• Aucun résultat trouvé

Complement to: Willmore immersions and Loop groups

N/A
N/A
Protected

Academic year: 2022

Partager "Complement to: Willmore immersions and Loop groups"

Copied!
3
0
0

Texte intégral

(1)

Complement to: Willmore immersions and Loop groups

Fr´ed´eric H´elein

The Euler–Lagrange equation of the Willmore functional

The derivation of the Euler–Lagrange equation of the Willmore functional was done in [1].

However I found this proof difficult to follow and I present here an alternative redaction.

Proof — Using the notations of [2] we know that we may write the Willmore functional as

W(X) = Z

U

−ω31∧ω32 ≡ Z

U

X,

which is precisely minus the area covered byγ. We start from an immersionX:U −→S3, not necessarily conformal, and we consider some section e of the associated bundleFX(γ). We perform a variation of X induced by

e0(t) =e0 +tλe3, (1)

where λ : U −→ R is some smooth map with compact support in U. We can construct for each t sufficiently small the associated conformal Gauss map γ(t) = e3(t), and the orthonormal frame (e1(t), e2(t)) for instance by the Gram-Schmitt orthonormalisation of (∂e∂x0(t),∂e∂y0(t)). By completing by an adequate vectore4(t) in C+, we construct a section e(t) ofFt,X(γ) fortsufficiently small. We now introduce the matrix of elements λij depending smoothly on z such that if the dot denotes the derivatives with respect to t att = 0, we have

˙

ej =eiλij. (2)

We have Bacλcb+Bbcλca= 0 and by (1)

λ001020 = 0 ; λ30 =λ. (3) We wish to compute the first variation of R

UX by this deformation.

First step. Brutal computation of ˙ΩX: Using (2) we get that

˙

ω13 = hde˙3, e1i+hde3,e˙1i

= dλ1303ω0123ω2130ω1021ω32

˙

ω23 = hde˙3, e2i+hde3,e˙2i

= dλ2303ω0213ω1230ω2012ω31.

1

(2)

Thus

−˙ΩX = (dλ13∧ω3223ω12∧ω3213∧dλ2313ω13∧ω12) + λ3010∧ω2331∧ω02)

+ λ0301∧ω2331∧ω20).

(4)

We then use (??) and the fact that h11+h22 = 0 to cancel the last term in the right hand side of (4). Moreover using the structure equations

3101∧ω0321∧ω23 = 0 dω3202∧ω0312∧ω13 = 0 we can transform the first term in the right hand side of (4) as

13∧ω23−λ23(dω1301∧ω30) +ω13∧dλ2313(dω2302∧ω03)

=d(λ13ω23−λ23ω13) + (λ13ω02−λ23ω01)∧ω30. Thus we obtain that

−˙ΩX = d(λ13ω32−λ23ω31) + (λ13ω02−λ23ω01)∧ω30

+ λ3001∧ω3213∧ω20). (5) Second step. We compute the last term in the right hand side of (5). We set ω03 = h1ω10+h2ω02, and we differentiate this expression. This gives

30 =dh1∧ω10+dh2 ∧ω02+h101+h220. We develop this relation using the structure equations and (??) as

(dh1+ 2ω00h1−ω12h2−h11ω10−h12ω20)∧ω02

+(dh2+ 2ω00h2−ω21h1−h21ω10−h22ω20)∧ω01 = 0. (6) And using Cartan lemma this implies that there exist smooth functionsp11, p12 =p21 and p22 such that

dh1+ 2ω00h1 = ω12h2+h11ω10+h12ω20+p11ω01+p12ω02 (a)

dh2+ 2ω00h2 = ω21h1+h21ω10+h22ω20+p21ω01+p22ω02 (b) (7) And a computation of (a)∧ω02−(b)∧ω10 gives

dh1∧ω02−dh2∧ω01+ 2ω00∧(h1ω02−h2ω10)

= ω12∧(h2ω20+h1ω01)−(ω13∧ω2010∧ω23) + (p11+p2201∧ω02. (8) Relation (8) gives us an expression for ω13∧ω2001∧ω23, which we can again transform using the structure relations

1001∧ω0021∧ω20 = 0

2002∧ω0012∧ω10 = 0 (9)

2

(3)

as

ω31∧ω2001∧ω32 = d(h1ω20−h2ω10) +ω00∧(h1ω02−h2ω01)

−(p11+p2201∧ω02. (10) Third step. We inject the result of step 2 summarized in (10) in the formula for ˙ΩX given by (5). It leads to

−˙ΩX = d(λ13ω32−λ23ω31) + (λ13ω02−λ23ω01)∧ω0330d(h1ω02−h2ω10) +λ30ω00∧(h1ω20−h2ω10)

−λ30(p11+p2201∧ω02

= d(λ13ω32−λ23ω31) +λ30d(h1ω20−h2ω01) +(λ30ω00−λ13ω01−λ23ω02)∧(h1ω02−h2ω10)

−λ30(p11+p2201∧ω02,

(11)

where we used ω30 =h1ω10+h2ω02.

Lastly we exploit a relation between the coefficients λij which we did not use before.

Since we impose the constraint ω03 = 0, for small t, we have 0 =hde˙0, e3i+hde0,e˙3i, which leads to

3030ω00−λ13ω10−λ23ω20. (12) We insert this relation in (11) to get

˙ΩX = λ30(p11+p2201∧ω02

+d[λ13ω32−λ23ω3130(h1ω20−h2ω01)]. (13) Conclusion. We obtain that

Z

U

˙ΩX = Z

U

λ(p11+p2201∧ω02, (14) and this implies that any Willmore immersion satisfies the equation

p11+p22= 0. (15)

[1] R.Bryant,A duality theorem for Willmore surfaces, Journal of Differential Geometry 20 (1984), 23–53.

[2] F. H´elein, Willmore immersions and loop groups, Journal of Differential Geometry, Vol. 50, n. 2 (1998), 331–388.

3

Références

Documents relatifs

and A(/A) = (detJ^Tr^/A))" 1 , when these line bundles are equipped with the holomorphic Hermitian connections associated with certain Quillen metrics [Q2], [BGS3]. Again, and

Le couplage de la lumière d’une fibre optique à un guide d’onde est effectué en utilisant deux types de transition (verticale ou latérale) selon la géométrie du guide

C’est ce résultat qui permet à Pinkall d’affirmer l’existence d’une infinité de tores plongés qui sont des points critiques pour la fonctionnelle de

If X is a symmetric space, that is if X possesses a very large group of isometries (we shall have a precise definition later), as real or complex hy- perbolic space, and if Γ

This article in memory of Patrick Dehornoy (1952 – 2019) is an in- vitation to Garside theory for mainstream geometric group theorists interested in mapping class groups,

L'analogue du théorème 2 reste vrai pour les germes fe T^ ,2 admettant une série de Taylor complexe, avec exactement la même démonstration.. Pour l'analogue du théorème 3 qui

Spiegel aus Bronze. Museum Augusta Raurica. Amt für Archäologie des Kantons Freiburg. Ufficio dei Beni culturali, Bellinzona. Amt für Archäologie des Kantons Freiburg.

We define and study the Whitehead group of isotropic (al- most) simple simply connected group schemes over Laurent polynomial rings k[t ± 1 ], where k is a field of characteristic