• Aucun résultat trouvé

The ground state energy of the two dimensional Ginzburg–Landau functional with variable magnetic field

N/A
N/A
Protected

Academic year: 2022

Partager "The ground state energy of the two dimensional Ginzburg–Landau functional with variable magnetic field"

Copied!
21
0
0

Texte intégral

(1)

ScienceDirect

Ann. I. H. Poincaré – AN 32 (2015) 325–345

www.elsevier.com/locate/anihpc

The ground state energy of the two dimensional Ginzburg–Landau functional with variable magnetic field

K. Attar

a,b

aLaboratoire de Mathématiques, Université Paris-Sud, Rue G. Clémenceau, Bât 425, F-91405 Orsay Cedex, France bLaboratoire de Mathématiques, Université Libanaise, Hadath, Beyrouth, Liban

Received 24 May 2013; accepted 13 December 2013 Available online 7 January 2014

Abstract

We consider the Ginzburg–Landau functional with a variable applied magnetic field in a bounded and smooth two dimensional domain. We determine an accurate asymptotic formula for the minimizing energy when the Ginzburg–Landau parameter and the magnetic field are large and of the same order. As a consequence, it is shown how bulk superconductivity decreases in average as the applied magnetic field increases.

©2014 Elsevier Masson SAS. All rights reserved.

MSC:82D55

Keywords:Superconductivity; Ginzburg–Landau; Variable magnetic field

1. Introduction

1.1. The functional and main results

We consider a bounded open simply connected setΩ⊂R2 with smooth boundary. We suppose thatΩ models a superconducting sample submitted to an applied external magnetic field. The energy of the sample is given by the Ginzburg–Landau functional,

Eκ,H(ψ,A)=

Ω

(∇ −iκHA)ψ2κ2|ψ|2+κ2 2 |ψ|4

dx+κ2H2

Ω

|curlAB0|2dx. (1.1)

HereκandHare two positive parameters;κ(the Ginzburg–Landau constant) is a material parameter andHmeasures the intensity of the applied magnetic field. The wave function (order parameter)ψH1;C)describes the super- conducting properties of the material. The induced magnetic field is curlA, where the potentialAHdiv1 (Ω), with Hdiv1 (Ω)is the space defined in(1.4)below. Finally,B0C(Ω)is the intensity of the external variable magnetic field and satisfies

|B0| + |∇B0|>0 inΩ. (1.2)

0294-1449/$ – see front matter ©2014 Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.anihpc.2013.12.002

(2)

The assumption in(1.2)implies that for any open setωrelatively compact inΩ the set{xω, B0(x)=0}will be either empty, or consists of a union of smooth curves. LetF:Ω→R2be the unique vector field such that

divF=0 and curlF=B0 inΩ, ν·F=0 on∂Ω. (1.3)

The vectorνis the unit interior normal vector of∂Ω. The construction ofFis recalled inAppendix A. We define the space

Hdiv1 (Ω)=

A=(A1,A2)H1(Ω)2: divA=0 inΩ,A·ν=0 on∂Ω

. (1.4)

Critical points(ψ,A)H1;C)×Hdiv1 (Ω)ofEκ,H are weak solutions of the Ginzburg–Landau equations

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

(∇ −iκHA)2ψ=κ2

1− |ψ|2

ψ inΩ,

−∇curl(A−F)= 1 κH Im

ψ(∇ −iκHA)ψ inΩ,

ν·(∇ −iκHA)ψ=0 on∂Ω,

curlA=curlF on∂Ω.

(1.5)

Here, curlA=x1A2x2A1 and∇curlA=(∂x2(curlA),x1(curlA)). If divA=0, then∇curlA=A. In this paper, we study the ground state energy defined as follows:

Eg(κ, H )=inf

Eκ,H(ψ,A): (ψ,A)H1;C)×Hdiv1 (Ω)

. (1.6)

More precisely, we give an asymptotic estimate which is valid in the simultaneous limitκ→ ∞andH→ ∞in such a way that Hκ remains asymptotically constant. The behavior of Eg(κ, H )involves an auxiliary functiong: [0,∞)→ [−12,0]introduced in[9]whose definition will be recalled in(2.5)below. The functiongis increasing, continuous, g(b)=0 for allb1 andg(0)= −12.

Theorem 1.1.Let0< Λmin< Λmax. Under assumption(1.2), there exist positive constantsC,κ0andτ0(1,2)such that if

κ0κ, ΛminH

κ Λmax, then the ground state energy in(1.6)satisfies

Eg(κ, H )κ2

Ω

g H

κ B0(x) dx

τ0. (1.7)

Theorem 1.1 was proved in[9] when the magnetic field is constant (B0(x)=1). However, the estimate of the remainder is not explicitly given in[9].

The approach used in the proof ofTheorem 1.1is slightly different from the one in[9], and is closer to that in[4]

which studies the same problem whenΩ⊂R3andB0constant.

Corollary 1.2.Suppose that the assumptions ofTheorem1.1are satisfied. Then the magnetic energy of the minimizer satisfies, for some positive constantC

(κH )2

Ω

|curlAB0|2dxCκτ0. (1.8)

Remark 1.3. The value ofτ0 depends on the properties ofB0: we findτ0=74 whenB0does not vanish inΩ and τ0=158 in the general case.

Theorem 1.4. Suppose the assumptions of Theorem 1.1are satisfied. There exist positive constantsC,κ0 and a negative constantτ1(−1,0)such that, ifκκ0, andDis regular set such thatDΩ, then the following are true.

(3)

(1) If(ψ,A)H1;C)×Hdiv1 (Ω)is a solution of(1.5), then 1

2

D

|ψ|4dx

D

g H

κ B0(x)

dx+τ1. (1.9)

(2) If(ψ,A)H1;C)×Hdiv1 (Ω)is a minimizer of(1.1), then

D

|ψ|4dx+2

D

g H

κ B0(x) dx

τ1. (1.10)

Remark 1.5.The value ofτ1depends on the properties ofB0: we findτ1= −14 whenB0does not vanish inΩ and τ1= −18 in the general case.

1.2. Discussion of main result

If {xΩ: B0(x)=0} =∅ andH =,b >0, theng(Hκ|B0(x)|)=0 in D= {xΩ: Hκ|B0(x)|<1}, and

|D| =0. Consequently, forκ sufficiently large, the restriction ofψ onD is not zero inL2(Ω). This is a significant difference between our result and the one for constant magnetic field. When the magnetic field is a non-zero con- stant, then (see[3]), there is a universal constant0(12,1)such that, ifH= andb >01, thenψ=0 inΩ. Moreover, in the same situation, whenH=and 1< b <01, thenψis small everywhere except in a thin tubular neighborhood of∂Ω (see[6]). Our result goes in the same spirit as in[8], where the authors established under the assumption(1.2)that whenH=2andb > b0, thenψ=0 inΩ(b0is a constant).

1.3. Notation

Throughout the paper, we use the following notation:

• We writeEfor the functionalEκ,H in(1.1).

• The letterC denotes a positive constant that is independent of the parametersκ andH, and whose value may change from a formula to another.

• Ifa(κ)andb(κ)are two positive functions, we writea(κ) b(κ)ifa(κ)/b(κ)→0 asκ→ ∞.

• Ifa(κ)andb(κ)are two functions withb(κ)=0, we writea(κ)b(κ)ifa(κ)/b(κ)→1 asκ→ ∞.

• Ifa(κ)andb(κ)are two positive functions, we writea(κ)b(κ)if there exist positive constantsc1,c2andκ0 such thatc1b(κ)a(κ)c2b(κ)for allκκ0.

• Ifx∈R, we let[x]+=max(x,0).

• GivenR >0 andx=(x1, x2)∈R2, we denote byQR(x)=(R/2+x1, R/2+x1)×(R/2+x2, R/2+x2) the square of side lengthRcentered atx.

• We will use the standard Sobolev spacesWs,p. For integer values ofsthese are given by Wn,p(Ω):=

uLp(Ω): DαuLp(Ω)for all|α|n .

• Finally we use the standard symbolHn(Ω)=Wn,2(Ω).

2. The limiting energy

2.1. Two-dimensional limiting energy

Given a constantb0 and an open setD⊂R2, we define the following Ginzburg–Landau energy Gσb,D(u)=

D

b(∇ −A0)u2− |u|2+1 2|u|4

dx,uH01(D). (2.1)

(4)

Hereσ∈ {−1,+1}andA0is the canonical magnetic potential A0(x)=1

2(x2, x1),x=(x1, x2)∈R2, (2.2)

that satisfies

curlA0=1 inR2. We writeQR=QR(0)and let

m0(b, R)= inf

uH01(QR;C)

G+b,Q1

R(u). (2.3)

Remark 2.1.AsG+b,1D(u)=Gb,1D(u), it is immediate that inf

uH01(QR;C)

Gb,Q1

R(u)= inf

uH01(QR;C)

G+b,Q1

R(u). (2.4)

The main part of the next theorem was obtained by Sandier and Serfaty[9]and Aftalion and Serfaty[1, Lemma 2.4].

However, the estimate in(2.7)is obtained by Fournais and Kachmar[4].

Theorem 2.2.Letm0(b, R)be as defined in(2.3).

(1) For allb1andR >0, we havem0(b, R)=0.

(2) For anyb∈ [0,∞), there exists a constantg(b)0such that g(b)= lim

R→∞

m0(b, R)

|QR| and g(0)= −1

2. (2.5)

(3) The function[0,+∞)bg(b)is continuous, non-decreasing, concave and its range is the interval[−12,0].

(4) There exists a constantα(0,12)such that

b∈ [0,1], α(b−1)2g(b)1

2(b−1)2. (2.6)

(5) There exist constantsCandR0such that

RR0,b∈ [0,1], g(b)m0(b, R)

R2 g(b)+C

R. (2.7)

3. A priori estimates

The aim of this section is to givea prioriestimates for solutions of the Ginzburg–Landau equations(1.5). These estimates play an essential role in controlling the errors resulting from various approximations. The starting point is the followingL-bound resulting from the maximum principle. Actually, if(ψ,A)H1;C)×Hdiv1 (Ω)is a solution of(1.5), then

ψL(Ω)1. (3.1)

The set of estimates below is proved in[2, Theorem 3.3 and Eq. (3.35)](see also[7]for an earlier version).

Theorem 3.1.LetΩ⊂R2be bounded and smooth andB0C(Ω).

(1) For allp(1,)there existsCp>0such that, if(ψ,A)H1(Ω, C)×Hdiv1 (Ω)is a solution of(1.5), then curlAB0W1,p(Ω)Cp1+κH+κ2

κH ψL(Ω)ψL2(Ω). (3.2)

(5)

(2) For allα(0,1)there existsCα>0such that, if(ψ,A)H1(Ω, C)×Hdiv1 (Ω)is a solution of(1.5), then curlAB0C0,α(Ω)Cα

1+κH+κ2

κH ψL(Ω)ψL2(Ω). (3.3)

(3) For allp∈ [2,∞)there existsC >0such that, ifκ >0,H >0and(ψ,A)H1(Ω, C)×Hdiv1 (Ω)is a solution of(1.5), then

(∇ −iκHA)2ψ

pκ2ψp, (3.4)

(∇ −iκHA)ψ

2κψ2, (3.5)

curl(A−F)

W1,p(Ω) C

κHψ(∇ −iκHA)ψ

p. (3.6)

Remark 3.2.

(1) Using theWk,p-regularity of the curl–div system[3, Appendix A, Proposition A.5.1], we obtain from(3.2), A−FW2,p(Ω)Cp

1+κH+κ2

κH ψL(Ω)ψL2(Ω). (3.7)

The estimate is true for anyp∈ [2,∞).

(2) Using the Sobolev embedding theorem we get, for allα(0,1) AFC1,α(Ω)Cα1+κH+κ2

κH ψL(Ω)ψL2(Ω). (3.8)

(3) Combining(3.5)and(3.6)(withp=2) yields curl(A−F)

L2(Ω)C

L(Ω)ψL2(Ω). (3.9)

Theorem 3.1is needed in order to obtain the improveda prioriestimates of the next theorem. Similar estimates are given in[7].

Theorem 3.3.Suppose that0< ΛminΛmax. There exist constantsκ0>1,C1>0and for anyα(0,1),Cα>0 such that, if

κκ0, ΛminH

κ Λmax, (3.10)

and(ψ,A)H1;C)×Hdiv1 (Ω)is a solution of(1.5), then (∇ −iκHA)ψ

C(Ω)C1

κHψL(Ω), (3.11)

A−FH2(Ω)C1curl(A−F)

L2(Ω)+ 1

κHψL2(Ω)ψL(Ω)

, (3.12)

A−FC0,α(Ω)Cαcurl(A−F)

L2(Ω)+ 1

κHψL2(Ω)ψL(Ω)

. (3.13)

Proof. Proof of (3.11): See[3, Proposition 12.4.4].

Proof of (3.12): Leta=AF. Since diva=0 anda·ν=0 on∂Ω, we get by regularity of the curl–div system (seeAppendix A,Proposition A.1),

aH2(Ω)CcurlaH1(Ω). (3.14)

The second equation in(1.5)reads as follows

−∇curla= 1 κH Im

ψ(∇ −iκHA)ψ .

(6)

The estimates in(3.11)and(3.14)now give aH2(Ω)C

curlaL2(Ω)+ 1

κHψL2(Ω)ψL(Ω)

.

Proof of (3.13): This is a consequence of the Sobolev embedding ofH2(Ω) into C0,α(Ω) for any α(0,1) and(3.12). 2

4. Energy estimates in small squares

If(ψ,A)H1;C)×Hdiv1 (Ω), we introduce the energy density e(ψ,A)=(∇ −iκHA)ψ2κ2|ψ|2+κ2

2 |ψ|4.

We also introduce the local energy of(ψ,A)in a domainDΩ:

E0(u,A;D)=

D

e(ψ,A) dx. (4.1)

Furthermore, we define the Ginzburg–Landau energy of(ψ,A)in a domainDΩ as follows, E(ψ,A;D)=E0(ψ,A;D)+(κH )2

Ω

curl(A−F)2dx. (4.2)

IfD=Ω, we sometimes omit the dependence on the domain and writeE0(ψ,A)forE0(ψ,A;Ω). We start with a lemma that will be useful in the proof ofProposition 4.2below. Before we start to state the lemma, we define for all (, x0)such thatQ(x0)Ω,

BQ(x0)= sup

xQ(x0)

B0(x), (4.3)

whereB0is introduced in(1.2). Laterx0will be chosen in a lattice ofR2.

Lemma 4.1.For anyα(0,1), there exist positive constantsCandκ0such that if(3.10)holds,0< δ <1,0< <1, and (ψ,A)H1;C)×Hdiv1 (Ω)is a critical point of(1.1)(i.e. a solution of(1.5)), then, for any squareQ(x0) relatively compact inΩ∩ {|B0|>0}, there existsϕH1(Ω), such that

E0

ψ,A;Q(x0)

(1δ)E0

eiκH ϕψ, σBQ(x0)A0(xx0), Q(x0)

2

δ1+δ14κ2+δ

Q(x0)

|ψ|2dx, (4.4)

whereσdenotes the sign ofB0inQ(x0).

Proof. Construction of ϕ: Letφx0(x)=(A(x0)F(x0))·x, whereFis the magnetic potential introduced in(1.3).

Using the estimate in(3.13), we get for allxQ(x0)andα(0,1), A(x)− ∇φx0F(x)=(AF)(x)(AF)(x0)

A−FC0,α· |xx0|α

C

λ

κHα, (4.5)

where

λ=(κH )2curl(A−F)2

L2(Ω)+ 1

κHψ2L2(Ω)

.

(7)

Using the boundψ1 and the estimate in(3.9), we get

λCκ2, (4.6)

which implies that

A(x)− ∇φx0(x)F(x)Cα

H. (4.7)

We estimate the energyE0(ψ,A;Q(x0))from below. We will need the functionϕ0introduced inLemma A.3and satisfying

F(x)σBQ(x0)A0(xx0)− ∇ϕ0(x)C2 inQ(x0).

Let

u=eiκH ϕψ, (4.8)

whereϕ=ϕ0+φx0.

Lower bound: We start with estimating the kinetic energy from below as follows. For anyδ(0,1), we write (∇ −iκHA)ψ2=∇ −iκH

σBQ(x0)A0(xx0)+ ∇ϕ

ψiκH

AσBQ(x0)A0(xx0)− ∇ϕψ2 (1δ)∇ −iκH

σBQ(x0)A0(xx0)+ ∇ϕ ψ2 +

1−δ1

(κH )2(A− ∇φx0F)ψ+

FσBQ(x0)A0(xx0)− ∇ϕ0

ψ2. Using the estimates in(4.7),(A.3)and the assumption in(3.10), we get, for anyα(0,1)

(∇ −iκHA)ψ2(1δ)∇ −iκH

σBQ(x0)A0(xx0)+ ∇ϕψ2

2

δ12α+δ122H2

|ψ|2. (4.9)

Remembering the definition ofuin(4.8), then, we deduce the lower bound ofE0

E0

ψ,A;Q(x0)

Q(x0)

(1δ)∇ −iκH

σBQ(x0)A0(xx0)

u2κ2|u|2+κ2 2 |u|4

dx

2

δ122κ+δ12α2

Q(x0)

|ψ|2dx

(1δ)E0

u, σBQ(x0)A0(xx0);Q(x0)

2

δ14κ2+δ1+δ

Q(x0)

|ψ|2dx. (4.10)

This finishes the proof ofLemma 4.1. 2

Proposition 4.2.For allα(0,1), there exist positive constantsC,0andκ0such that, if(3.10)holds,κκ0,(0,12),(0, 0),2κ2 >1,(ψ,A)H1;C)×Hdiv1 (Ω)is a critical point of(1.1), andQ(x0)Ω∩{|B0|> }, then

1

|Q(x0)|E0

ψ,A;Q(x0)

g

H κ BQ(x0)

κ2C

3κ2+1+(κ)1+1 κ2. Hereg(·)is the function introduced in(2.5), andBQ(x0)is introduced in(4.3).

Proof. Using the inequalityψ1 and(4.4)to obtain E0

ψ,A;Q(x0)

(1δ)E0

u, σBQ(x0)A0(xx0);Q(x0)

2

δ14κ2+δ1+δQ(x0), (4.11)

whereuis defined in(4.8).

(8)

Let b=H

κ BQ(x0), R=

κH BQ(x0). (4.12)

Define the rescaled function v(x)=u

Rx+x0

,xQR. (4.13)

Remember thatσdenotes the sign ofB0inQ(x0). The change of variabley=R(xx0)gives E0

u, σBQ(x0)A0(xx0);Q(x0)

=

QR

R

y

R A0(y)

v

2κ2|v|2+κ2 2 |v|4

Rdy

=

QR

(yA0)v2κ

H BQ(x0)|v|2+ κ 2H BQ(x0)

|v|4

dy

= κ

H BQ(x0)

QR

b(∇yA0)v2− |v|2+1 2|v|4

dy

=1 bGσb,Q

R(v). (4.14)

We still need to estimate from below the reduced energyGσb,Q

R(v). Sincevis not inH01(QR), we introduce a cut-off functionχRCc(R2)such that

0χR1 inR2, suppχRQR, χR=1 inQR1, and |∇χR|M inR2. (4.15) The constantMis universal.

Let

uR=χRv. (4.16)

We have Gσb,Q

R(v)=

QR

b(∇ −A0)v2− |v|2+1 2|v|4

dx

QR

R(∇ −A0)v2− |χRv|2+1 2|v|4+

χR2−1

|v|2

dx

Gσb,Q

RRv)

QR

1−χR2

|v|2dx−2

QR

(∇ −A0Rv,χRvdy. (4.17) Having in mind(4.13)and(4.8), we get

yA0(y)

v(y)=

RxiκH σBQ(x0)A0(xx0) u(x). Using the estimate in(3.11),(4.7)and(A.3)we get

yA0(y)

v(y)

RxiκH σBQ(x0)(A+ ∇ϕ) u(x) +κH

R AσBQ(x0)A0(xx0)− ∇ϕu(x)

C1

R

κ+κα+κ22

. (4.18)

(9)

From the definition ofuRin(4.16)andχRin(4.15)we get

|v|1. (4.19)

Using(4.19),(4.18)and the definition ofχRin(4.15), we get

QR

(∇ −A0Rv,χRvdyC1 R

κ+κα+κ22

QR\QR1

|∇χR|dx

C1

κ+κα+1+κ23

, (4.20)

and

QR

1−χR2

|v|2dx|QR\QR1|

R. (4.21)

Inserting(4.20)and(4.21)into(4.17), we get Gσb,Q

R(v)Gσb,Q

R(uR)C2

κ+κα+1+κ23+κ Gσb,Q

R(uR)C2 κ(

+1)+κ23 . There are two cases:

Case1:σ= +1, whenB0>0, inQ(x0).

Case2:σ= −1, whenB0<0, inQ(x0).

In Case 1, after recalling the definition ofm0(b, R)introduced in(2.3), wherebis introduced in(4.12)we get G+b,Q1

R(v)m0(b, R)C2

κ(

+1)+κ23

. (4.22)

We get by collecting the estimates in(4.11)–(4.22):

1

|Q(x0)|E0

ψ,A;Q(x0)

(1δ) b2

m0(b, R)C2

κ+κ23(+1)

C

δ14κ2+δ1+δ κ2 (1δ)

b2 m0(b, R)r(κ), (4.23)

where

r(κ)=C3

δ14κ4+δ1κ2+δκ2+ 1 b2

κ(

+1)+κ23

. (4.24)

Theorem 2.2tells us that m0(b, R)R2g(b) for allb∈ [0,1]andR sufficiently large. Hereg(b)is introduced in (2.5). Therefore, we get from(4.23)the estimate

1

|Q(x0)|E0

ψ,A;Q(x0)

(1δ)R2 b2

g(b)r(κ), (4.25)

withbdefined in(4.12). By choosingδ=and using thatQ(x0)⊂ {|B0|> }, we get r(κ)=O

3κ2+1+1

(κ)1+

κ2. (4.26)

This implies that 1

|Q(x0)|E0

ψ,A;Q(x0)

g

H κ BQ(x0)

κ2C

3κ2+1+(κ)1+1 κ2. Similarly, in Case 2, according toRemark 2.1, we get that

Gb,Q1

R(v)m0(b, R)C2

κ+κ23(+1) , and the rest of the proof is as for Case 1. 2

(10)

5. Proof ofTheorem 1.1 5.1. Upper bound

Proposition 5.1. There exist positive constants C and κ0 such that, if(3.10) holds, then the ground state energy Eg(κ, H )in(1.6)satisfies

Eg(κ, H )κ2

Ω

g H

κ B0(x)

dx+158.

Proof. Let=(κ)and=(κ)be positive parameters such thatκ1 1 andκ1 1 asκ→ ∞. For someβ(0,1),μ(0,1)to be determined later, we will choose

=κβ, =κμ. (5.1)

Consider the lattice Γ:=Z and write forγΓ, Qγ ,=Q(γ ). For anyγΓ such that Qγ ,Ω ∩ {|B0|> }let

Bγ ,= inf

xQγ ,

B0(x). (5.2)

Let

I,=

γ: Qγ ,Ω

|B0|>

, N=CardI,,

and

Ω,=int

γ∈I,

Qγ ,

.

It follows from(1.2)that N= |Ω|2+O

2 +O

1

as→0 and→0.

Let

b=H

κ Bγ ,, R=

κH Bγ ,, (5.3)

anduRbe a minimizer of the functional in(2.1), i.e.

m0(b, R)=

QR

b(∇ −iA0)uR2− |uR|2+1 2|uR|4

dx.

We will need the functionϕγ introduced inLemma A.3which satisfies F(x)σγ ,Bγ ,A0(xγ )− ∇ϕγ(x)C2 inQγ ,, whereσγ ,is the sign ofB0inQγ ,.

We define the function

v(x)=

⎧⎪

⎪⎩

eiκH ϕγuR(R(xγ )) ifxQγ ,⊂ {B0> }, eiκH ϕγuR(R(xγ )) ifxQγ ,⊂ {B0<},

0 ifxΩ\Ω,.

(11)

SinceuRH01(QR), thenvH1(Ω). We compute the energy of the configuration(v,F). We get E(v,F)=

Ω

(∇ −iκHF)v2κ2|v|2+κ2 2 |v|4

dx

=

γ∈I,

E0(v,F;Qγ ,). (5.4)

We estimate the termE0(v,F;Qγ ,)from above and we write E0(v,F;Qγ ,)=

Qγ ,

(∇ −iκHF)v2κ2|v|2+κ2 2 |v|4dx

=

Qγ ,

∇ −iκH

σγ ,Bγ ,A0(xγ )+ ∇ϕγ(x) v

iκH

Fσγ ,Bγ ,A0(xγ )− ∇ϕγ(x)v2κ2|v|2+κ2 2 |v|4dx

Qγ ,

(1+δ)∇ −iκH

σγ ,Bγ ,A0(xγ )+ ∇ϕγ(x)v2κ2|v|2+κ2 2 |v|4dx +C

1+δ1 (κH )2

Qγ ,

Fσγ ,Bγ ,A0(xγ )− ∇ϕγ(x) v2dx (1+δ)E0

eiκH ϕγv, σγ ,Bγ ,A0(xγ );Qγ , +C

δκ2+δ1κ44

Qγ ,

|v|2dx. (5.5)

Having in mind thatuRis a minimizer of the functional in(2.1), and using the estimate in(3.1)we get

Qγ ,

|v|2dx|Qγ ,|.

Remark 2.1and a change of variables give us

Qγ ,

∇ −iκH σγ ,

Bγ ,A0(xγ )

eiκH ϕγv2κ2|v|2+κ2 2 |v|4

dx=m0(b, R) b . We insert this into(5.5)to obtain

E0(v,F;Qγ ,)(1+δ)m0(b, R) b +C

δκ2+δ1κ44

2. (5.6)

We know fromTheorem 2.2thatm0(b, R)g(b)R2+CRfor allb∈ [0,1]andRsufficiently large, wherebintro- duced in(5.3). We chooseδ=in(5.6). That way we get

E0(v,F;Qγ ,)g H

κ Bγ ,

2κ2+C 1

κ

++κ23

2κ2. (5.7)

Summing(5.7)overγ inI,, we recognize the lower Riemann sum ofxg(Hκ|B0(x)|). By monotonicity ofg,g is Riemann-integrable and its integral is larger than any lower Riemann sum. Thus

E(v,F)

Ω,

g H

κ B0(x) dx

κ2+C

1 κ

++κ23

κ2. (5.8)

(12)

Notice that using the regularity of∂Ω and(1.2), there existsC >0 such that

|Ω\Ω,| =O

|∂Ω| +C

, (5.9)

asandtend to 0.

Thus, we get by using the properties ofginTheorem 2.2,

Ω,

g H

κ B0(x) dx

Ω

g H

κ B0(x) dx+1

2|Ω\Ω,|. This implies that

E(v,F)

Ω

g H

κ B0(x) dx+C

1 κ

+++κ23

κ2. (5.10)

We choose in(5.1) β=3

4 and μ=1

8. (5.11)

With this choice, we infer from(5.10), E(v,F)

Ω

g H

κ B0(x)

dx+C1κ158, (5.12)

and

2κ2=κ38 >1. (5.13)

This finishes the proof ofProposition 5.1. 2

Remark 5.2.In the case whenB0does not vanish inΩ,disappears and{xΩ; |B0(x)|>0} =Ω. Consequently, the Ginzburg–Landau energy of(v,F)in(4.2)satisfies

E(v,F)

Ω

g H

κ B0(x) dx+C

1

κ++κ23

κ2.

We take the same choice ofβas in(5.11), then the ground state energy Eg(κ, H )in(1.6)satisfies Eg(κ, H )κ2

Ω

g H

κ B0(x)

dx+74.

5.2. Lower bound

We now establish a lower bound for the ground state energy Eg(κ, H ) in(1.6). The parametersandhave the same form as in(5.1).

Let

Bγ ,= sup

xQγ ,

B0(x), (5.14)

and

bγ ,=H

κ Bγ ,, R=

κH Bγ ,. (5.15)

If(ψ,A)is a minimizer of(1.1), we have

Eg(κ, H )=E0(ψ,A;Ω,)+E0(ψ,A;Ω\Ω,)+(κH )2

Ω

curl(A−F)2dx, (5.16)

(13)

where, for anyDΩ, the energyE0(ψ,A;D)is introduced in(4.1). Since the magnetic energy term is positive, we may write

Eg(κ, H )E0(ψ,A;Ω,)+E0(ψ,A;Ω\Ω,). (5.17) Thus, we get by using(3.1),(3.11), and(5.9):

E0(ψ,A;Ω\Ω,)

Ω\Ω,

(∇ −iκHA)ψ2+κ2|ψ|2+κ2 2 |ψ|4dx |Ω\Ω,|

C1κ2ψ2L(Ω)+κ2ψ2L(Ω)+κ2

2 ψ4L(Ω)

C2(+2. (5.18)

To estimateE0(ψ,A;Ω,), we notice that E0(ψ,A;Ω,)=

γ∈I,

E0(ψ,A;Qγ ,).

UsingProposition 4.2withα=23and(5.18)withβ=34andμ=18in(5.1), we get E0(ψ,A;Ω,)

γ∈I,

g H

κ BQ(x0)

2κ2C

3κ2+1+(κ)1+1 κ2

κ2

γ∈I,

g H

κ BQ(x0)

2C1κ158,

and

E0(ψ,A;Ω\Ω,)C2κ158. (5.19)

As for the upper bound, we can use the monotonicity ofgand recognize that the sum above is an upper Riemann sum ofg. In that way, we get

E0(ψ,A;Ω,2

Ω,

g H

κ B0(x)

dxC1κ158 .

Notice thatΩ,Ωand thatg0, we deduce that E0(ψ,A;Ω,2

Ω

g H

κ B0(x)

dxC1κ158 . (5.20)

Finally, putting(5.19)and(5.20)into(5.17), we obtain Eg(κ, H )κ2

Ω

g H

κ B0(x)

dx158 . (5.21)

Remark 5.3.WhenB0does not vanish, the local energy inQ(x0)inProposition 4.2becomes 1

|Q(x0)|E0

ψ,A;Q(x0)

g

H κ BQ(x0)

κ2C

3κ2+1+(κ)1 κ2. Similarly, we chooseα=23and=κ34, we get

E0(ψ,A;Ω\Ω,)C2κ74, (5.22)

Références

Documents relatifs

Furthermore, we demonstrate that the effective hopping motion of the kicked soliton through cells of the periodic potential can be used for controlled creation of various

A challenging issue remains to find conditions providing for the stability of compact “crater-shaped” vortices (CSVs, alias vortex rings) which, unlike the compound vortical

In conclusion, we investigate families of fundamental and vortical spatiotemporal dissipative solitons in the framework of the 3D CGL equation with the CQ nonlinearity,

In this work we investigate the ground state energy of the magnetic Laplacian associated with a large magnetic field, posed on a bounded three-dimensional domain and completed

The location of the vortic- ity defects at scale λδ [inside a connected component of ω ε ] is given by the microscopic renormalized energy exactly as in the case without

It is proved that, when vorticity defects are trapped by a diluted impurity, then their lo- cation inside the impurity [the microscopic location] is independent of the

As A continues to grow, above a second threshold value (of 1.57) the minimum energy configuration becomes a stripe structure with alternat- ing stripes of upward and downward

This equation enables us to calculate the limiting free energy of the Sherrington-Kirkpatrick spin glass model at this particular value of low temperature without making use of