• Aucun résultat trouvé

CHAPITRE 2: La Métabonomique: une méthode d’analyse statistique des spectres pour

3. Application à la recherche de marqueurs métaboliques caractéristiques de la

4.4 Analyse combinée des données

Nous avons ensuite réalisé la combinaison des données RMN 1H provenant des deux fractions extraites. Comme nous l’avons vu précédemment (§ 2.4.2), cette combinaison passe nécessairement par la transformation de chaque matrice de données en une matrice centrée réduite. La normalisation des données est précédée d’une ANOVA permettant à la fois d’éliminer les signaux correspondant au bruit spectral et aux variables non significativement différentes entre les quatre populations. Afin de ne pas influencer le résultat de l’ACP, la classification des quatre groupes d’échantillons est réalisée avec la méthode du k-means. La représentation des individus selon les composantes principales 1 et 2 est montré sur la figure 2.21. Maigres 10mois Obèses 10mois Obèses 4 mois Maigres 4 mois Maigres 10mois Obèses 10mois Obèses 4 mois Maigres 4 mois CP2 CP1

Figure 2.21: Représentation des individus suivant les composantes principales CP1 et CP2

après l’ACP issue de l’analyse des spectres RMN 1H des fractions hydro- et organo-soluble des extraits de tissu cardiaque. En noir: maigres 10 mois; en bleu: obèses 10 mois ; en rouge: maigres 4 mois et en vert: obèses 4 mois.

L’ACP réalisée sur l’ensemble des données spectrales recueillies à partir du tissu cardiaque nous permet de retrouver la tendance observée à la fois sur les extraits aqueux (à propos du rapport Tau/Cr) et sur les extraits organiques (dans l’ACP). Cette tendance est matérialisée par la flèche sur la figure 2.21. Les rats maigres 4 mois et les rats obèses 10 mois ont un comportement totalement différent. Par contre, les animaux maigres 10 mois et les obèses 4 mois ont un comportement similaire. Alors que les rats SHHF maigres entament les processus métaboliques aboutissant à l’insuffisance cardiaque à 10 mois, les rats SHHF obèses, quant à eux, semblent développer précocement ces mêmes processus, dès l’âge de 4 mois. Cette hypothèse est en accord avec le développement chronologique avéré de l’IC170.

On peut remarquer la présence d’un point du groupe des animaux maigres 4 mois assez écarté des quatre autres. Si l’on réalise l’ACP sans ce point, la tendance observée est conservée voire amplifiée. Nous avons donc décidé de garder malgré tout cette information.

Maigres 4 mois Maigres 10mois Obèses 4 mois Obèses 10 mois CP2 CP1

4.5 Conclusion.

Cette étude métabonomique confirme la précocité de l’insuffisance cardiaque chez le rat obèse. Cette hypothèse pourrait être confirmé en poursuivant l’étude métabolique sur des rats SHHF obèses et maigres à 14 mois. Les modifications métaboliques observées sont en accord avec un remodelage cardiaque qui s’accompagne d’une expansion de la matrice extracellulaire (fibrose)168 et d’une régénération musculaire169. L’analyse transcriptomique des mêmes individus ayant été parallèlement effectuée, nous avons le projet de combiner l’ensemble des données pour les soumettre à une analyse statistique multivariée.

Nous avons utilisé et évalué deux outils: la RMN HR-MAS, méthode d’analyse RMN adaptée à une grande diversité d’échantillons, et la Métabonomique, méthode de traitement statistique des données spectroscopiques pour la recherche de signatures métaboliques. Ces deux outils se sont avérés très puissants mais possèdent, comme tout procédé, certains biais.

Pour la RMN HR-MAS appliquée à l’étude des tissus biologiques, des problèmes principalement pratiques se posent: problèmes de prélèvement, obligation de congeler les échantillons ou encore risque biologique. La sensibilité des sondes HR-MAS, permettant de travailler avec de très faibles quantités de matière, leur donne tout de même un véritable attrait. Les microsondes actuellement proposées sont peut être l’alternative à envisager pour l’étude des tissus biologiques.

Concernant la Métabonomique appliquée aux données RMN, le principal souci que nous avons rencontré se situe au niveau du nombre d’échantillons, celui-ci étant généralement trop faible par rapport au nombre de variables étudiées. Mais l’utilisation des méthodes statistiques multivariées appliquées au grand nombre de données que nous possédons permet un gain de temps très important, par rapport à une analyse quantitative classique, en permettant de cibler certains des métabolites qui pourront ensuite être quantifiés.

L’utilisation de ces deux outils nous a permis de travailler sur une large gamme d’échantillons, que ce soit des animaux, des végétaux, des tissus biologiques ou encore des cellules et sur de nombreux sujets d’études biomédicales allant de l’étude de la néphroprotection par la pargyline, en passant par la recherche de marqueurs métaboliques de la radiorésistance des glioblastomes ou encore les effets de l’obésité chez le rat hypertendu.

1. Desmoulin F, Canioni P, Cozzone PJ. Glutamate-glutamine metabolism in the perfused rat liver: 13C-NMR study using (2-13C)-enriched acetate. FEBS Letters 1985; 185(1): 29-32.

2. Desmoulin F, Cozzone PJ, Canioni P. Phosphorus-31 nuclear-magnetic-resonance study of phosphorylated metabolites compartmentation, intracellular pH and phosphorylation state during normoxia, hypoxia and ethanol perfusion, in the perfused rat liver. European Journal of Biochemistry 1989; 162(1): 151-159.

3. Andrew ER, Bradbury A, Eades RG. Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation. Nature 1959; 183(4678): 1802-1803.

4. Lowe IJ. Free Induction Decays of rotating Solids. Physical Review Letters 1959; 2(7): 285-287.

5. Doskoþilová D, Tao DD, Schneider B. Effect of macroscopic spinning upon linewidth of NMR signals of liquid in magnetically inhomogeneous systems. Czechoslovak Journal of Physics 1975; 25: 202-209.

6. Garroway AN. Magic-Angle Sample Spinning of Liquids. Journal of Magnetic Resonance 1982; 49: 168-171.

7. Canet D, Boubel JC, Canet Soulas E. La RMN, Concepts, méthodes et applications 2ème édition. Paris: Dunod, D.L. 2002.

8. Abraham RJ, Fisher J, Loftus P. Introduction to NMR spectroscopy. John Wiley & Sons Ltd, 1988.

9. Maricq MM, Waugh JS. NMR in rotating solids. Journal of Chemical Physics 1979; 70(7): 3300-3316.

10. Günther H. La spectroscopie de RMN. Paris, Masson. 1993.

11. Chen JH, Enloe BM, Xiao Y, Cory DG, Singer S. Isotropic Susceptibility Shift Under MAS: The Origin of the Split Water Resonances in 1H MAS NMR Spectra of Cell Suspensions. Magnetic Resonance in Medicine 2003; 50: 515-521.

12. Elbayed K, Dillman B, Raya J, Piotto M, Engelke F. Field modulation effects induced by sample spinning: application to high-resolution magic angle spinning NMR. Journal of Magnetic Resonance 2005; 174: 2-26.

13. Merrifield RB. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society 1963; 85: 2149-2154.

14. Wang SS. p-Alkoxybenzyl Alcohol Resin and p-Alkoxybenzyloxycarboonylhydrazide Resin for Solid Phase Synthesis of Protected Peptide Fragments. Journal of the American Chemical Society 1973; 95(4): 1328-1333.

15. Sarin VK, Kent SBH, Tam JPT, Merrifield RB. Quantitative monitoring of solid- phase peptide synthesis by the ninhydrin reaction. Analytical Biochemistry 1981; 117(1): 147-157.

16. Yan B, Kumaravel G. Probing Solid –phase Reactions by Monitoring the IR Bands of Compounds on a Single “Flattened” Resin Bead. Tetrahedron 1996, 52(3): 843-848.

17. Due Larsen B, Christensen DH, Holm A, Zillmer R, Faurskov Nielsen O. The Merrifield Peptide Synthesis Studies by Near-Infrared Fourier-Transform Raman Spectroscopy. Journal of American Chemical Society 1993, 115: 6247-6253.

18. Yan B, Fell JB, Kumaravel G. Progression of Organic Reactions on Resin Supports Monitored by Single Bead FTIR Mirospectroscopy. Journal of Organic Chemistry 1996, 61: 7467-7472.

19. Russell K, Cole DC, McLaren FM, Pivonka DE. Analytical Techniques for Combinatorial Chemistry: Quantitative Infrared Spectroscopic Measurements of Deuterium-Labeled Protecting Groups. Journal of American Chemical Society 1996, 118: 7941-7945.

20. Giralt E, Rizo J, Pedroso E. Applcation of gel phase 13C-nmr to monitor solid phase peptide synthesis. Tetrahedron 1984; 40(20): 4141-4152.

21. Look GC, Holmes CP, Chinn JP, Gallop MA. Methods for Combinatorial Organic Chemistry: The Use of Fast 13C NMR Analysis for Gel Phase Reaction Monitoring. Journal of Organic Chemistry 1994; 59: 7588-7590.

22. Svensson A, Fex T, Kihlberg J. Use of 19F NMR Spectroscopy to Evaluate Reactions in Solid Phase Organic Synthesis. Journal of Organic Chemistry 1994; 59: 7588-7590.

23. Johnson CR, Zhang B. Solid Phase Synthesis of Alkenes Using The Horner- Wadsworth-Emmons Reaction and Monitoring by Gel Phase 31P NMR. Tetrahedron Letters 1995; 36(51): 9253-9256.

24. Stöver HDH, Fréchet JMJ. Direct polarization carbon-13 and proton magic angle spinning NMR in the characterization of solvent-swollen gels. Macromolecules 1989; 22: 1574-1576.

25. Fitch WL, Detre G, Holmes CP, Shoolery JN, Keifer PA. High-Resoluyion in Solid- Phase Organic Synthesis. Journal of Organic Chemistry 1994; 59: 7955-7956.

26. Keifer PA, Baltusis L, Rice DM, Tymiak AA, Shoolery JN. A Comparison of NMR Spectra Resins Using Conventional High-Resolution, Magic-Angle-Spinning, and High-Resolution Magic-Angle-Spinning Probes. Journal of Magnetic Resonance, Series A 1996; 1: 65-75.

27. Rousselot-Pailley P, Maux D, Wieruszeski JM, Aubagnac JL, Martinez J, Lippens G. Impurity Detection in Solid-Phase Organic Chemistry: Scope and Limits of HR MAS NMR. Tetrahedron 2000; 56: 5163-5167.

28. Martins JC, Mercier FAG, Vandervelden A, Biesemans M, Wieruszeski JM, Humpfer E, Willem R, Lippens G. Fine-Tuned Characterization at the Solid/Solution Interface of Organotin Compounds Grafted onto Cross-Linked Polystyrene by Using High- Resolution MAS NMR Spectroscopy. Chemistry: a European Journal 2002; 8: 3431- 3441.

29. Lippens G, Warrass R, Wieruszeski JM, Rousselot-Pailly P, Chessari G. High Resolution Magic Angle Spinning NMR in Combinatorial Chamistry. Combinatorial Chemistry & High Throughput Screening 2001; 4: 333-351.

30. Shapiro MJ, Gounarides JS. High Resolution MAS-NMR in Combinatorial Chamistry. Biotechnology and Bioengineering (Combinatorial Chemistry) 2001; 71(2): 130-148. 31. Yao NH, He WY, Lam, KS, Liu G. Solid-Phase Synthesis of O-Glycosylated NĮ-

Fmoc Amino Acids by High-Resolution Magic Angle Spinning. Journal of Combinatorial Chemistry 2004; 6: 214-219.

32. Chapman D, Oldfield E, Doskoþilová D, Schneider B. NMR in gel and liquid crystalline phospholipids spinning at the ‘magic angle’. FEBS Letters 1972; 25(2): 261-264.

33. Haberkorn RA, Herzfeld J, Griffin RG. High Resolution 31P and 13C Nuclear Magnetic Resonance Spectra of Unsonicated Model Membranes. Journal of the American Chemical Society 1978; 100: 1296-1298.

34. Zhou Z, Sayer BG, Stark RE, Epand RM. High-resolution magic-angle spinning 1H nuclear magnetic resonance studies of lipid dispersions using spherical glass ampoules. Chemistry and Physics of Lipids 1997; 90: 45-53.

35. Forbes J, Husted C, Oldfield E. High-Field, High-Resolution Proton “Magic-Angle” Sample-Spinning Nuclear Magnetic Resonance Spectrosopic Studies of Gel and Liquid Crystalline Lipid Bilayers and the Effects of Cholesterol. Journal of the American Chemical Society 1988; 110: 1059-1065.

36. Adebodun F, Chung J, Montez B, Oldfield E, Shan X. Spectroscopic Studies of Lipids and Biological Membranes: Carbon-13 and Proton Magic-Angle Sample-Spinning Nuclear Magnetic Resonance Study of Glycolipid-Water Systems. Biochemistry 1992; 31: 4502-4509.

37. Gross JD, Costa PR, Dubacq JP, Warschawski DE, Lirsac PN, Devaux PF, Griffin RG. Multidimensional NMR in Lipid Systems. Coherence Transfer through J couplings under MAS. Journal of Magnetic Resonance B 1995; 106: 187-190.

38. Soubias O, Piotto M, Saurel O, Assemat O, Réat V, Milon A. Detection of natural abundance 1H-13C correlations of cholesterol in its membrane environment using a gradient enhanced HSQC experiment under high resolution magic angle spinning. Journal of Magnetic Resonance 2003; 165: 303-308.

39. Cruciani O, Borocci S, Lamanna R, Mancini G, Segre AL. Chiral recognition of dipeptides in phophatidylcholine aggregates. Tetrahedron: Assymetry 2006; 17: 2731- 2737.

40. Davis JH, Auger M, Hodges RS. High Resolution 1H Nuclear Magnetic Resonance of a Transmembrane Peptide. Biophysical Journal 1995; 69: 1917-1932.

41. Jackymek W, Niedziela T, Petersson C, Lugowski C, Czaja J, Kenne L. Structures of the O-Specific Polysaccharides from Yokenella regensburgei (Koserelle trabulsii) Strains PCM 2476, 2477, 2478, and 2494: High-Resolution Magic-Angle Spinning NMR Investigation of the O-Specific Polysaccharides in Native Lipopolysaccharides and Directly on the Surface of Living Bacteria. Biochemistry 1999; 38: 11788-11795.

42. Huster D, Kuhn K, Kadereit D, Waldmann H, Arnold K. 1H High-Resolution Magic Angle Spinning Spectroscopy for the Investigation of a Ras Lipopeptide in a Lipid Membrane. Angewandte Chemie. International Edition 2001; 40(6): 1056-1058.

43. Szymanski CM, St Michael F, Jarrell HC, Li J, Gilbert M, Larocque S, Vinogradov E, Brisson JR. Detection of Conserved N-Linked Glycans and Phase-variable Lipooligosaccharides and Capsules from Campylobacter Cells by Mass Spectrometry and High resolution Magic Angle Spinning NMR Spectroscopy. Journal of Biological Chemistry 2003; 278(27): 24509-24520.

44. Dag S, Niedziela T, Dzieciatkowska M, Lukasiewicz J, Jachymek W, Lugowski C, Kenne L. The O-acetylation patterns in the O-antigens of Hafnia alvei strains PCM 1200 and 1203, serologically related to PCM 1205. Carbohydrate Reserch 2004; 339: 2521-2527.

45. Wattraint O, Sarazin C. Diffusion measurements of water, ubiquinone and lipid bilayer inside a cylindrical nonaporous support: A stimulated echo pulsed-field gradient MAS-NMR investigation. Biochimica et Biophysica Acta 2005; 1713: 65-72.

46. Chauton MS, Størseth TR, Johnsen G. High-resolution magic angle spinning 1H NMR analysis of whole cells of Thallassiosira pseudonana (Bacillariophyceae): Broad range analysis of metabolic composition and nutritional value. Journal of Applied Phycology 2003; 15: 533-542.

47. McNally DJ, Jarrell HC, Li J, Khieu NH, Vinogradov E, Szymanski CM, Brisson JR. The HS:1 serostrain of Campylobacter jejuni has a complex teichoic acid-like capsular polysaccharide with nonstoichiometric fructofuranose branches and O-methyl phosphoramidate groups. FEBS Journal 2005; 272: 4407-4422.

48. Gudlavalleti SK, Szymanski CM, Jarell HC, Stephens DS. In vivo determination of Neisseria meningitidis serogroup A capsular polysaccharide by whole cell high- resolution magic angle spinning NMR spectroscopy. Carbohydrate Research 2006; 341: 557-562.

49. Li W. Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells. Analyst 2006; 131: 777-781.

50. Griffin JL, Bollard M, Nicholson JK, Bhakoo K. Spectral profiles of cultures neuronal and glial cells derived from HR-MAS 1H NMR spectroscopy. NMR in Biomedicine 2002; 15: 375-384.

51. Humpfer E, Spraul M, Nicholls AW, Nicholson JK, Lindon JC. Direct Observation of Resolved Intracellular and Extracellular Water Signals in Intact Human Red Blood Cells Using 1H MAS NMR Spectroscopy. Magnetic Resonance in Medicine 1997; 38: 334-336.

52. Griffin JL, Pole JCM, Nicholson JK, Carmichael PL. Cellular environment and a metabonomic study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning 1H NMR spectroscopy. Biochimica and Biophysica acta 2003; 1619: 151-158.

53. Calabi L, Alfieri G, Biondi L, De Miranda M, Paleari L, Ghelli S. Application of High-Resolution Magic-Angle Spinnig NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents. Journal of Magnetic Resonance 2002; 156: 222-229.

54. Aime S, Bruno E, Cabella C, Colombatto S, Digilio G, Mainero V. HR-MAS of Cells: A “Cellular Water Shift” due to Water-Protein Interactions? Magnetic Resonance in Medicine 2005; 54: 1547-1552.

55. Weybright P, Millis K, Campbell N, Cory DG, Singer S. Gradient, High-Resolution, Magic-Angle Spinning 1H Nuclear Magnetic Resonance Spectroscopy of Intact Cells. Magnetic Resonance in Medicine 1998; 39: 337-344.

56. Bruno E, Digilio G, Cabella C, De Reggi A, Baroni S, Mainero V, Aime S. Water Exchange Across the Erythrocyte Plasma Mambrane Studied by HR-MAS NMR Spectroscopy. Magnetic Resonance in Medicine 2006; 56: 978-985.

57. Cheng LL, Lean CL, Bogdanova A, Wright Jr SC, Ackerman JL, Brady TJ, Garrido L. Enhanced Resolution of Proton NMR Spectra of Malignant Lymph Nodes Using Magic-Angle Spinning. Magnetic Resonance in Medicine 1996; 36: 653-658.

58. Cheng LL, Ma MJ, Becerra L, Ptack T, Tracey I, Lackner A, González RG. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 6408-6413.

59. Barton SJ, Howe FA, Tomlins AM, Cudlip SA, Nicholson JK, Bell BA, Griffiths JR. Comparison of in vivo 1H MRS of human brain tumours with 1H HR-MAS spectroscopy of intact biopsy samples in vitro. Magnetic Resonance Materials in Physics, Biology and Medicine 1999; 8: 121-128.

60. Martinez-Bisbal MC, Marti-Bonmatí L, Piquer J, Revert A, Ferrer P, Llácer JL, Piotto M, Assemat O, Celda B. 1H and 13C HR-MAS spectroscopy of intact bopsy samples ex vivo 1

H MRS study of human high grade gliomas. NMR in Biomedicine 2004; 17: 191-205.

61. Sitter B, Batten T, Hagen B, Arentz C, Skjeldestad FE, Gribbestad IS. Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy. MAGMA 2004; 16: 174-181.

62. Valonen PK, Griffin JL, Lehtimäki KK, Liimatainen T, Nicholson JK, Gröhn OHJ, Kauppinen RA. High-resolution magic-angle-spinning 1H NMR spectroscopy reveals different responses in choline-containing metabolites upon gene therapy-induced programmed cell death in rat brain glioma. NMR in Biomedicine 2005; 18: 252-259.

63. Sitter B, Autti T, Tyynelä J, Sonnewald U, Bathen TF, Puranen J, Santavuori P, Haltia MJ, Paetau A, Polvikoski T, Gribbestad IS, Häkkinen AM. High-Resolution Magic Angle Spinning and 1H Magnetic Resonance Spectroscopy Reval Significantly Altered Neuronal Metabolite Profiles in CLN1 but Not in CLN3. Journal of Neuroscience Research 2004; 77: 762-769.

64. Tsang TM, Griffin JL, Haselden J, Fish C, Holmes E. Metabolic characterization of distinct neuroanatomical regions in rats by magic angle spinning 1H nuclear magnetic resonance spectroscopy. Magnetic Resonance in Medicine 2005; 53: 1018-1024.

65. Griffin JL, Blenkiron C, Valonen PK, Caldas C, Kauppinen RA. High-Resolution Magic Angle Spinning 1H NMR Spectroscopy and Reverse Transcription-PCR Analysis of Apoptosis in a Rat Glioma. Analytical Chemistry 2006; 78: 1546-1552.

66. Lyng H, Sitter B, Bathen TF, Jensen LR, Sundfør K, Kristensen GB, Gribbestad IS. Metabolic mapping by use of high-resolution magic angle spinning 1H MR spectroscopy for assessment of apoptosis in cervical carcinomas. BMC Cancer 2007; 7: 11-22.

67. Ratai EM, Pilkenton S, Lentz MR, Greco JB, Fuller RA, Kim JP, He J, Cheng LL, González RG. Comparisons of brain metabolites observed by HRMAS 1H NMR of intact tissue and solution 1H NMR of tissue extracts in SIV-infected macaques. NMR in Biomedicine 2005; 18: 242-251.

68. Moka D, Vorreuther R, Schicha H, Spraul M, Humpfer E, Lipinski M, Foxall PJD, Nicholson JK, Lindon JC. Magic Angle Spinning Proton Nuclear Magnetic Resonance Spectroscopic Analysis of Intact Kidney Tissue Samples. Analytical Communications 1997; 34: 107-109.

69. Garrod S, Humpfer E, Spraul M, Connor SC, Polley S, Connely J, Lindon JC, Nicholson JK, Holmes E. High-Resolution Magic Angle Spinning 1H NMR Spectroscopic Studies on Intact Rat Renal Cortex and Medulla. Magnetic Resonance in Medicine 1999; 41: 1108-1118.

70. Bollard ME, Garrod S, Holmes E, Lindon JC, Humpfer E, Spraul M, Nicholson JK. High-Resolution 1H and 1H-13C Magic Angle Spinning NMR Spectroscopy of Rat Liver. Magnetic Resonance in Medicine 2000; 44: 201-207.

71. Rooney OM, Troke J, Nicholson JK, Griffin JL. High-Resolution Diffusion and Relaxation-Edited Magic Angle Spinning 1H NMR Spectroscopy of Intact Liver Tissue. Magnetic Resonance in Medicine 2003; 50: 925-930.

72. Duarte IF, Stanley EG, Holmes E, Lindon JC, Gil AM, Tang H, Ferdinand R, Gavaghan McKee C, Nicholson JK, Vilca-Melendez H, Heaton N, Murphy GM. Metabolic Assessment of Human Liver Transplants from Biopsy Samples at the Donor and Recipient Stages Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy. Analytical Chemistry 2005; 77: 5570-5578.

73. Martínez-Granados B, Monleón D, Martínez-Bisbal MC, Rodrigo JM, del Olmo J, Lluch P, Ferrández A, Martí-Bonmatí L, Celda B. Metabolite identification in human liver needle biopsies by high-resolution magic angle spinning 1H NMR spectroscopy. NMR in Biomedicine 2006; 19: 90-100.

74. Moka D, Vorreuther R, Schicha H, Spraul M, Humpfer E, Lipinski M, Foxall PJD, Nicholson JK, Lindon JC. Biochemical classificatin of kidney carcinoma biopsy samples using magic-angle spinning 1H nuclear magnetic resonance spectroscopy. Journal of Pharmaceutical and Biomedical Analysis 1998; 17: 125-132.

75. Tate RR, Foxall PJD, Holmes E, Moka D, Spraul M, Nicholosn JK, Lindon JC. Distinction between normal and renal cell carcinoma kidney cortical biopsy samples using pattern recognition of 1H magic angle spinning (MAS) NMR spectra. NMR in Biomedicine 2000; 13: 64-71.

76. Huhn SD, Szabo CM, Gass JH, Manzi AE. Metabolic profiling of normal and hypertensive rat kidney tissues by hrMAS-NMR spectroscopy. Analytical and Bioanalytical Chemistry 2004; 378: 1511-1519.

77. Bollard ME, Xu J, Purcell W, Griffin JL, Quirk C, Holmes E, Nicholson JK. Metabolic Profiling of the Effects of D-Galactosamine in Liver Spheroids Using 1H NMR and MAS-NMR Spectroscopy. Chemical Research in Toxicology 2002; 15: 1351-1359.

78. Griffin JL, Walker LA, Troke J, Osborn D, Shore RF, Nicholson JK. The initial pathogenesis of cadmium induced renal toxicity. FEBS Letters 2000; 478: 147-150.

79. Griffin JL, Walker LA, Shore RF, Nicholson JK. Metabolic Profiling of Chronic Cadmium Exposure in the Rat. Chemical Research in Toxicology 2001; 14: 1428- 1434.

80. Garrod D, Humpfer E, Connor SC, Connelly JC, Spraul M, Nicholson JK, Holmes E. High-Resolution 1H NMR and Magic Angle Spinning NMR Spectroscopic Investigation of the Biochemical Effects of 2-Bromoethanamine in Intact Renal and Hepatic Tissue. Magnetic Resonance in Medicine 2001; 45: 781-790.

81. Wang Y, Bollard ME, Keun H, Antti H, Beckonert O, Ebbels TM, Lindon JC, Holmes E, Tang H, Nicholson JK. Spectral editing and pattern recognition methods applied ti high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues. Analytical Biochemistry 2003; 323: 26-32.

82. Wu H, Zhang X, Li X, Wu Y, Pei F. Acute biochemical effects of La(NO3)3 on liver

and kidney tissues by 1H nuclear magnetic resonance spectroscopy and pattern recognition. Analytical Biochemistry 2005; 339: 242-248.

83. Wu H, Zhang X, Li X, Li Z, Liao P, Li W, Wu Y, Pei F. Investigation on Acute Biochemical Effects of Ce(NO3)3 on Liver and Kidney Tissues by MAS 1H NMR

Spectroscopic-Based Metabonomic Approach. Journal of Rare Earths 2006; 24: 357- 363.

84. Wang Y, Bollard ME, Nicholson JK, Holmes E. Exploration of the direct metabolic effects of mercury II chloride on the kidney of Sprague-Dawley rats using high- resolution magic angle spinning 1H NMR spectroscopy of intact tissue and pattern recognition. Journal of Pharmaceutical and Biomedical Analysis 2006; 40: 375-381.

85. Griffin JL, Walker LA, Garrod S, Holmes E, Shore RF, Nicholson JK. NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens) and the laboratory rat. Comparative Biochemistry and Physiology Part B 2000; 127: 357-367.

86. Rutar V. Magic Angle Sample Spinning NMR Spectroscopy of Liquids as a Nondestructive Method for Studies of Plant Seeds. Journal of Agricultural and Food Chemistry 1989; 37: 67-70.

87. Sacco A, Bolsi IN, Massini R, Spraul M, Humpfer E, Ghelli S. Preliminary Investigation on the characterization of Durum Wheat Flour Coming from Some Areas of South Italy by Means of 1H High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance. Journal of Agricultural and Food Chemistry 1998; 46: 4242- 4249.

88. Brescia MA, Sacco D, Sgaramella A, Pasqualone A, Simeone R, Peri G, Sacco A. Characterisation of different typical Italian breads by means of traditional,

Documents relatifs