• Aucun résultat trouvé

1.3 Organisation du mémoire

2.1.2 Capteurs extéroceptifs

Les différents capteurs présentés jusqu’ici sont ceux principalement utilisés pour renseigner l’état du véhicule. Les suivants rentrent, quant à eux, dans la catégorie des extéroceptifs. Les utiliser induit bien souvent de suivre des objets de l’environ- nement afin d’obtenir une information de déplacement. Généralement, ces données sont stockées dans ce qui est appelé une carte. Celle-ci peut être construite et utilisée en temps réel ou être fournie au véhicule et exploitée par l’algorithme de localisation. Parmi ceux présentés, le GPS fait figure d’exception puisqu’il fournit des informa- tions absolues et non relatives.

2.1.2.1 GPS

Le GPS (Global Positioning System) est très certainement le capteur de position- nement le plus populaire. Ce système de localisation par satellites permet d’obtenir une position absolue dont la précision varie en fonction du nombre de satellites dis- ponibles. Le principe de fonctionnement est le suivant : des satellites parfaitement localisés transmettent en permanence leur position ainsi que la date associée à celle- ci. Un récepteur décode les signaux reçus et peut ainsi estimer, par triangulation, sa position sur la planète.

Créé à des fins militaires, le système GPS s’est ensuite ouvert aux civils avec des précisions volontairement dégradées. En 2000, cette contrainte a été levée permettant ainsi d’atteindre une précision d’une dizaine de mètres. Cela s’avère généralement suffisant comme aide à la navigation, d’autant plus que la position est généralement corrigée par la mise en correspondance avec la route. La dénomination de GPS est quelque peu trompeuse puisque plusieurs systèmes du même acabit existent. On peut citer GLONASS, Beidou et Galileo (qui n’est pas encore opérationnel) qui sont les équivalents russe, chinois et européen du système GPS américain. Ceux-ci offrent une précision similaire au GPS, voire même légèrement meilleure sous certaines conditions dans le cas de Galileo. Quelque soit le système de positionnement utilisé, il est important de noter que la qualité de la localisation fournie dépend du nombre de satellites disponibles.

Pour des applications visant à la conduite de manière autonome, cette précision est loin d’être suffisante. Des solutions, toujours basées sur les GPS, permettent d’améliorer ce point. Les GPS RTK (Real Time Kinematic) utilisent une station

terrestre dont la position est parfaitement connue. Celle-ci envoie les correctifs à appliquer au récepteur GPS afin d’améliorer la précision (voir figure 2.1). Cela per- met d’obtenir des positions justes au centimètre près. Néanmoins, ces systèmes sont extrêmement onéreux. Ces capteurs sont souvent utilisés comme vérité terrain afin de quantifier la justesse de résultats de localisation.

Figure 2.1 – Fonctionnement d’un GPS RTK avec la correction par la station

La localisation absolue fournie par des GPS bas coûts, bien qu’imprécise rend beaucoup plus facile le travail coopératif puisque toutes les positions sont données dans un même référentiel. Néanmoins, les GPS souffrent d’autres désavantages. Les deux principaux sont les multitrajets et les pertes du signal dans des environnements cloisonnés. Dans le premier cas, les signaux émis par les satellites sont réfléchis par des bâtiments au lieu d’être reçus directement par le GPS. Ainsi, le temps de vol est allongé et l’estimation de la position est biaisée. Ce phénomène est dangereux car le récepteur n’est pas conscient de cette erreur de positionnement : il y a perte de l’intégrité (la position réelle du véhicule n’est pas située dans l’incertitude de mesure). Des solutions palliatives existent néanmoins afin de contrer ce problème comme la technologie RAIM (Receiver Autonomous Integrity Monitoring) qui utilise la redondance d’information pour lever l’ambiguïté.

Le deuxième cas est différent. Il correspond à la perte du signal GPS à cause d’un environnement qui masque les satellites. Cela apparaît souvent en milieu urbain à cause des bâtiments. On parle de canyon urbain. Une vue schématique de ces deux problèmes est donnée en figure 2.2.

(a) Erreur de positionnement à cause de multitra- jets (ligne réfléchie en pointillés)

(b) Perte du positionnement à cause d’un ca- nyon urbain

Figure2.2 – Problèmes affectant les GPS

2.1.2.2 Caméra

Les caméras commencent à occuper l’habitacle de nos voitures depuis quelques années maintenant. Elles ont un faible coût et fournissent beaucoup de données. L’information visuelle étant celle sur laquelle l’humain se base le plus, il est naturel de s’orienter vers ces capteurs pour des applications de localisation. Le principe est souvent le suivant : extraire des objets statiques dans l’image qui soient facilement reconnaissables et les suivre. En mesurant les écarts dans l’image entre les positions successives des objets, il est possible de déduire le déplacement du véhicule. L’intérêt majeur des caméras est de fournir beaucoup d’informations qui, regroupées en sous- ensembles de pixels, sont assez facilement différentiables.

Parmi les contraintes de ces capteurs, il faut tout de même noter une phase d’étalonnage. Celle-ci permet de passer les informations de l’image, exprimées en pixels, dans un repère métrique plus classique. Cette étape est essentielle pour pou- voir mesurer les déplacements du véhicule. Les paramètres permettant d’inférer ce changement de repère sont appelés paramètres intrinsèques de la caméra. En plus de ceux-ci, on mesure généralement la position de la caméra par rapport au véhi- cule afin de pouvoir coupler les informations visuelles avec des données provenant d’un autre capteur. Ce nouveau changement de repère est régi par les paramètres extrinsèques de la caméra. Ceux-ci sont aussi estimés durant la phase d’étalonnage. Cette dernière sert aussi à estimer la distorsion qui affecte l’image (voir figure 2.3). Ce défaut optique, s’il n’est pas pris en compte, peut conduire à des problèmes de suivi.

Les caméras sont grandement affectées par les conditions météorologiques. En effet, une forte pluie, un soleil éclatant ou encore des chutes de neige rendent le suivi d’objets plus difficile. Ce ne sont pas les seuls aspects ayant un impact sur la qualité

(a) Distorsion de type barillet (b) Distorsion de type croissant

Figure2.3 – Schématisation des effets de la distorsion

de l’image. On peut par exemple citer : le flou, la résolution du capteur, le temps de prise de vue et de saturation, etc. Les algorithmes construits doivent être robustes afin de résister à de telles conditions.

L’utilisation d’une unique caméra pose le problème de l’estimation de la distance des objets. À partir d’une seule image, la profondeur ne peut être déterminée. C’est pourquoi une paire stéréoscopique (deux caméras) est souvent utilisée. Celle-ci per- met de trianguler la position d’un objet dès lors qu’il apparaît dans le champ de vue des deux caméras. Un compromis doit être fait sur l’écart entre les caméras : plus elles sont éloignées, plus l’estimation sera précise (parallaxe suffisante) et à l’inverse plus elles sont proches et plus le champ recouvrant nécessaire à l’estimation de la profondeur sera important. L’étalonnage joue un rôle clef pour une paire stéréo- scopique car il permet de synchroniser les deux caméras afin qu’elles délivrent des images sur la même base de temps. Grâce à ce procédé, les informations extraites dans chaque caméra peuvent être comparées.

2.1.2.3 Télémètre laser

Les télémètres laser, souvent abrégés LRF pour Laser RangeFinders, sont une alternative intéressante aux caméras puisqu’ils fournissent directement la distance des objets par rapport au capteur. Le principe est simple : un faisceau laser est émis sur un miroir rotatif permettant ainsi de balayer l’environnement de 90 à 270˚en fonction du télémètre. Le faisceau laser est réfléchi dès lors qu’un obstacle est percuté. Au retour, le temps de vol est mesuré et ainsi, la distance de l’obstacle peut être connue. La figure 2.4 propose un schéma de fonctionnement simplifié d’un LRF.

Le télémètre laser généralement employé dans la robotique mobile fournie une seule nappe et permet ainsi de n’avoir des informations que sur un seul plan. Ce cap- teur reste cependant assez cher même si la précision des données est très bonne. La résolution du télémètre laser peut également être problématique. Celle-ci est généra- lement de l’ordre de quelques points par degré. Reconnaître des objets préalablement

(a) (b)

Figure 2.4 – Schéma de fonctionnement simplifié d’un télémètre laser

détectés devient alors plus difficile puisqu’ils seront uniquement identifiables grâce à faible nombre de points.

Des télémètres laser à plusieurs nappes existent, permettant ainsi d’avoir une information de hauteur, tout en augmenter la quantité de données. Plus récemment, de nouveaux LRF ont fait leur apparition. Leur intérêt réside dans la possibilité d’avoir des informations 3D sur 360˚. Toutefois, la quantité de données à traiter est telle qu’il est difficile d’utiliser ce capteur en temps réel. Son prix est aussi très élevé limitant de fait les applications dans lesquelles il est employé. Enfin, la construction d’une carte nécessite que l’on puisse reconnaître des endroits déjà cartographiés. Avec les données fournies par ces capteurs, des plans et des droites 3D sont généra- lement utilisées, ce qui rend la tâche compliquée.

2.1.2.4 Radar

Le radar est très peu employé dans le domaine de la localisation. Pourtant, celui- ci n’est que très peu affecté par les conditions météorologiques ou les conditions de luminosité, ce qui est un avantage majeur par rapport à la caméra ou au télémètre laser.

(a) Laser 3D Velodyne (b) Exemple d’image laser 3D

Figure 2.5 – Laser 3D

Comme le télémètre laser, il s’agit d’un capteur de distance. Son principe est simple : une onde de haute énergie est émise et est réfléchie par les surfaces percutées. Le retour de l’écho va permettre de mesurer la distance à la surface et ainsi de cartographier l’environnement. Dans certains cas, ce capteur peut offrir une vue à 360˚des alentours. En revanche, sa rotation est souvent lente, entraînant ainsi un important phénomène de distorsion dans les images radar [Vivet 2011].

Par ailleurs, le type de surface sur laquelle est réfléchie l’onde influe sur les résultats obtenus et peut ainsi créer des décalages importants avec la réalité. Il s’agit du speckle. Ce dernier peut générer des obstacles inexistants ou, au contraire, en faire disparaître. Ces capteurs demeurent assez coûteux, au même titre que les télémètres laser. Enfin, le même problème de reconnaissance dans la carte évoqué pour les capteurs télémétriques se pose ici aussi. En effet, le speckle et les effets de flou dans la réponse complexifient la tâche de mise en correspondance des informations.