• Aucun résultat trouvé

get the trajectories are the eigenvalues and eigenvectors of the matrix A. We will see how to do this over the next couple of sections as we solve the systems.

N/A
N/A
Protected

Academic year: 2021

Partager "get the trajectories are the eigenvalues and eigenvectors of the matrix A. We will see how to do this over the next couple of sections as we solve the systems."

Copied!
41
0
0

Texte intégral

(1)

Al6 : Réduction (suite et fin)

get the trajectories are the eigenvalues and eigenvectors of the matrix A. We will see how to do this over the next couple of sections as we solve the systems.

Here are a few more phase portraits so you can see some more possible examples. We’ll actually be generating several of these throughout the course of the next couple of sections.

Solutions d’un système différentiel X0 = AX, avecA∈M2(R)trigonalisable non diagonali- sable

(2)

I Valeurs propres et polynômes annulateurs

I.1 Calcul préliminaire

a Version vectorielle

Proposition Soitu∈L(E),xE. Siu(x)=λx, et siPK[X], alors P(u)(x)=P(λ)x.

Remarque Surtout ne pas écrireP(u(x)). On peut écrire [P(u)] (x) Démonstration Importante, à savoir écrire.

b Version matricielle

Proposition SoitA∈Mn(K), X ∈Mn,1(K). SiAX =λX et siPK[X], alors P(A)X =P(λ)X

Remarque Là aussi, ne pas écrireP(AX).

Démonstration Là aussi schéma de démonstration typique, qu’on réutili- sera

I.2 Valeurs propres et racines de polynômes annulateurs

Proposition 1

SiP est annulateur deu, toute valeur propre deuest racine deP. SiP est annulateur deA, toute valeur propre deAest racine deP. Proposition 2

Les valeurs propres d’un endomorphisme en dimension finie sont les racines de son polynôme minimal.

Les valeurs propres d’une matrice carrée sont les racines de son poly- nôme minimal.

Corollaire Le polynôme caractéristique et le polynôme minimal ont les mêmes racines.

Résumé Les valeurs propres sont les racines du polynôme minimal ; Les va- leurs propres sont les racines du polynôme caractéristique ; siP est an- nulateur, les valeurs propres font partie des racines deP.

(3)

Exemple Calculer le polynôme caractéristique et le polynôme minimal d’un projecteur en dimension finie.

Exemple Calculer le polynôme caractéristique et le polynôme minimal de la matrice Jànlignes etncolonnes dont tous les coefficients valent 1.

Exemple Calculer le polynôme caractéristique et le polynôme minimal de

0 1 0 . . . 0

0 0 1 ...

... . .. ... ... ... . .. ... 0

... 0 1

0 . . . 0

 .

(4)

II Le théorème de décomposition des noyaux

Théorème

SoitE un K-espace vectoriel (pas nécessairement de dimension finie), soitu∈(E). SiP1,P2sont deux polynômes premiers entre eux

(P1P2=1), alors, en notantP=P1P2,

Ker (P(u))=Ker (P1(u))⊕Ker (P2(u)) Démonstration Théorème de Bezout.

Extension

SoitE un K-espace vectoriel (pas nécessairement de dimension finie), soitu∈(E). SiP1, . . . ,Pm sont des polynômes deux à deux premiers entre eux ((i6=j)⇒(PiPj=1)), alors, en notantP=

Ym

i=1

Pi,

Ker (P(u))=

m

M

i=1

Ker (Pi(u))

Remarque Le théorème des noyaux ne se limite pas à la dimension finie.

Un exemple d’application en analyse

Le théorème des noyaux pemet de « casser » un gros problème en plu- sieurs problèmes plus petits. Supposons donc qu’on veuille résoudre l’équa- tion différentielle

y(3)+4y00+4y0+3y=0 (1) oùyest une fonction inconnue définie surR, à valeurs dansR. On montre assez classiquement que siφest une solution de cette équation différen- tielle, elle est de classeC(en montrant que si elle est de classeCk elle est de classeCk+1).

On se place donc surE=C(R,R), et on considère l’endomorphisme de dérivation :

u : φ7−→φ0

Remarquons queuk(φ)=φ(k) pour toutφE etkN. Donc résoudre l’équation (1), c’est chercher Ker (P(u)) avec

P=X3+4X2+4X+3

(5)

Mais on peut factoriserPen polynômes deux à deux premiers entre eux. . . On trouvera des applications dans le contexte similaire des suites véri- fiant une relation de récurrence linéaire, voir fin du chapitre

III Une dernière cns de diagonalisabilité

. . .mais la plus utilisée dans les exercices.

Proposition Une matriceA(resp. un endomorphismeud’un espace de di- mension finie E) est diagonalisable si et seulement si il existe un poly- nôme annulateur deA(resp. deu) scindé à racines simples.

Proposition bis Une matriceA(resp. un endomorphismeud’un espace de dimension finie E) est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples.

Corollaire important Voir rubrique suivante : l’endomorphisme induit sur un sous-espace stable par un endomorphisme diagonalisable est diago- nalisable.

Exemple classique On considère AMn(C) telle que Aq = In, où q ≥1.

Montrer que Aest diagonalisable.

Il est maintenant très simple d’étudier la diagonalisabilité d’un projecteur ou d’une involution linéaire (symétrie) sans aucune idée de leur nature géomé-

trique. On peut aussi étudier la diagonalisabilité des matrices

0 1 0 . . . 0

0 0 1 ...

... . .. ... ... ... . .. ... 0

... 0 1

0 . . . 0

(6)

ou

0 1 0 . . . 0

0 0 1 ...

... . .. ... ... ... . .. ... 0

0 0 1

1 0 . . . 0

 .

(7)

IV Sous-espaces stables

IV.1 Définition ; caractérisation matricielle dans une base adap- tée

Définition Soituun endomorphisme d’un espace vectorielE. On dit que le sous-espaceF deEest stable parulorsqueu(F)⊂F, i.e. lorsque

xF u(x)∈F

Lecture matricielle On reprend les notations précédentes. Soit

B=(e1, . . . ,ep,ep+1, . . . ,en) une base « adaptée » àF, (e1, . . . ,ep) étant une base de F. AlorsF est stable paru si et seulement si MB(u) est de la forme

Remarque SoitB=(e1, . . . ,en) une base d’un espace vectorielE,u∈L(E).

Alors

MB(u)∈Tn+(K) ⇐⇒ ∀k∈ ‚1,n−1ƒ Vect( stable paru.

(8)

IV.2 Produit par blocs

Déjà vu. . .et on va s’en servir !

IV.3 Polynôme caractéristique, polynôme minimal d’un endo- morphisme induit

Proposition

SoitE unK-espace vectoriel de dimension finie, et soituL(E). SoitF un sous-espace vectoriel deE. On suppose queF est stable paru, et on note uF l’endomorphisme induit paru surF. On note enfinP et µle polynôme caractéristique et le polynôme minimal. Alors

PuF |Pu et µuF |µu

IV.4 Endomorphisme induit par un endomorphisme diagona- lisable sur un sous-espace stable

Proposition

SoitE unK-espace vectoriel de dimension finie, et soituL(E). SoitF un sous-espace vectoriel deE. On suppose queF est stable paru, et on noteuF l’endomorphisme induit parusurF. Alors

³

udiagonalisable

´

=⇒

³

uF diagonalisable

´

IV.5 Endomorphisme laissant stables les facteurs d’une somme directe

On suppose queF1,. . .,Fm sont des sous-espaces vectoriels d’unK-espace vec- toriel (E,+, .) de dimension finie tels que

F1F2⊕ · · · ⊕Fm=E

On considère une baseBadaptée à cette somme directe : B=(e1, . . . ,ed1

| {z }

base deF1

,ed1+1, . . . ,ed1+d2

| {z }

base deF2

, . . . , . . .)

(on note doncdk=dim(Fk)).

(9)

Proposition

SoituL(E). LesFi sont tous stables parusi et seulement siMB(u) est diagonale par blocs, de la forme

A1 (0) · · · (0) (0) A2 . .. ...

... . .. ... ... ... ... . .. ... (0) (0) · · · (0) Am

où chaque Aj est dansMdj(K). De plus, quand c’est le cas, on a pour chaque j

Aj=Mat(ed1+···+d j−1+1,...,ed1+···+d j−1+d j)(uFj) oùuFj désigne l’endomorphisme induit parusurFj. Proposition

Sous les hypothèses précédentes, on peut écrire le polynôme caractéris- tiquePuen fonction desPuFi :

et le polynôme minimalµuen fonction desµuFi :

(10)

IV.6 Stabilité et commutation

Exercice facile et classique :Montrer que si u,v sont deux endomorphismes deE tels queuv =vu, alors l’image et le noyau dev sont stables paru(et réciproquement, bien sûr).

Proposition: Si deux endomorphismes commutent, les sous-espaces propres de l’un sont stables par l’autre.

Autrement dit, si (u,v)∈L(E)2, siuv=vu, alors, pour toute valeur propreλ deu,Eλ(u) est stable parv.

Applications :Diagonalisation simultanée (ou : « codiagonalisation »). Voir exer- cices. Mais aussi résolution d’équations matricielles (voir cadre ci-dessous).

C’est un résultat très simple et très important dans les exercices et les pro- blèmes.

Méthode pour l’oral : résolution d’une équation matricielle

On trouve à l’oral des exercices du type : résoudreP(X)=M, oùM est une ma- trice donnée,P un polynôme,X une matrice inconnue. Par exemple :

Résoudre X2+X = Ã2 1

0 3

!

(inconnueXM2(R)).

Il n’y a pas uneméthode pour aborder ce problème, mais quand même. . .il est important de remarquer que siP(X)=M,X etM commutent. Et doncX laisse stables l’image, le noyau, les sous-espaces propres deM. Ce qui délimite pas mal les choses.

Comme toujours, il peut y avoir d’autres méthodes : les connaissances au pro- gramme sur les matrices nilpotentes permettent parfois de conclure très vite (exemple classique : résoudreX2=

Ã0 1 0 0

! ).

Si l’on doit résoudreX P=PPest une matrice vérifiantP2=P, on passera aux endomorphismes associée, à la caractérisation d’une application linéaire par ses restrictions à des sous-espaces supplémentaires. . .

Signalons enfin (voir plus tard) qu’une solution de l’équation exp(X)=M com- mute nécessairement avecM.

(11)

V Le théorème de Cayley-Hamilton

Théorème : Le polynôme caractéristique d’un endomorphisme en dimen- sion finie, ou d’une matrice, est un polynôme annulateur.

Ou encore, en résumant avec des notations habituelles : SiuL(E) avec dim(E)< +∞, alorsµu|Pu.

Si A∈Mn(K), alorsµA|PA.

Corollaire : Le polynôme minimal d’un endomorphisme en dimension n, ou d’une matrice deMn(K), est de degré≤n.

ExerciceA l’aide du théorème de Cayley-Hamilton, retrouver la condition suf- fisante de diagonalisabilité (méthode classique, importante).

Une démontration La démonstration du théorème de Cayley-Hamilton n’est pas exigible, mais celle qui se trouve en annexe présente des techniques utiles dans un nombre non négligeable de problèmes de réduction.

(12)

VI Trigonalisabilité

VI.1 Définition (endomorphismes-matrices)

On fait arbitraitrement le choix de la trigonalisabilité « supérieure » Définition

Un endomorphismeudeE (espace de dimension finie) est dit trigonali- sable lorsqu’il existe une baseBdeEtelle que MatB(u) soit triangulaire supérieure.

Une matriceAdeMn(K) est trigonalisable lorsqu’il existePGLn(K) et T triangulaire supérieure telles que

A=P T P−1

VI.2 Trois caractérisations qui n’en font presque qu’une. . .

Proposition Un endomorphisme en dimension finie (ou une matrice) est trigonalisable si et seulement si son polynôme caractéristique est scindé.

Corollaire Toute matrice réelle ou complexe est trigonalisable surC, tous les endomorphismes d’unC-espace vectoriel de dimension finie sont tri- gonalisables.

Proposition (bis) Un endomorphisme en dimension finie (ou une matrice) est trigonalisable si et seulement si il admet un polynôme annulateur scindé.

Proposition (ter) Un endomorphisme en dimension finie (ou une matrice) est trigonalisable si et seulement si son polynôme minimal est scindé.

Démonstration C’est une démonstration assez élaborée, et assez impor- tante. On commence par remarquer que si (e1, . . . ,en) est une base de Edans laquelle la matrice deu∈L(E) est triangulaire supérieure,e1est un vecteur propre deu. C’est le point de départ de la démonstration, et il est préférable de le voir d’un point de vue « endomorphismes ». Ensuite, la démonstration se fait par récurrence sur la dimension (c’est assez ha- bituel), et là il vaut mieux passer aux matrices et raisonner par blocs. Ce double jeu (endomorphismes puis matrices) rend les choses un peu dé- licates.

(13)

VII Nilpotence et applications

VII.1 Définition : nilpotence, indice de nilpotence

Définition

SoitEunK-espace vectoriel de dimension finie. On dit queu∈L(E) est nilpotent lorsqu’il existekNtel que

uk=Θ (1)

(remarque : on peut remplacerkNparkN, caru0=I dE6=Θ).

Il existe alors un plus petit k vérifiant (1), on l’appelle indice de nilpo- tence deu.

Cet indice de nilpotencemNest donc caractérisé par um=Θ , um−16=Θ

On dit queM∈Mn(K) est nilpotente lorsqu’ il existekNtel que Mk=(0)

Le plus petitkvérifiant cela est appelé indice de nilpotence deM.

VII.2 Polynômes minimal et caractéristique d’un endomorphisme nilpotent

Proposition

SoitEunK-espace vectoriel de dimensionn.u∈L(E) est nilpotent si et seulement siPu=

SoitE unK-espace vectoriel de dimension finie.u∈L(E) est nilpotent d’indicemsi et seulement siµu=

Proposition

SoitM∈Mn(K).M est nilpotente si et seulement siPM = .Mest nilpo- tente d’indicemsi et seulement siµM =

(14)

VII.3 Nilpotence et trigonalisabilité

Théorème :

Un endomorphisme est nilpotent si et seulement si il est trigonalisable et a pour seule valeur propre 0.

Une matrice carrée est nilpotente si et seulement si elle est trigonalisable et a pour seule valeur propre 0.

Corollaire (sur C) : A∈Mn(C) est nilpotente si et seulement si Sp(A)={0}

(autre version : un endomorphismeud’unC-espace vectoriel de dimen- sion finie est nilpotent si et seulement si Sp(u)={0}).

Ce résultat est faux sur R, par exemple : la matrice

0 0 0

0 0 −1

0 1 0

a pour unique valeur propre 0, et n’est pas nilpotente. Bien sûr, elle n’est pas trigonalisable. . .et surC, elle n’a pas pour unique valeur propre 0. . . Remarque : Une matrice nilpotente n’est pas nécessairement triangulaire.

Par exemple,

à 1 1

−1 −1

!

est nilpotente. Attention donc à ne pas confondre matrice nilpotente et matrice nilpotente « réduite », c’est-à-dire triangu- laire supérieure « stricte ».

VII.4 Indice et dimension

Théorème

Soitpl’indice de nilpotence d’une matriceMnilpotente deMn(K) ; alors pn.

Siu∈L(E) est nilpotent d’indicep, avec dim(E)=n, alorspn.

Démonstration 1(avec le théorème de Cayley-Hamilton)

Démonstration 2(avec les noyaux itérés)

(15)

Insistons : Si A ∈Mn(K) est nilpotente, alors Mn =(0). Si par exemple A ∈ M2(K) est telle queA26=(0), inutile d’espérer queA3, ouA4, etc. . .soit nulle.

(16)

VII.5 Vers la décomposition de Dunford

a Réduction d’un endomorphisme admettant un polynôme annulateur scindé Dans ce paragraphe, la démonstration est presque plus importante que le ré- sultat, les raisonnements utilisés sont très utiles dans de nombreux problèmes et exercices.

Rappel

Un endomorphisme en dimension finie, ou une matrice, qui a un poly- nôme annulateur scindé, est trigonalisable.

On va préciser un petit peu

Théorème

Soitu∈L(E). Supposons qu’il existeQ scindé annulateur deu(Q(u)= Θ).

AlorsEest somme directe de sous-espaces stables parusur chacun des- quelsuinduit la somme d’un endomorphisme nilpotent et d’une homo- thétie.

Autrement dit, il existe des sous-espacesF1, . . . ,Fm deEtels que (i)E=

m

M

i=1

Fi

(ii)ChaqueFiest stable paru.

(iii) Notant ui l’endomorphisme induit par u sur Fi, il existeλiKet ni endomorphisme nilpotent de Fi tels queu=λiIdFi+ni.

Il existe donc une baseBdeEdans laquelle la matrice deuest à la fois triangulaire et diagonale par blocs, de la forme

T1 (0) . . . (0) (0) T2 . .. ...

... . .. ... ... ... ... . .. ... (0) (0) . . . (0) Tm

(17)

chaque blocTkétant triangulaire supérieure de la forme

Tk=

λk ? . . . ? 0 . .. ... ...

... . .. ... ? 0 . . . 0 λk

Théorème bis

Soit A∈Mn(K). S’il existe un polynôme scindé annulant A, A est sem- blable à une matrice triangulaire supérieure et diagonale par blocs.

(18)

Démonstration

Soituun endomorphisme d’un espaceEde dimension finienN. On suppose qu’il existe un polynôme scindé annulateur deu:

Q=

q

Y

i=1

(X −λi)mi (il n’est pas restrictif de supposerQunitaire) (souvent, dans les énoncés,QseraPuouµu).

On note, pour chaquei entre 1 etq:Fi =Ker£

(λiI du)mi¤ . 1. Démontrer que, pouri∈ ‚1,qƒ,Fi est stable paru.

2. Siλi6∈Sp(u), montrer queFi={0E}. On suppose dorénavant que tous les λi sont valeurs propres deu(ce qui est le cas lorsqueP est le polynôme minimal ou le polynôme caractéristique).

3. Démontrer queE=F1F2⊕ · · · ⊕Fq.

4. On noteui l’endomorphisme induit parusurFi(1≤iq).

Démontrer qu’il existe une homothétiehi deFi et un endomorphisme nilpotentni deFi tels queui=ni+hi.

5. En déduire qu’il existe une baseBdeE telle que MatB(u) soit à la fois triangulaire et diagonale par blocs (remarque : la question est un peu vague, surtout si on enlève lesà blocs).

(19)

(il serait dommage de ne pas aller un peu plus loin, d’abord par quelques re- marques)

6. Montrer que chaque Fi contient le sous-espace propreEi associé à la valeur propreλi.

7. Démontrer queuest diagonalisable si et seulement siFi =Ei pour tout i.

(puis par la décomposition de Dunford (h.p.))

8. Construire, en utilisant ce qui précède, deux endomorphismes d et n, respectivement diagonalisable et nilpotent, tels que

u=d+n et d n=nd

9. Toute matriceMadmettant un polynôme annulateur scindé s’écrit donc comme sommeD+Nd’une matrice diagonalisable et d’une matrice nil- potente qui commutent. Quel est l’intérêt pour le calcul des puissances deM?

10. On supposeu=d0+n0une autre décomposition deuavecd0diagonali- sable,n0nilpotente,d0n0=n0d0. Vérifier que lesFi sont stables pard0et n0, en déduire qued=d0etn=n0.

(20)

VII.6 Un réflexe

Beaucoup d’énoncés parlent de la réduction d’une matrice A∈Mn(K) qui vé- rifie, par exemple,

A4=4A2

En général, on ne prend pas trop le temps de réfléchir, on écrit X4−4X2=X2(X−4)(X +4)

et donc (théorème des noyaux)

Kn=Ker(A2)⊕ Ker(A−4In)⊕ Ker(A+4In) d’où l’on tire par exemple l’équivalence

h

Adiagonalisablei

⇐⇒ h

Ker(A)=Ker(A2)i

Parfois, la relation polynomiale de départ est donnée par le théorème de Cayley- Hamilton. Cet enchaînement (théorème de Cayley-Hamilton) puis (théorème des noyaux) est un grand classique.

(21)

VIII Annexe 1 : une démonstration du théorème de Cayley-Hamilton

VIII.1 Position du problème

On considère un endomorphismeu d’unK-espace vectoriel de dimension fi- nieE. On noteP son polynôme caractéristique. Montrer queP annuleu, c’est montrer queP(u)=Θ, c’est montrer que

xE P(u)(x)=0E (Rappel : ne pas écrireP(u(x)) qui n’a pas de sens).

Comme c’est vrai pourx=0E (P(u) est un endomorphisme),dans ce qui suit on fixexet on supposex6=0E.

VIII.2 L’énoncé sans la solution

On considère un endomorphismeud’unK-espace vectoriel de dimension finie E.

On fixe un élément non nulxdeE.

1. Montrer qu’il existe un plus grand entier naturel non nul p tel que la famille¡

x,u(x), . . . ,up−1(x)¢

est libre. On note dorénavant F =Vect¡

x,u(x), . . . ,up−1(x)¢ 2. Montrer que¡

x,u(x), . . . ,up−1(x)¢

est une base deF. On la noteB. 3. Montrer queF est stable paru. Vérifier que la matrice Adans la baseB

de l’endomorphismeuF induit parusurF est de la forme

A=

0 . . . 0 β0

1 . .. ... β1

0 . .. ... ... ... ... . .. ... ... ... ... ... . .. ... 0 ... β

(22)

4. Calculer le polynôme caractéristique de A.

5. Déduire de ce qui précède que, siP est le polynôme caractéristique de u, [P(u)] (x)=0E. On a donc montré le théorème de Cayley-Hamilton.

VIII.3 Recherche du plus petit sev stable par u et contenant x

SiF est un sev deE stable paruet contenantx, nécessairementF contientx, u(x), u2(x). . . et on peut voir assez facilement queF =Vecth

¡uk(x)¢

k∈N

i mais cela ne nous donne pas une base deF, seulement une famille génératrice. On considère donc :

p=max{n∈N\ {0} /¡

x,u(x), . . . ,un−1(x)¢ libre}

pest bien défini comme plus grand élément d’une partie non vide (elle contient par exemple 1) et majorée (par dim(E)+1) deN. Et, par définition de p, la famille¡

x,u(x), . . . ,up(x)¢

est liée. On peut donc écrire une relation de dépen- dance linéaire entre ces vecteurs :

p

X

k=0

αkuk(x) = 0E

où lesαk ne sont pas tous nuls. Siαp était nul, on obtiendrait une relation de dépendance linéaire entrex,u(x), . . . ,up1(x), ce qui contredirait la définition dep. On peut donc écrire :

up(x)=

p1

X

k=0

βkuk(x)

(en posantβk= −αk

αp

). On constate alors queF =Vect¡

x,u(x), . . . ,up−1(x)¢ est stable paruet contientx. C’est le plus petit sev qui possède ces propriétés, mais cela ne nous servira pas. De plus, la famille¡

x,u(x), . . . ,up−1(x)¢

est une base de F.

VIII.4 Calcul du polynôme caractéristique de u

F

On note comme habituellementuF l’endomorphisme induit parusurF (cette notation n’a de sens que parce queF est stable paru). Pour calculer le poly- nôme caractéristique deuF, on va écrire la matrice deuF dans la base

(23)

¡x,u(x), . . . ,up1(x)¢

deF. Cette matrice est

M=

0 . . . 0 β0

1 . .. ... β1

0 . .. ... ... ... ... . .. ... ... ... ... ... . .. ... 0 ... 0 · · · 0 1 βp−1

et donc le polynôme caractéristique deuF est

P1(X)=

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

X . . . 0 −β0

−1 . .. ... −β1

0 . .. ... ... ... ... . .. ... ... ... ... ... . .. ... X ... 0 · · · 0 −1 Xβp−1

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

que l’on calcule par exemple en ajoutant à la première ligneX fois la deuxième, X2fois la troisième,. . ., Xp−1fois la dernière (autrement écrit, on fait l’opéra- tion élémentaire L1L1+

p

X

k=2

Xk−1Lk), puis en développant par rapport à la première ligne qui n’a plus qu’un terme non nul. On obtient :

P1(X)=Xp

p−1

X

k=0

βkXk

VIII.5 Conclusion

La relationup(x)=

p−1

X

k=0

βkuk(x) peut se lireP1(u)(x)=0E. Mais on sait queP1 diviseP:P=QP1, doncP(u)=Q(u)◦P1(u), d’où le résultat :

P(u)(x)=Q(u)£

P1(u)(x)¤

=Q(u)(0E)=0E

(24)

IX Annexe 2 : pratique de la trigonalisation

IX.1 Diagonalisation

Problème : SoitA∈Mn(K). DiagonaliserA.

DiagonaliserA, c’est trouver une matrice inversiblePet une matrice diagonale Dtelles que

A=P DP−1

Il faut connaître les valeurs propres deA(c’est le plus dur ! puisqu’il s’agit de ré- soudre une équation polynomiale de degrén). Ensuite, on cherche une base de chacun des sous-espaces propres (ceci est en revanche automatisable, puisqu’il s’agit d’une résolution de système linéaire). On recolle ces bases (en disposant les vecteurs en colonnes) pour obtenir une matrice de passageP(évidemment, ce n’est possible que si Aest diagonalisable !). La matriceP1AP est diagonale, sur la diagonale se trouvent les valeurs propres correspondant aux colonnes de la matriceP.

IX.2 Trigonalisation

Problème : Soit A ∈Mn(K), trigonalisable, non diagonalisable. Trigonaliser A.

C’est un peu plus technique. Une trigonalisation « habituelle » utilise les ingré- dients suivants :

•Le théorème de Cayley-Hamilton.

•Le théorème des noyaux

•Les « noyaux itérés » (début de l’exercice de Al1, hors-programme, mais clas- sique).

•Un autre exercice classique : Exercice

SoitvL(F) nilpotent d’indicep. On supposex6∈Ker(vp−1) a.Montrer que la famille (vp−1(x), . . . ,v(x),x) est libre.

b.On noteG=Vect(vp−1(x), . . . ,v(x),x). Montrer queGest stable parv.

(25)

Ecrire la matrice dans la base Vect(vp1(x), . . . ,v(x),x) de l’endomorphismevG

induit parvsurG.

Un exemple de trigonalisation

SoitA=

2 0 0

−1 2 1

2 −1 0

. Un calcul simple donne le polynôme caractéristique de A(qui est scindé ; s’il ne l’était pas, on ne pourrait pas trigonaliser ) :

PA=(X−2)(X−1)2

Ecrivons donc PA =P1P2, P1= X −2,P2 =(X −1)2. D’après le théorème de Cayley-Hamilton, on aPA(A)=Θ(endomorphisme nul). Et donc, comme P1P2=1, le théorème de décomposition des noyaux donne :

K3=Ker¡

PA(A)¢

=Ker¡

P1(A)¢ M Ker¡

P2(A)¢

=Ker¡

A−2I3)M Ker¡

(A−I3)2¢

(1) Ce qui a été fait jusqu’ici est à comprendre et à savoir faire.

?La valeur propre 2 ne pose pas de problème : c’est une valeur propre simple, le sous-espace propre associé est de dimension 1. On en trouve une base en résolvant le systèmeAX =2X; le vecteur

 1 0 1

convient.

?Pour la valeur propre 1, c’est un peu plus compliqué, car la résolution de AX =X ne donne qu’un sous-espace propre de dimension 1, engendré par

 0 1

−1

. Et si on se contente de trouver une base de Ker¡

(A−I3)2¢

, on aura une matrice diagonale par blocs, mais pas nécessairement triangulaire (pourquoi

(26)

socié à A, Ker¡

(u−I d)2¢

est le noyau d’un endomorphisme qui commute avec u, il est donc stable par u. La matrice deu dans une base obtenue en adjoi- gnant au vecteur propre pour 2 une base de Ker¡

(u−I d)2¢

sera donc de la forme

2 0 0

0 a b

0 c d

 ).

C’est ici qu’intervient le résultat sur les noyaux itérés : on sait que Ker(A−I3)⊂Ker¡

(A−I3)2¢

L’inclusion est stricte, sinon Aserait diagonalisable (en utilisant(1)).

Choisissons un vecteurV (on l’appelle vecteur, mais on le considère comme une matrice colonne, dansM3,1(R)) dans Ker¡

(A−I3)2¢

\ Ker(A−I3).

SiW =(A−I3)V, alorsW∈Ker(A−I3) etW 6=0, donc (V,W) est libre. De plus, AW =W , AV =V+W

donc si la matricePa pour colonnes successives

 1 0 1

,W etV, on aura

P1AP=

2 0 0 0 1 1 0 0 1

Remarque 1 : Ici, on aurait pu faire plus simple : en première colonne le vecteur

 1 0 1

, en deuxième colonne un vecteur propre pour la valeur propre

1 (par exemple

 0 1

−1

), en troisième colonne n’importe quoi pourvu que la matrice soit inversible, on aurait obtenu une matrice semblable àAde la forme

2 0 α

0 1 β

0 0 1

(pourquoi ?).

(27)

Remarque 2 : . . .mais la méthode présentée permet surtout de traiter des cas plus compliqués, par exemple trigonaliser la matrice

−1 −1 0

1 1 −1

4 3 3

Notons Ala matrice,PAson polynôme caractéristique :

PA=

¯

¯

¯

¯

¯

¯

¯

¯

X+1 1 0

−1 X−1 1

−4 −3 X−3

¯

¯

¯

¯

¯

¯

¯

¯ Donc

PA(X)=(X+1)(X−1)(X −3)−4+(X−3)+3(X +1)

=X3X −3X2+3−4+X −3+3X+3

=X3−3X2+3X−1

=(X−1)3

Donc Sp(A)={1}. On a AI3=

−2 −1 0

1 0 −1

4 3 2

qui est de rang 2. Donc dim (E1(A))=1, non seulementAn’est pas diagonalisable (il faudrait qu’

elle soit égale àIn, car elle a une unique valeur propre), mais elle est loin de l’être.

On écrit les noyaux itérés : Ker(AI3)⊂Ker¡

(A−I3)2¢

⊂Ker¡

(A−I3)3¢

=R3 On calcule

(A−I3)2=

−2 −1 0

1 0 −1

4 3 2

−2 −1 0

1 0 −1

4 3 2

=

3 2 1

−6 −4 −2

3 2 1

(on trouve une matrice de rang 1, c’est satisfaisant). Prenons un élément

2

(28)

(prendre un vecteur de la base canonique est avantageux pour les cal- culs). Soitul’endomorphisme canoniquement associé àA; prenons

e2=(u−Id)e1=(−2, 1, 4) (c’est la première colonne de la matrice AI3).

Prenons enfine3=(u−Id)e2=(u−Id)2e1=(3,−6, 3) (là aussi, pas de cal- cul, c’est la première colonne de la matrice (AI3)2).

Le fait quee16∈Ker¡

(u−Id)2¢

permet de montrer facilement (classique. . .) que (e3,e2,e1) est une base deR3. Dans laquelle la matrice deu−Id est

0 1 0 0 0 1 0 0 0

(si on prend la base (e1,e2,e3), on obtient une trigonalisation, mais infé- rieure, ce qui n’est pas l’usage). Finalement, on peut choisir

P=

3 −2 1

−6 1 0

3 4 0

et on a

P1AP=

1 1 0 0 1 1 0 0 1

On a réalisé une trigonalisation « optimale », i.e. une réduction de Jordan (h.p.)

(29)

X Annexe 3 : Suites vérifiant une relation de récur- rence linéaire à coefficients constants

X.1 Préambule

Soitu=(un)nNetv=(vn)nNdeux suites d’éléments deK, autrement dit deux éléments deKN. Soitλun élément deK. On définit

u+v=(un+vn)nN. λu=(λun)nN.

On vérifie sans peine que (KN,+, .) est unK-espace vectoriel.

X.2 Suites vérifiant une relation de récurrence linéaire à coef- ficients constants

Soita etb deux éléments deK. SoitF l’ensemble des suitesu=(un)n∈N véri- fiant :

nN un+2=aun+1+bun (1) (Un exemple célèbre : la suite de Fibonacci est définie par

u0=u1=1 etnN un+2=un+1+un)

On vérifie sans peine queF est un sous-espace vectoriel deKN. L’application φ : F −→ K2

u 7−→ (u0,u1)

est un isomorphisme, ce qui montrer queF est de dimension 2.

La linéarité deφne pose pas de problème. Sa bijectivité est une application du principe de récurrence, qui assure que étant donnés deux élémentsγetδdeK il existe une unique suite dansKNvérifiant

u0=γ , u1=δ et ∀nN un+2=aun+1+bun

(30)

X.3 Ecriture matricielle

Soit u = (un)nN une suite d’éléments de K. On définit la suite U =(Un)nN

d’éléments deM2,1(K) par

Un= Ã un

un+1

!

La relation (1) s’écrit alors

nN Un+1=AUn (2) oùAest une matrice carrée d’ordre 2 :

A= Ã0 1

b a

!

(se trouve facilement si on imagine le produit AUn: on se voit donc répondre aux questions « quoi foisun + quoi foisun+1 =un+1, quoi foisun + quoi fois un+1 = un+2»). On vient de faire une chose simple et importante : rempla- cer une récurrence d’ordre 2 en dimension 1 par une récurrence d’ordre 1 en dimension 2. L’intérêt est immédiatement visible puisqu’on trouve ci-dessous une formule :

Si (2) est vérifiée,Uns’exprime simplement en fonction deAet deU0: Un=AnU0

(récurrence surn).

X.4 Etude dans le cas de diagonalisabilité

Démontrer queAest diagonalisable si et seulement si l’équation

r2arb=0 (E)

admet deux racines distinctes.

Le polynôme caractéristique deAest

PA=X2a Xb

(31)

S’il a deux racines distinctes,Aest diagonalisable (condition suffisante de dia- gonalisabilité). Mais s’il n’a pas deux racines distinctes, cela signifie qu’il n’a pas de racine (alors An’est même pas trigonalisable) ou qu’il en a une unique (alorsApour être diagonalisable doit être une homothétie, ce qu’elle n’est visi- blement pas vu le 1 en haut à droite).

On se place dans ce cas : soitr1,r2les deux racines de (E) ((E) est appelée équa- tion caractéristique de la récurrence (1)). Démontrer que les suites qui vérifient (1) sont les suites dont le terme général est de la forme

un=αr1n+βr2n.

EcrivonsA=P DP−1avecPGL2(K) et D=

Ãr1 0 0 r2

!

Alors, pour toutnN,A=P DnP1avec Dn=

Ãr1n 0 0 r2n

!

Or

∀n∈N Un=P DnP1U0

Lisant la première ligne de ce produit matriciel, on obtient l’existence deαetβ tels que

∀n∈N un=αr1n+βr2n. Notonse

r1n¢

n∈N, fr2n¢

n∈N. On vient de montrer F⊂Vect(e,f)

Or dim(F)=2, on en déduit que nécessairement (e,f) est libre etF =Vect(e,f).

Ce qui conclut.

Application: déterminer le terme général de la suite de Fibonacci présentée en

(32)

L’équation caractéristique est r2r−1=0 qui a deux racines distinctes,τ= 1+p

5

2 etσ=1−p 5

2 . Il existe doncαetβtels que

nN un=ατn+βσn

On détermineτetσpar les conditionsu0=u1=1, on trouve (mais ce n’est pas la seule manière de l’exprimer)

∀n∈N un= 1 p5

¡τn+1σn+1¢ Mais|σ| < |τ|, donc

σn= o

n→+∞

¡τn¢ On a donc

un

n→+∞

τn+1 p5

X.5 Etude dans le cas de trigonalisabilité

On suppose ici que l’équationr2arb=0 admet une racine doubler0(dans quel cas cette racine est-elle nulle ? on écarte désormais ce cas). Démontrer que Aest trigonalisable mais non diagonalisable, puis que les suites qui vérifient (1) sont les suites dont le terme général est de la forme

un=(α+nβ)r0n. On pourra utiliser le lemme suivant :

Lemme Toute matrice Ãλ µ

0 λ

!

avecµ6=0 est semblable à la matrice Ãλ 1

0 λ

!

Démonstration du lemme Il est fortement conseillé d’aborder le problème de la manière suivante : soitul’endomorphisme deK2canoniquement associé à

Ãλ µ 0 λ

!

. En modifiant « légèrement » la base canonique deK2, déterminer une base B deK2telle que

MB(u)= Ãλ 1

0 λ

!

(33)

On écarte le cas inintéressantr0=0, ce qui signifie quea=b=0,F est alors l’ensemble des suites nulles à partir du rang 2.

A est trigonalisable car son polynôme caractéristique PA est scindé, A est non diagonalisable car elle n’est pas de la former0I2.

On a doncA=P T P1avecPGL2(K) et T =

Ãr0 µ 0 r0

!

avecµ6=0. C’est ici qu’on aborde le problème du lemme. Soit (e1,e2) la base canonique deK2,uL(K2) canoniquement associé àT. Alors

u(e1)=r0e1 , u(e2)=r0e2+µe1 Donc

Mate1,e2)(u)=

Ãr0 1 0 r0

!

(et évidemment on remarque bien que (µe1,e2) est une base deK2). On a donc montré queT, doncA, est semblable à

T0=

Ãr0 1 0 r0

!

On a doncA=P0T0P0−1avecP0GL2(K) et T0=

Ãr0 1 0 r0

!

Donc, par récurrence, pour toutnN,

T0n=

Ãr0n nr0n−1 0 r0n

!

(la formule se trouve assez facilement en calculantT2, éventuellement T3, et la récurrence est très simple). Or

nN Un=P0T0nP0−1U0

(34)

Lisant la première ligne de ce produit matriciel, on obtient l’existence de αetβtels que

∀n∈N un=(αn+β)r0n. Notonse

r0n¢

n∈N,fnr0n¢

n∈N. On vient de montrer F ⊂Vect(e,f)

Or dim(F)=2, on en déduit que nécessairement (e,f) est libre et F = Vect(e,f). Ce qui conclut.

Digression (exercice d’oral) SoitN∈Mn(K) (K=RouC) une matrice nil- potente. On note

S(N)=©

P N P−1; PGLn(C)ª

l’ensemble des matrices semblables àN(c’est la « classe de similitude » de N). Montrer qu’il existe une suite d’éléments deS(N) qui converge vers 0.

N est semblable à une matrice triangulaire supérieure « stricte » (triangulaire supérieure avec les coefficients de la diagonale tous nuls)T. AlorsS(N)=S(T).

Or, siu est l’endomorphisme canoniquement associé àT et (e1, . . . ,en) est la base canonique deKn, pour toutp≥1,

Tp =Mat(pn−1e1,pn−2e2,...,pen−1,en)(u)∈S(T)=S(N)

OrTp s’obtient à partir deT en divisant parples coefficients en lignei et co- lonnei+1, parp2les coefficients en lignei et colonnei+2, etc. . .donc

Tp−−−−−→

p→+∞ 0

Application: déterminer le terme général de la suite définie par u0=1 ,u1= −1 et ∀nN un+2=2un+1un.

(35)

L’équation caractéristique est

r2−2r+1=0 de racine double 1. Il existe doncαetβtels que

nN un=α+ on trouve, avecu0etu1,un=1−2npour toutnN.

X.6 Etude spécifique dans le cas réel

On remarque que si K=C on est dans le cas4. ou5.Mais si K=R, l’équa- tion caractéristique peut n’avoir aucune racine réelle. Plaçons-nous dans ce cas. L’équation caractéristique a alors deux racines complexes conjuguéesr e etr e−iθ. Démontrer qu’alors les deux suites de termes générauxun=rncosnθ et vn =rnsin forment une base de l’espace des suites réelles qui vérifient (1).

Toute suite complexe qui vérifie (1) est combinaison linéaire (à coefficients complexes) des suites³

rnei nθ´

nNet³

rne−i nθ´

nN. Donc combinaison linéaire (à coefficients complexes) des suitesuetv de termes générauxun=rncosnθ etvn=rnsin. Ces deux suites forment donc une famille libre d’éléments de F et sont deux suites réelles, d’où le résultat.

L’ensemble des suites réelles qui vérifient (1) est donc l’ensemble des suites dont le terme général est de la forme

un=rn¡

αcos(nθ)+βsin(nθ)¢ .

Application :Déterminer le terme général de la suite réelle définie par u0=0 ,u1=1 et ∀nN un+2= −un+1un.

(36)

Les racines de l’équation caractéristique sont j=e2iπ/3et j2=j. Il existe donc αetβtelles que

nN un=αcos (2nπ/3)+βsin (2nπ/3) Avec les conditions initiales, on trouve

nN un= 2

p3sin (2nπ/3)

On note donc queuest 3-périodique, et effectivement on peut en partant de la récurrence de départ obtenirun+3=un.

X.7 Quelques applications immédiates

Déterminer les suites réelles qui vérifient

1. u0=1 ,u1=2 et ∀nN un+2=5un+1−6un.

Equation caractéristique :r2−5r+6=0, racines 2 et 3. Il existeaetbtels que

nN un=a×2n+b×3n

On aa+b=1, 2a+3b=2, on en déduitb=0,a=1,∀n∈N un=2n

2. ∀n∈N vn+2=vn+1+vn et la suite (vn) est bornée.

L’équation caractéristique est celle de Fibonacci. Avec les notations du X.4., il existe doncαetβtels que

∀n∈N un=ατn+βσn Siα6=0,un

n→+∞ατnetune peut être bornée (car|τ| >1). Siα=0, non seulementuest bornée, mais elle converge vers 0, car|σ<1.

3. w0=2 ,w1= −1 et ∀nN wn+2=4wn+1−4wn.

L’équation caractéristique est (r−2)2=0, il existe doncαetβtels que

nN wn=(α+nβ)2n Avecw0on trouveα=2. Puis, avecw1,β= −5/2.

Références

Documents relatifs

On peut montrer que la rotation de l’une de ces droites autour de l’axe Oz engendre la surface S (c’est une droite de l’espace qui n’est ni parallèle à Oz (sa

Donc cette dernière somme est atteinte, ce qui entraîne l’égalité

Has a knowledge base from nursing and other disciplines concerning current health care issues (eg, the health care needs of older individuals, aboriginal health, health promotion,

Economic theory would lead us to expect that when we extend intellectual property rights beyond their optimal scope, we should expect (1) innovation to be reduced

This conjecture, which is similar in spirit to the Hodge conjecture, is one of the central conjectures about algebraic independence and transcendental numbers, and is related to many

Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism.. On the same

The last two rows are proportional, so subtracting from the third row three times the second row, we obtain a matrix with a zero row whose determinant is zero.. , n − 1, the row i

La matrice A est inversible car l'algorithme du pivot partiel permet de se ramener à une forme triangulaire, on peut poursuivre alors pour calculer l'inverse.. Il existe un