• Aucun résultat trouvé

1.3 Plan of the thesis . . . . 6

N/A
N/A
Protected

Academic year: 2021

Partager "1.3 Plan of the thesis . . . . 6"

Copied!
3
0
0

Texte intégral

(1)

Contents

1 Introduction 1

1.1 Context . . . . 1

1.2 Brief historical review . . . . 2

1.3 Plan of the thesis . . . . 6

2 Theoretical formalism: the extended local equilibrium approach 9 2.1 Continuum balance equations . . . . 9

2.1.1 Balance of mass . . . . 10

2.1.2 Balance of internal energy . . . . 10

2.2 Macroscopic non-equilibrium thermodynamics . . . . 11

2.2.1 First law . . . . 12

2.2.2 Second law . . . . 13

2.3 Fluctuating kinetics . . . . 15

2.3.1 Fluctuating hydrodynamics . . . . 15

2.3.2 Chemical Langevin equations . . . . 18

2.4 eLEH stochastic thermodynamics . . . . 18

2.4.1 Internal energy balance and first law . . . . 19

2.4.2 Stochastic entropy and second law . . . . 19

I Stochastic thermodynamics of transport phenomena 21 3 Stochastic thermodynamics of simple transport processes 23 3.1 Heat transport . . . . 24

3.1.1 Discretisation procedure . . . . 24

3.2 Stochastic thermodynamics of heat transport . . . . 30

3.2.1 Non-equilibrium steady states . . . . 31

Fluctuations of entropy production in a NESS . . . . 31

Fluctuations of entropy flux in a NESS . . . . 33

3.2.2 Equilibrium states . . . . 34

Fluctuations of entropy production at equilibrium . . . . 34

Fluctuations of entropy flux at equilibrium . . . . 39

3.3 Mass transport . . . . 41

3.4 Stochastic thermodynamics of mass transport . . . . 44

3.4.1 Non-equilibrium steady states . . . . 44

Fluctuations of entropy production in a NESS . . . . 45

Fluctuations of entropy flux in a NESS . . . . 46

i

(2)

ii Contents

3.4.2 Equilibrium states . . . . 46

Fluctuations of entropy production at equilibrium . . . . 46

Fluctuations of entropy flux at equilibrium . . . . 48

3.5 Stochastic potentials . . . . 49

3.5.1 Stochastic Helmholtz free energy and thermodynamic potentials . . . . 50

3.5.2 Helmholtz free energy in non-equilibrium steady states . . . . 53

3.5.3 Excess entropy production . . . . 54

3.5.4 Conclusions about a stochastic potential . . . . 58

4 Stochastic thermodynamics of coupled transport processes 61 4.1 Introduction . . . . 61

4.2 Deterministic model . . . . 62

4.3 Stochastic model . . . . 67

4.4 Efficiencies . . . . 70

4.4.1 Stochastic separation efficiency . . . . 71

Probability distribution of χ

k

. . . . 71

Fluctuations and efficiency . . . . 72

Emergence of the thermodynamic limit . . . . 77

4.4.2 Stochastic thermodynamic efficiency . . . . 78

Stochastic entropy production . . . . 79

Probability distribution of the thermodynamic efficiency . . . . 80

Size and sampling time effects on the distribution of thermodynamic efficiency 83 4.5 Conclusions . . . . 86

II Stochastic thermodynamics of chemical reactions 89 5 Stochastic thermodynamics of chemical reactions 91 5.1 Introduction . . . . 91

5.2 Mesoscopic chemical kinetics . . . . 92

5.2.1 Master equations . . . . 92

5.2.2 Chemical Langevin equations . . . . 94

5.3 Linear chemical reactions . . . . 98

5.3.1 Fluctuations of entropy production . . . . 100

Fluctuations around equilibrium . . . . 102

5.4 Schlögl Model . . . . 105

5.4.1 Average dissipation of fluctuations in a non-linear system . . . . 106

5.4.2 Fluctuations of entropy production at critical point . . . . 109

Fluctuation theorems . . . . 110

5.4.3 Beyond the critical point . . . . 112

CLE vs. CME modelling . . . . 112

Distributions of entropy production . . . . 115

(3)

Contents iii

Selection principle . . . . 118

6 Conclusions and outlook 121 6.1 Comparison with other stochastic thermodynamic approaches . . . . 124

6.2 Perspectives . . . . 128

Appendix 131 A Numerical integration of stochastic differential equations 131 A.1 Introduction . . . . 131

A.2 General theory . . . . 131

A.3 Numerical integration . . . . 133

A.3.1 Examples . . . . 134

A.3.2 Heat transport . . . . 134

A.3.3 Schlögl model . . . . 135

Bibliography 137

Références

Documents relatifs

absorption of energy by the set of two-level systems constituted by potential wells with the distribution function of relaxation times 1p’R (T). (i) The exponential

Using numerical simulations, show that this scheme is unconditionally unstable5. We are interested in another numerical method devoted to advection operators as

As a complement to the study of the all-to-all interacting q-state units, we will fur- thermore consider two interacting underdamped (inertia) Brownian particles and apply

Closed CRNs (nondriven open detailed- balanced networks) always relax to a unique equilibrium by minimizing their nonequilibrium Gibbs free energy (transformed nonequilibrium Gibbs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Figure 9: Hybrid Newton method : cost function history left and norm of the gradient right.. The method converges to the targeted gradient norm 10−6 in 600 iterations

In conclusion, Eq.(38) represents the first principle of the thermodynamics, here obtained for an arbitrary out-of- equilibrium evolution and for an arbitrary holonomic sys- tem

The analysis of the dielectric properties of the BST films along with the modeling of electrostrictive acoustic resonance phenomena appearing in the MIM devices in the