• Aucun résultat trouvé

16 Application pour le probl`eme de s´elections

Dans le document Contents 1 (Page 178-190)

In this section, we are interested in finding some conditions for a multifunctionF to have a selectionf with the same subdifferential.

Proposition 16.1 Let F:X→→Z be a convex continuous multifunction with Dom F = X and assume that Z+ has a compact base. Then F has a convex con-tinuous selection f:X →Z with f(x) =∂F(x)for all x in X if and only if F(x)has an ideal minimum for all x∈X and there exists k in Z such that

∀x∈X, f(x) = IMIN(F(x)) +k.

Proof. IfF has a convex continuous selectionf, then from [90] Theorem 4.3 for anyxin X, f(x) is nonempty and thus F(x) is nonempty. This implies that IMIN(F(x))= for all x in X. Let us remark that if Z+ has a compact base then Z+ is normal. Since F is convex and continuous from Proposition 15.3, the mapping m:x )→ IMIN(F(x)) is continuous, convex and

IMIN(F(x)) =F(x), for all x∈X Thus, there exists k in Z such that for all x

f(x) = IMIN(F(x)) +k.

The converse implication is obtained thanks to the convexity and continuity of the selection x)→IMIN(F(x)) and the fact that IMIN(F(x)) =F(x) for all x. $ Proposition 16.2 Under the assumptions of Proposition 16.1, we obtain a convex contin-uous selection f:X →Z of the multifunction F such that F(x) =>f(x) for all x∈ X, if and only if for all x∈X we have F(x) =>F(x), F(x)has an ideal minimum and

f(x) = IMIN(F(x)) +k.

Proof. Iff is a selection for the multifunctionF which has the required properties, then

>f(x) = ∅, for all x in X (f is continuous and convex and the main result of Zowe [90]

implies that f(x)=∅, ∀x∈X and that f(x)⊂∂>f(x)).

As a result,F(x)= which implies that IMIN(F(x))=∅, ∀x∈X.

From the equalityF(x) =>f(x), valid for every x∈X, we obtain that

z◦∂>f(x)⊆∂(z◦F)(x), ∀x∈X, ∀z ∈Z+ (89).

For all z ∈Z+ \ {0}, from [38] we have

(z◦f)(x)⊆z◦∂f(x)⊆z◦∂>f(x)⊆∂(y◦F)(x), ∀x∈X.

Hence we have

(z◦f)(x) =(z◦F)(x), ∀x∈ X.

Relation (97) implies that f(x) >f(x). From Remark 15.4 we know that f(x) =

f(x), ∀x ∈X and sincef(x)⊆∂>f(x)∀x∈ X we get that f(x) =>f(x), ∀x∈X.

Finally we haveF(x) =f(x), ∀x∈Xwhich implies thatf(x) = IMIN(F(x))+k, ∀x∈ X. The converse implication is obvious, because the application f:x )→ IMIN(F(x)) +k is convex, continuous andF(x) =f(x) =>f(x), ∀x∈X. $ Remark 16.1 From proposition 4.6 we derive that if the ordering relation is not total, under the hypothesis of the precedent proposition, it does not exists a convex continuous selectionf for a convex continuous multifunctionF with F(x) = >f(x) for all x∈X.

We’ll say that a functionf:X →ZisZ+-continuous ifz◦f is a real continuous function, for all z ∈Z+. It is ob vious that iff is continuous thenf isZ+-continuous. In [78] we meet the demicontinuous function which has the property that it isZ+-continuous but it may be not continuous.

Proposition 16.3 Let X, Z be two reflexive Banach spaces, the ordering coneZ+ having a compact base and F:X −−→−→ Z a convex, continuous multifunction with DomF =X. Under this assumptions, F has a convex, Z+-continuous selection f such that F(x) =f(x)for all x∈X if and only if F(x) has Z+-minimum for all x∈X and there exist kz ∈Z+ with z◦f(x) = IMIN(z◦F(x)) +kz, for all z ∈Z+, x∈X.

Proof. If F has a selection f with the required properties, then for all x X, we have

f(x)=and thusF(x)=. This implies thatz◦F(x) has minimum denotedmz(x) for allz ∈Z+ and x∈X. Since F(x) =f(x) from [38] we have that

z ◦f(x) =z◦∂f(x)⊆∂z◦F(x).

Now, from the convexity and from the continuity of F we obtain that z F is a real convex continuous multifunction and thus mz is a convex, continuous real function with

mz(x) = z F(x), for all x X and z Z+. From the Rockafellar Theorem about the maximal monotonicity of the subdifferential for a real convex, continuous function, we obtain that z ◦f(x) = z F(x) for all x X and there exists kz Z with z ◦f(x) = IMIN(z ◦F(x)) +kz, for all z Z+. Since f(x) F(x), we obtain that kz ∈Z+.

Converslly, if for all x X, z Z+ we have that z ◦F(x) has minimum and if there exists a selectionf andkz ∈Z+ withz◦f(x) = IMIN(z◦F(x)) +kz we shall obtain that

z◦F(x) = z◦f(x) =z◦∂f(x).

Thus,

F(x) = {T ∈ L(X, Z)| ∀z ∈Z+, z◦T ∈∂z◦F(x)}

= {T ∈ L(X, Z)| ∀z ∈Z+, z◦T ∈∂z◦f(x)}

= f(x) =f(x).

Since F is a convex, continuous multifunction, from the equality z◦f(x) = IMIN(z◦F(x)) +kz

true for all x X, z Z+ we obtain that z◦f is a convex continuous function for all z Z+. From Lemma 3.1, f is convex, and thus, F has a selection with the required

properties and the proof is complete. $

Proposition 16.4 Under the same hypothesis like in Proposition 16.3 we obtain a convex continuous selection f with the property that for all x X, F(x) = >f(x) if and only if for all x X, ∂f(x) =>f(x), F(x) has Z+-minimum and there exists kz Z+ with z◦f(x) = IMIN(z◦F(x)) +kz, for all z ∈Z+.

Proof.If there exists a selection with the required properties, we obtain that for allx∈X,

f(x)⊆∂F(x) which implies that z◦f(x)⊆∂z◦F(x). Like in the previous proof, we obtain kz Z+ with z◦f(x) = IMIN(z◦F(x)) +kz, for all z Z+. This implies that f(x) =∂F(x) =>f(x) and the conclusion follows.

The converse implication is obvious by using the previous proposition. $ Remark 16.2 If the order is not total, then it does not exists a convex continuous selection of a multifunction under the assumptions of the Proposition 16.4 such thatF(x) =>f(x), for allx∈X.

References

[1] J.P.Aubin & H.FrankowskaSet Valued Analysis, Systems & Control: Foundations

& Applications, Birkhauser Boston-Basel-Berlin, 1990.

[2] J.P.Aubin, R.B.Vinter,Convex analysis and optimisation, Research notes in math-ematics, 1985.

[3] J.P.Aubin, I.Ekeland,Applied Nonlinear Analysis, John Willey, New York, (1984).

[4] V.Barbu,T.Precupanu, Convexity and optimisation in Banach spaces, Ed. A-cademiei, Bucure¸sti Romania, 1986.

[5] J. Baier, J. Jahn,On subdifferentials of set-Valued maps, J.O.T.A.,100, no.1, 233-240, 1999

[6] J.M. Borwein, Multivalued convexity: a unified approach to equality and inequality constraints, Math. Programming, 13, 163-180, (1977).

[7] ,Proper efficient points for maximization with respect to cones, SIAM J. Control and Opt.,15, 57-63, (1977).

[8] , Continuity and differentiability properties of convex operators, Proc.

London Math. Soc., 44, no 3, 420-444, (1982).

[9] A. Brnstead, R.T.Rockafellar,On the subdifferentiability of convex functions, Proc. A.M.S.,16, 605-612, 1965

[10] J.M. Borwein & H.M.Strojwas, Tangential approximation, Nonlinear Anal., 9, 1347-1366, 1985.

[11] J.P.R. Christensen, Topology and Borel Structure, Math. Studies, 10, Notas de Matematica.

[12] F.H. Clarke,Optimization and nonsmooth analysis, Wiley-Interscience Publication, New-York, 1983.

[13] R. Correa, A. Jofr´e & L. Thibault,Characterization of lower semicontinuous convex functions, Proc. Amer. Math. Soc., 116, no 1, 67-72, (1992).

[14] , Subdifferential Monotonicity as

Character-ization of Convex Functions, Numerical Funct. Anal. and OptimCharacter-ization, 15, no 5-6, 531-535, (1994).

[15] , Subdifferential Characterization of convex-ity, Recent advances in nonsmooth optimization, D.-Z. Du, L. Qi & R.S. Wormersley Eds., World Scientific Publ., 18-23, (1995).

[16] C.Castaing, M.Valadier ”Convex Analysis and Measurable multifunctions”, Lec-tures Notes in Mathematics, no.580, Springer Verlag, NewYork, 1973.

[17] G.Y.Chen, B.D.Craven, A vector variational inequality and optimization over an efficient set, ZOR-Methods and models of Operations Research,34, 1-12, (1990).

[18] M.M.Day ”Normed Linear Spaces”, 3rd ed., Springer-Verlag, NewYork, 1973

[19] S.Dolecki, C.Malivert, Stability of efficient sets: continuity of mobile polarities, Nonlinear Anal. TMA,12, 1461-1486, (1988).

[20] S.Dolecki, C.Malivert, General duality in vector optimization, Optimization 27, 97-119, 1993

[21] C.Durousseau, C.Stamate, M.Th´eraVector subdifferentiability via scalarisation, Preprint LACO, 1998

[22] C.Durousseau, C.Stamate, M.Th´era Une version vectorielle du th´eor`eme de la moyenne de Zagrodny, Preprint LACO, 1999

[23] I.Ekeland, R.Temam,Analyse convexe et problemes variationelles, Dunod, (1973).

[24] C. Gherman, Some kinds of approximate efficient points and its aplications to the vectorial optimisation, An. S¸tiint¸. Univ. “Al. I. Cuza” Ia¸si Sect¸. I a Mat., 50(1994),450-470.

[25] A. G¨opfert, C. Tammer, C. Z˘alinescu, On the vectorial Ekeland’s variational principle and minimal points in product spaces, 1998

[26] S.Helbig, On a new concept for ε-efficiency, Paper presented at Optimization Days 1992, Montreal, Canada, (1992).

[27] J.B. Hiriart-Urruty & L. ThibaultExistence et caract´erisation de diff´erentielles g´en´eralis´eees d’application localment lipschitziennes d’un espace de Banach sparable dans un espace Banach rflexif sparable, C.R.Acad.Sci. Paris,t.290, Srie A, 1091-1094, 1980.

[28] J.B. Hiriart-UrrutyFromconvex to nonconvex optimization, S´eminaire d’analyse convexe, Montpellier, 1989

[29] J.B. Hiriart-Urruty Lipschitz r-continuity of the approximative subdifferentials, Math. Scandinavica,47, 123-134, 1980.

[30] J.B. Hiriart-UrrutySubdifferential calculus using ε-subdifferentials , 1989.

[31] G. Isac & V. Postolic˘a,The best approximation and optimization in locally convex spaces, Verlag Peter Lang, Frankfurt am Main, Germany, 1993.

[32] A. Ioffe, Diff´erentielles g´en´eralis´ees d’application localment lipschitziennes d’un es-pace Banach dans un autre, C.R.Acad.Sci. Paris, t.289, srie A, 637-641, 1979.

[33] G.IsacA variant of Ekeland’s principle for Paretoε-efficiency, in preparation (1994).

[34] G.IsacPareto optimization in infinite dimensional spaces. The importance of nuclear cones. Preprint, Royal Military College of St.Jean, Quebec, Canada (1992).

[35] J.Jahn,A generalization of theoremof Arrow, Barankin and Blockwell, SIAM J. Con-trol and Optimization,26, no.5, 999-1005, (1988).

[36] J.Jahn,Scalarisation in vector optimisation, Math. Programming29, 203-218, (1984).

[37] G.Jameson, Ordered linear space, Lectures Notes in Math., Springer Verlag, (1970).

[38] J. Jahn,Mathematical Vector Optimization in Partially Ordered Linear Spaces, Verlag Peter Lang, Frankfurt am Main, Germany, 1986.

[39] S.S. Kutateladze & A. G. Kusraev, Subdifferentials: Theory and Applications, Kluwer Academic Publishers, 1995.

[40] A.Y.Kruger ,Properties of generalized differentials, Siberian Math. J.,26, 822-832, (1985).

[41] A.Y.Kruger & B.Mordukhowich,Generalized normals and derivatives, and nec-essary optimality conditions in nondifferentiable programming, part 1, Depon. VINTI 408, 1980.

[42] H.C.Lai, L.S.Yang, Strong duality for infinite dimensional vector valued program-ming problems, J.O.T.A.62, 449-466, (1989).

[43] P.J. Laurent, Approximation et Optimisation, Hermann, Paris, 1972.

[44] P.Loridan,ε-solutions in vector minimization problems, Journ. Optimization Theory and applications,43, 265-276, (1984).

[45] D.T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathe-matical Systems, Springer Verlag, Berlin, Germany, 319, 1989.

[46] D.T. Luc,On the maximal monotonicity of subdifferentials, Acta Math. Vietnamica, 18, no 1, 99-106, (1993).

[47] D.T. Luc, N.X. Tan, P.N. Tinh,Convex vector functions and their subdifferential, Acta Math. Vietnamica, 23, no 1, 107-127, (1998).

[48] B. Mordukhowich & Y. Shao,Nonconvex differential calculus for infinite dimen-sional multifunctions, 1995.

[49] B. Mordukhowich & Y. Shao, Differential characterization of covering, metric regularity, and Lipschitz properties of multifunctions between Banach spaces, Nonlinear Anal.

[50] B. Mordukhowich, Generalized differential calculus for nonsmooth and set-valued mappings, Journal of Math. Anal. Appl., 183, no.1, 250-288, (1994).

[51] B.Mordukhowich & Y.Shao, Stability of set-valued mappings in infinite dimen-sions: Point criteria and applications

[52] B. Mordukhowich , Complet characterization of openess, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc.

[53] J.J.Moreau, ”Fonctionelles convexes”, mimeographed Lecture Notes, Seminaire ”E-quations aux d´eriv´ees partielles” Coll´ege de France, 1966.

[54] C. Malivert, J.P. Penot, M. Th´era, Un prolongement du Th´eor`em e de Hahn-Banach, C.R.Acad.Sci.Paris,286 A, 165-168, 1978

[55] M . Th´era, Calcul ε-sousdiff´erentiels des applications convexes vectorielles, C.R.Acad.Sci.Paris,290, 1980

[56] A.B.Nemeth, Between Pareto efficiency and Pareto ε-efficiency, Optimisation 20, 615-637, 1989.

[57] A.B.Nemeth, A nonconvex vector minimization Problem, Nonlin. Anal. Theory, Methods and Applications,10, 669-678, (1986).

[58] N. Papageorgiou, Nonsmooth analysis on partially ordered vector spaces: Part 1-Convex case, Pacific Journ. of Math., 107, no 2, 403-458, (1983).

[59] N. Papageorgiou; Nonsmooth analysis on partially ordered vector spaces: Part 2-Nonconvex case, Clarke’s theory, Pacific Journ. of Math.,109, no 2, 462-495, (1983).

[60] T. Pennanen & J. Eckstein, Generalized jacobians of vector valued convex func-tions, Rutcor Research Report, 6-97, 1997

[61] P.R.Phelps, Pacific J. Math.,77, 523-531, 1978.

[62] R. A. Poliquin, Subgradient monotonicity and convex functions, Nonlinear Anal., 14, no 4, 305-317, (1990).

[63] A.L. Peressini,Ordered topological vector spaces, Harper & Row, New-York–London, 1967.

[64] J.P. Penot & M. Th´era,Semicontinuous mappings in general topology, Archiv. der Math., 38, no 2, 158–166, 1982.

[65] J.P.Penot Polarit´e des applications convexe vectorielles, C.R.Acad.Sci. Paris, 288 419-422, (1979).

[66] V.Postolic˘a, Supernormal cones and existence results for efficient points, Commu-nication to the international conference on differential equations and optimal control, Ia¸si , Romˆania, August 27-September 1, (1990).

[67] T.Precupanu, Duality in best approximation problem, An.S¸t. Univ. ”Al.I. Cuza”, Ia¸si,26, 23-30, (1980).

[68] C. Raffin, Contribution `a l’´etude des programmes convexes d´efinis dans des espaces vectoriels topologiques, Th´ese, Paris, (1969).

[69] T.Reiland,Nonsmooth analysis and optimization on partially ordered spaces, Inter-nat. J. Math. & Mat. Sci.15, nr.1, 65-82, (1992).

[70] R.T.Rockafellar,La th´eorie des sous-gradients et des application `a l’optimisation, La presse de l’Universit´e de Montr´eal, 1979.

[71] Y. Sawaragi & T. Tanino,Duality theory in multiobjective programming, J. Opti-mization Theory Appl.,27, no 4, 509–529, 1979.

[72] Y. Sawaragi, H. Nakayama & T. Tanino,Theory of multiobjective optimization, Academic Press Inc., Orlando, 1985.

[73] H.H. Schaeffer, Banach lattices and positive operators, Springer Verlag, Berlin, 1974.

[74] W. Song, Lagrangian Duality for Minimization of Nonconvex Multifunctions, J.O.T.A.,93, 167-182, 1997.

[75] C.Stamate,Efficient points in vectorial optimization,preprint LACO, 1997.

[76] T.H.Sweetser, Journ. Optim. Th. Appl., 23, 549-562, 1977.

[77] Chr. Tammer A generalization of Ekeland’s variational principle, Optimization, , 1992

[78] T.Tanaka,A new approach to approximation of solutions in vector optimisation prob-lems ”Proceedings of APORS 1994”, 497-504, World Scientific, Singapore, (1995).

[79] T. Tanaka, Generalized quasiconvexities, cone saddle points and minimax theorem for vector valued functions, J. Optimization Theory Appl.,81, no 2, 355–377, 1994.

[80] M . Th´era, Contribution `a l’analyse non-lin´eaire, Th`ese de Doctorat d’Etat, Univer-sit´e Paris I, Panth´eon Sorbonne, 1988.

[81] L. Thibault, Sur les fonctions compactement lipschitziennes et leurs applications : programmation math´ematique, contrˆole optimal, esp´erance conditionnelle, Th`ese de Doctorat d’Etat, Universit´e Montpellier II, 1980.

[82] L. Thibault, The Zagrodny mean value theoreme, Optimization 35, 131-144, 1995 [83] L. Thibault and D. Zagrodny,Integration of subdifferentials of lower

semicontin-uous functions on Banach spaces, J. Math. Anal. Appl. 189, 33-58, 1995

[84] C.Ursescu,Multifunctions with closed graph, Czechoslovak Math. J. 25, 100, 1975 [85] M. Valadier, Sous-diff´erentiabilit´e de fonctions convexes ´a valeurs dans un espace

vectoriel ordonn´e, Math. Scandinavica,30, 65-74, 1972.

[86] D. Zagrodny Approximate mean value theorem for upper subderivative, Nonlinear Anal. Th. Meth. Appl. 12, 1413-1428, 1988

[87] C. Z˘alinescu, A comparison of constraint qualifications in infinite dimensional con-vex programming revisited, to appear in J. Austr. Math. Soc., Ser.B, 1997

[88] C.Z˘alinescu, The Fenchel-Rockafellar duality theory for mathematical program-ming in order-complete lattices and applications, Preprint Series in Mathematics, 45, I.N.C.R.E.S.T., Bucure¸sti, (1980).

[89] C.Z˘alinescuDuality for vectorial nonconvex optimization by convexification and ap-plications, An. S¸t. Univ. ”Al.I. Cuza”, Ia¸si 29, 15-34 (1983).

[90] J. Zowe,Subdifferentiability of convex functions with values in an ordered vector space, Math. Scand.,34, 68–83, 1974.

[91] D.J.White, Epsilon Efficiency, J.Optim. Theory Appl.,49, 319-337, (1986).

[92] K.Yokoyama,ε-Optimality criteria for vector minimization problems via exact penal-ty functions, J. Math. Anal. Appl. 187, 296-305, (1994).

[93] K.Yokoyama,Epsilon Approximate Solutions for Multiobjective Programming Prob-lems J. Math. Anal. Appl.203, 142-149, (1996).

REZUMAT

In 1972, M. Valadier a prezentat ˆın articolul intitulat“Sous-diff´erentiabilit´e des fonctions convexes `a valeurs dans un espace vectoriel ordonn´e” unele generaliz˘ari ale teoremelor lui

Moreau privitoare la subdiferent¸iabilitatea funct¸iilor convexe ¸si continue. Studiul subdiferent¸ibilit˘at¸ii vectoriale mai fusese abordat pˆan˘a la Valadier doar de C. Raffin ˆın cadrul spat¸iilor IRI.

Rezultatele lui Valadier se refer˘a la subdiferent¸iala unei funct¸ii convexe ˆıntre dou˘a spat¸ii vectoriale topologice X et Y dat˘a de:

f(x0) ={T ∈ L(X, Y)| T(x−x0)≤f(x)−f(x0),∀x∈X}.

Teorema principal˘a a acestui articol generalizeaz˘a pentru funct¸iile cu valori ˆıntr-un spat¸iu vectorial topologic ordonat de un con normal ˆınzestrat cu o structur˘a de latice complet ordonat˘a, faptul ca subdiferent¸iala unei funct¸ii convexe ˆıntr-un punct de continuitate este o mult¸ime convex˘a, nevid˘a, echicontinu˘a ˆın L(X, Y). Subacelea¸si ipoteze, el stabile¸ste formulele de leg˘atur˘a (bine cunoscute ˆın cadrul real) ˆıntre subdiferent¸ial˘a si un tip de derivat˘a direct¸ional˘a, introdus˘a de asemenea ˆın acest articol:

f(x0, h) = max{T h, T ∈∂f(x0)}.

Unele propriet˘at¸i de echicontinuitate ce privesc subdiferent¸iala vectorial˘a au fost stabilite ˆın condit¸ii diverse pentru funct¸ie ¸si pentru conul de ordine. Renunt¸ˆand la continuitatea funct¸iei si la normalitatea conului, propriet˘at¸ile au fost verificate ˆın ipoteza c˘a funct¸ia este majorat˘a pe o vecin˘atate a punctului respectiv iar intervalele de ordine sunt m˘arginte.

Studiul subdiferent¸iabilit˘at¸ii vectoriale ˆın cadrul laticilor ordonate a fost continuat de nu-mero¸si matematicieni printre care amintim A.G. Kusraev, S.S. Kutateladze, A.M. Rubinov, N. Papageorgiu, etc. Acesta din urm˘a a dezvoltat reguli de calcul (generalizarea Teoremei Moreau-Rockafellar pentru suma funct¸iilor convexe continue, reguli de calcul pentru com-punerea ¸si supremumul de funct¸ii convexe) precum ¸si o teorie a dualit˘at¸ii vectoriale, similare aceleia existente ˆın cazul real. El a propus apoi o generalizare a subdiferent¸ialei lui Clarke pentru funct¸iile o-Lipschitz cu valori ˆıntr-o latice Banach complet ordonat˘a. Cu aceast˘a ocazie, el a introdus un tip de derivat˘a direct¸ional˘a f(x, h) definit˘a prin

f(x, h) = sup

Cu ajutorul acestei not¸iuni, Papageorgiu a generalizat rezultatele cunoscute pentru funct¸iile lipschitziene reale, a introdus reguli de calcul ¸si a formulat condit¸ii necesare pentru existent¸a subdiferent¸ialei vectoriale.

Tot ˆın cadrul laticilor ordonate, L. Thibault a propus o alt˘a subdiferent¸ial˘a introdus˘a de asemenea cu ajutorul unei derivate direct¸ionale f(x, h) defint˘a cu ajutorul conului tangent a lui Clarke; aceast˘a subdiferent¸ial˘a, definit˘a prin:

Tf(x) ={T ∈ L(X, Y)| T(h) f(x, h),∀h∈X}

a fost utilizat˘a pentru studiul funct¸iilor “strict compact Lipschitz”, o clas˘a de funct¸ii care generalizeaz˘a funct¸iile strict diferent¸iabile ¸si care coincide cu clasa funct¸iilor lipschitziene pentru cazul spat¸iilor de dimensiune finit˘a.

J. Zowe a propus ˆın 1974, ˆın articolul ”Subdifferentiability of convex functions with values in an ordered vector space” o alt˘a manier˘a de studiu a subdiferent¸ialei vectoriale introdus˘a de Valadier, renunt¸ˆand la condit¸ia de latice dar impunˆand condit¸ii suplimentare asupra domeniului funct¸iei. El a demostrat c˘a rezultatul de existent¸˘a enunt¸at de Valadier pentru subdiferent¸iala convex˘a r˘amˆane adev˘arat dac˘aX este un spat¸iu Mackey ¸si interiorul conului dual pentru topologia Mackey este nevid. Acest rezultat este aplicat pentru cazul ˆın care X este un spat¸iu refelxiv iar Y un spat¸in semireflexiv ordonat de un con cu baz˘a slab compact˘a. Rezultatul lui J. Zowe a fost extins de M.M. Day, J. Jahn care trateaz˘a ¸si problema subdiferent¸iabilit˘at¸ii regulate pentru funct¸ii convexe.

Astfel se deschide o alt˘a direct¸ie de studiu a subdiferent¸iabilit˘at¸ii vectoriale prin s-calarizare. Urmarind acest punct de vedere, J.B. Hiriart Urruty ¸si L. Thibault au gen-eralizat subdiferent¸iala lui Clarke pentru funct¸iile local lipschitzienef :X →Y unde Xeste un spat¸iu Banach separabil iar Y un spat¸iu Banach reflexiv separabil. In acest cadru, ei au demonstrat existent¸a unei mult¸imi Γ(f, x0), convexe, ˆınchise maximale cu proprietatea c˘a

∂y◦f(x0) = yΓ(f, x0), pour touty ∈Y. xn→x0 ¸si H este mult¸imea undef este diferent¸iabil˘a ˆın sens Hadamard.

Aceast˘a subdiferent¸ial˘a poate fi privit˘a ca generalizarea subdiferent¸ialei lui Clarke privit˘a ca ˆınf˘a¸sur˘atoarea convex˘a a limitelor gradient¸ilor.

Pentru cazul spat¸iilor de dimensiune finit˘a, F.H. Clarke a utilizat deja un tip de subdife-rent¸ial˘a definit ˆın aceast˘a manier˘a prin ˆınf˘a¸sur˘atoarea convex˘a a matricilor obt¸inute drept limite ale ¸sirurilor de tip (Df(xi))i, unde xi →x0 ¸si Df(xi) este matricea Jacobian˘a clasic˘a (presupunˆınd c˘a ea exist˘a ˆınxi). Este binecunoscut c˘a pentru cazul Y = IR, subdiferent¸iala unei funct¸ii unei funct¸ii convexe coincide cu subdiferent¸iala lui Clarke dar pentru spat¸iile de dimensiune mai mare ca 1, aceast˘a egalitate nu se p˘astreaz˘a dac˘a consider˘am ultimul tip de subdiferent¸ial˘a.

In anii ’80, un alt tip de subdiferent¸ial˘a vectorial˘a se impune, subdiferent¸iala de tip Pareto care permite studiul problemelor de optimizare Pareto ˆın leg˘atur˘a cu propriet˘at¸ile toplogice ale spat¸iului si ale conului de ordine. Rezultate privitoare la aceast˘a subdieferent¸ial˘a au fost obt¸inute de T. Tanino, Y. Sawaragi pentru cazul spat¸iilor de dimensiune finit˘a ¸si ulterior,

A.B. Nemeth, G. Isac, V. Postolic˘a au extins aceste rezultate pentru cazul spat¸iilor de dimensiune infinit˘a.

In anii ’90, B. Mordukhowich a introdus un alt “obiect” utilizat pentru studiul multifunct¸iilor cu grafic ˆınchis. Este vorba de coderivat˘a (care permite de asemenea introducerea unei noi subdiferent¸iale pentru funct¸iile reale), legat˘a de conul normal introdus de K. Kruger ¸si B.

Mordukhowich. Aceast˘a not¸iune permite studiul problemelor de analiz˘a neliniar˘a, control optimal, etc.

Reamintim printre numero¸sii matematicieni care au contribuit la studiul subdiefrent¸iabilit˘at¸ii vectoriale, J. Borwein, J.P. Penot, C. Malivert, M. Th´era, M. Volle, T. Reiland, H. Sweetser, etc.

In fat¸a numeroaselor tipuri de subdiferent¸iale vectoriale amintite, se degaj˘a ˆın mod natural o ˆıntrebare: este posibil de a g˘asi o procedur˘a general˘a de introducere a unei subdiferent¸iale vectoriale de manier˘a a reg˘asi subdiefernt¸ialele precedente drept cazuri par-ticulare?

Teza ˆı¸si propune o tratare general˘a a subdiferent¸iabilit˘at¸ii vectoriale, utilizˆınd cele doua direct¸ii principale de studiu, punctele eficiente ¸si scalarizarea.

Mult¸imile de puncte eficiente aproximative utilizate ˆın prima parte au permis introducerea unui nou tip de dominare ¸si rezultatele obt¸inute referitoare la existent¸a acestor puncte (ˆın special Teorema 1.3) vor fi utilizate ˆın mod sistematic ˆın Capitolul 3 pentru obt¸inerea de reguli de calcul pentru multifunct¸ii.

Aceste rezultate au permis de asemenea introducerea unui nou lagrangian ¸si Teorema 1.3 a fost utulizat˘a pentru generalizarea rezultatelor cunoscute ˆın teoria dualit˘at¸ii pentru spat¸iile de dimensiune finit˘a.

Privitor la multifunct¸ii, teorema lui Michael despre existent¸a unei select¸ii continue pentru o multifunct¸ie s.c.i. cu grafic ˆınchis a sugerat g˘asirea unei select¸ii avˆand aceea¸si subdiferent¸ial˘a ca ¸si multifunct¸ia considerat˘a; ultima parte a tezei este consacrat˘a acestei probleme.

Al doilea capitol trateaz˘a subdiferent¸iabilitatea cu ajutorul scalariz˘arii; noi tipuri de subdiferent¸iale vectoriale sunt introduse, au fost studiate propriet˘at¸ile lor principale precum

¸si leg˘atura cu subdiferent¸ialele vectoriale deja cunoscute.

Printre rezulatele generalizate reg˘asim teorema de medie a lui Zagrodny, teorema lui Correa-Jofr´e-Thibault privitoare la echivalent¸a ˆıntre monotonia subdiferent¸ialei ¸si convexi-tatea funct¸iei, precum ¸si unele rezulate de existent¸˘a, reguli de calcul ¸si propriet˘at¸i de opti-malitate.

In concluzie, putem spune c˘a rezultatele clasice pentru subdiferent¸ialele funct¸iilor reale se pot generaliza ˆın cadrul vectorial pentru subdiferent¸iale convenabile ˆın condit¸ii specifice fiec˘arui caz.

Subdiferent¸ialele de tip Pareto sunt dificil de utilizat din punct de vedere al calculelor dar au avantajul ca pot fi utilizate pentru studiul punctelor eficiente Pareto; r˘amˆane ˆın studiu explicitarea acestor rezultate pentru spat¸ii vectoriale particulare.

Dans le document Contents 1 (Page 178-190)