, Van Der Loeff MR, Schulz H. A comparative study of iron and manganese diagenesis in continental slope and deep sea basin sediments off Uruguay (SW Atlantic). International Journal of Earth Sciences 2000; 88: 619-629.

Harper MP, Davison W, Zhang H, Tych W. Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes. Geochimica et Cosmochimica Acta 1998; 62: 2757-2770.

He YT, Wilson JT, Wilkin RT. Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater. Environmental Science & Technology 2008; 42: 6690-6696.

Jang M, Hwang JS, Choi SI, Park JK. Remediation of arsenic-contaminated soils and washing effluents. Chemosphere 2005; 60: 344-354.

Keon NE, Swartz CH, Brabander DJ, Harvey C, Hemond HF. Validation of an Arsenic Sequential Extraction Method for Evaluating Mobility in Sediments. Environmental Science & Technology 2001; 35: 2778-2784.

Kostka JE, Luther GW. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica et Cosmochimica Acta 1994; 58: 1701-1710.

Lesven L. Devenir des éléments traces métalliques au sein du sédiment, un compartiment clé de l’environnement aquatique Ecole doctorale des SMRE Université de Lille 1, 2008. Lesven L, Gao Y, Billon G, Leermakers M, Ouddane B, Fischer JC, et al. Early diagenetic

processes aspects controlling the mobility of dissolved trace metals in three riverine sediment columns. Science of The Total Environment 2008; 407: 447-459.

Lesven L, Lourino-Cabana B, Billon G, Proix N, Recourt P, Ouddane B, et al. Water-Quality Diagnosis and Metal Distribution in a Strongly Polluted Zone of Deûle River (Northern France). Water, Air, and Soil Pollution 2009; 198: 31-44.

Lourino-Cabana B, Billon G, Lesven L, Sabbe K, Gillan DC, Gao Y, et al. Monthly variation of trace metals in North Sea sediments. From experimental data to modeling calculations. Marine pollution bulletin 2014; 87: 237-246.

Merkel BJ, Planer-Friedrich B, Nordstrom D. Groundwater geochemistry. A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems 2005; 2.

Pansu M, Gautheyrou J. Handbook of soil analysis: mineralogical, organic and inorganic methods: Springer Science & Business Media, 2007.

Pansu M, Gautheyrou J, Loyer J-Y. Soil analysis: sampling, instrumentation and quality control: AA Balkema, 2001.

Paucot H. ICP-MS: couplage plasma induit par haute fréquence–spectrométrie de masse: Ed. Techniques Ingénieur, 2010.

Paul CJ, Ford RG, Wilkin RT. Assessing the selectivity of extractant solutions for recovering labile arsenic associated with iron (hydr)-oxides and sulfides in sediments. Geoderma 2009; 152: 137-144.

Rauret G, F. Lopez-Sanchez J, Sahuquillo A, Rubio R, Davidson C, Ure A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring 1999; 1: 57-61.

Ruban V, López-Sánchez J, Pardo P, Rauret G, Muntau H, Quevauviller P. Development of a harmonised phosphorus extraction procedure and certification of a sediment reference material. Journal of Environmental Monitoring 2001; 3: 121-125.

Schecher WD, McAvoy DC. MINEQL+: a software environment for chemical equilibrium modeling. Computers, Environment and Urban Systems 1992; 16: 65-76.

Tessier E. Diagnostic de la contamination sédimentaire par les métaux/métalloïdes dans la Rade de Toulon et mécanismes contrôlant leur mobilité. Université de Toulon et du Var, 2012. Webb JA, Keough MJ. Measurement of environmental trace-metal levels with transplanted mussels and diffusive gradients in thin films (DGT): A comparison of techniques. Marine pollution bulletin 2002; 44: 222-229.

Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta 2001; 436: 309-323.

Zhang H, Davison W. Performance Characteristics of Diffusion Gradients in Thin Films for the in Situ Measurement of Trace Metals in Aqueous Solution. Analytical Chemistry 1995; 67: 3391-3400.

Zhang H, Davison W. Diffusional characteristics of hydrogels used in DGT and DET techniques. Analytica Chimica Acta 1999; 398: 329-340.

Zhang H, Davison W, Gadi R, Kobayashi T. In situ measurement of dissolved phosphorus in natural waters using DGT. Analytica Chimica Acta 1998; 370: 29-38.

118

Chapitre 3. Développement d’outils