• Aucun résultat trouvé

The initial-boundary value problem for general non-local scalar conservation laws in one space dimension

N/A
N/A
Protected

Academic year: 2021

Partager "The initial-boundary value problem for general non-local scalar conservation laws in one space dimension"

Copied!
29
0
0

Texte intégral

(1)

HAL Id: hal-01362504

https://hal.inria.fr/hal-01362504

Submitted on 8 Sep 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

The initial-boundary value problem for general non-local

scalar conservation laws in one space dimension

Cristiana de Filippis, Paola Goatin

To cite this version:

Cristiana de Filippis, Paola Goatin. The initial-boundary value problem for general non-local scalar conservation laws in one space dimension. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2017, 161, pp.131-156. �hal-01362504�

(2)

The initial-boundary value problem for general non-local scalar

conservation laws in one space dimension

Cristiana De Filippis∗ Paola Goatin† September 8, 2016

Abstract

We prove global well-posedness results for weak entropy solutions of bounded variation (BV) of scalar conservation laws with non-local flux on bounded domains, under suitable regularity assumptions on the flux function. In particular, existence is obtained by proving the conver-gence of an adapted Lax-Friedrichs algorithm. Lipschitz continuos dependence from initial and boundary data is derived applying Kruˇzhkov’s doubling of variable technique.

Key words: Scalar conservation laws, Non-local flux, Initial-boundary value problem, Lax-Friedrichs scheme.

1

Introduction

Given a bounded open interval I = ]a, b[ ⊂ R, we consider the following initial-boundary value problem ∂tρ + ∂xf (t, x, ρ, ρ ∗ η) = 0 , (t, x) ∈ R+× I , (1.1a) ρ(0, x) = ρ0(x) , x ∈ I , (1.1b) ρ(t, a) = ρa(t) , t ∈ R+, (1.1c) ρ(t, b) = ρb(t) , t ∈ R+, (1.1d) where f ∈ C2(R+× ¯I × R × R; R) satisfies f (t, x, 0, R) = 0 ∀t, x, R, (1.2a) sup t,x,ρ,R ∂ρf (t, x, ρ, R) < L, (1.2b) sup t,x,R ∂xf (t, x, ρ, R) < C|ρ|, sup t,x,R ∂Rf (t, x, ρ, R) < C|ρ|, (1.2c) sup t,x,R ∂ 2 xxf (t, x, ρ, R) < C|ρ|, sup t,x,R ∂ 2 xRf (t, x, ρ, R) < C|ρ|, sup t,x,R ∂ 2 RRf (t, x, ρ, R) < C|ρ|, (1.2d)

for some constants L > 0 and C > 0, and η ∈ (C1 ∩ W1,∞)(R; R) is a convolution kernel (not

necessarily with compact support) such that Z

R

η(x)dx = 1.

Equations of type (1.1a) arise in several applications, and have made the object of a large literature in recent years. Space-integral terms appear for example in models for granular flows

University of Milano-Bicocca, Italy, & Inria Sophia Antipolis - M´editerran´ee, France, E-mail: c.defilippis@campus.unimib.it

(3)

[3], sedimentation [7], supply chains [19], conveyor belts [18], weakly coupled oscillators [2], struc-tured populations dynamics [24], or more general problems like gradient constrained equations [4]. Equations with non-local flux have been recently introduced also in traffic flow modeling to ac-count for the reaction of drivers or pedestrians to the surrounding density of other individuals, see [8, 10, 11, 26].

General analytical results on non-local conservation laws, proving existence and eventually unique-ness of solutions of the Cauchy problem for (1.1a), can be found in [5] for scalar equations in one space dimension, in [12] for scalar equations in several space dimensions and in [1, 13, 14] for multi-dimensional systems of conservation laws. Besides, specific finite volume numerical methods have been developed recently in [1, 17, 21]. To our knowledge, initial-boundary value problems of the form (1.1) have not been rigorously studied yet, the difficulties lying in the presence of the non-local term, which may exceed the boundaries of the space domain. Nonetheless, real applications (confined environments, networks, etc.) and numerical computations require a precise account for boundary conditions.

The scope of the present article is to propose an approach for a rigorous treatment of boundary conditions, in the case of one space-dimensional problems. The strategies we employ are inspired by classical results on scalar conservation laws with boundary conditions. In particular, we refer to [6, 9, 27]. Our results are based on the extension of the solution outside the domain, set to be constantly equal to the corresponding boundary condition values. It is far from obvious to generalize this technique to problem in several space-dimensions.

As in the classical case, we assume that boundary conditions can not generally be satisfied in strong sense. Therefore, we introduce the following notion of weak entropy solution for (1.1), which extends to problems with boundaries the definition of solution given in [5] for the corresponding Cauchy problem. This formulation, based on semi Kruˇzhkov entropies [23, 27], has the advantage of not using explicitly the traces of the solution at the boundaries of the domain, which turns particularly useful in the existence proof, provided in Section 2.

Definition 1 Let ρ0 ∈ L∞(I; R) and ρa, ρb ∈ L∞(R+; R). A map ρ ∈ L∞ R+× I; R is a weak entropy solution to (1.1) if for every test function ϕ ∈ C1c(R2; R+) and for every κ ∈ R

Z +∞ 0 Z b a  (ρ − κ)± ∂tϕ + sgn(ρ − κ)± f (t, x, ρ, R(t, x)) − f (t, x, κ, R(t, x)) ∂xϕ (1.3) − sgn(ρ − κ)± d dxf (t, x, κ, R(t, x)) ϕ  dx dt + Z b a (ρ0− κ)± ϕ(0, x) dx +Lip(f ) Z +∞ 0 ρa(t) − κ ± ϕ(t, a) dt + Lip(f ) Z +∞ 0 ρb(t) − κ ± ϕ(t, b) dt ≥ 0 , (1.4) where R(t, x) := (ρ(t, ·) ∗ η)(x) = Z R ρ(t, y)η(x − y) dy = Z b a ρ(t, y)η(x − y) dy + ρa(t) Z a −∞ η(x − y) dy + ρb(t) Z +∞ b η(x − y) dy = Z b a ρ(t, y)η(x − y) dy + ρa(t) Z +∞ x−a η(y) dy + ρb(t) Z x−b −∞ η(y) dy . (1.5) Above, we have noted sgn+(s) := max{s/|s|, 0}, sgn−(s) := − sgn+(−s), s+ := s sgn+(s) and s− := (−s)+ for s ∈ R. In the paper, we will also denote I(r, s) :=min{r, s}, max{r, s} for any r, s ∈ R.

(4)

The Definition 1 is equivalent to the one provided in [6] (for a proof of equivalence we refer the reader to [22, Theorem 7.31]). This second definition will be used in Section 3 to prove Lipschitz continuous dependence of solution with respect to initial and boundary data.

Definition 2 Let ρ0 ∈ L∞(I; R) and ρa, ρb ∈ L∞(R+; R). A map ρ ∈ BV R+× I; R is a weak

entropy solution to (1.1) if for every test function ϕ ∈ C1c(R2; R+) and for every κ ∈ R Z +∞ 0 Z b a  |ρ − κ|∂tϕ + sgn (ρ − κ)f (t, x, ρ, R(t, x)) − f (t, x, κ, R(t, x)) ∂xϕ − sgn (ρ − κ) d dxf (t, x, κ, R(t, x)) ϕ  dx dt + Z b a |ρ0− κ|ϕ(0, x) dx + Z +∞ 0

sgn (ρa− κ)f (t, a, ρ(t, a+), R(t, a)) − f (t, a, κ, R(t, a)) ϕ(t, a) dt

+ Z ∞

0

sgn (ρb− κ)f (t, b, κ, R(t, b)) − f (t, b, ρ(t, b−), R(t, b)) ϕ(t, b) dt ≥ 0 . (1.6)

We remark that to ensure that the traces of ρ at x = a, b, are well defined, we need to assume that the solutions have bounded variation, see [6, Lemma 1]. Moreover, following [6, 15], we recall that the entropy condition (1.6) implies that the traces of the solution at the boundary satisfy

• On the left boundary x = a: for all κ ∈ R 

sgn ρ(t, a+) − κ − sgn ρa(t) − κ



f (t, a, ρ(t, a+), R(t, a)) − f (t, a, κ, R(t, a)) ≤ 0, (1.7) • On the right boundary x = b: for all κ ∈ R



sgn ρ(t, b−) − κ − sgn ρb(t) − κ



f (t, b, ρ(t, b−), R(t, b)) − f (t, b, κ, R(t, b)) ≥ 0. (1.8) Our main result states the global well-posedness of (1.1).

Theorem 1 Let hypotheses (1.2) hold. If ρ0 ∈ (L∞∩ BV) I; R+ and ρa, ρb ∈ (L∞∩ BV) R+; R+,

then for all T > 0 problem (1.1) has a unique weak entropy solution ρ ∈ BV [0, T ] × I; R+ in the sense of Definitions 1, 2. Moreover, the following estimates hold:

kρ(T, ·)kL1(I) ≤ kρ0kL1(I)+ α  kρakL1([0,T ])+ kρbkL1([0,T ])  , (1.9) kρ(T, ·)kL(I)≤ eLTkρ0kL(I), (1.10) TV ρ(T, ·); I ≤ eK1TTV (ρ 0; I) + K2 K1  eK1T − 1+ TV ρ a; [0, T ] + TV ρb; [0, T ] , (1.11) kρ(T, ·) − ρ(T − τ, ·)kL1(I) ≤ Ct(T )τ , τ > 0 , (1.12)

with L as in (2.12), K1,2 as in (2.18) and (2.24), and Ct as in (2.28).

Finally, let ρ, σ ∈ C0 R+; L1(I; R+) ∩ BV∞ [0, T ] × I; R+ be two weak entropy solutions to (1.1), with initial data ρ0, σ0 ∈ L∞ I, R+



and boundary data ρa, ρb, σa, σb ∈ L∞ R+; R+ respectively. Then the following estimate holds:

kρ(T, ·) − σ(T, ·)kL1(I) ≤ eST  kρ0− σ0kL1(I)+ (L + S0)  kρa− σakL1([0,T ])+ kρb− σbkL1([0,T ])  , where the constants S, S0 are defined by (3.10).

The above result can be easily generalized to unbounded domains I = ]a, b[, with a = −∞ or b = +∞, under the assumption that the initial datum also belongs to L1(I).

(5)

2

Existence of weak entropy solutions

The proof of existence is based on the following strategy: we construct a sequence of approximate solutions using a finite volume algorithm, we prove the convergence of a subsequence and, finally, we show that the limit is indeed a weak entropy solution in the sense of Definition 1. The procedure follows closely [1, 5].

Let us fix a space grid in [a, b] of size ∆x = (b − a)/N , N ∈ N, and choose a time step ∆t (satisfying some stability conditions which will be detailed later). We introduce the usual notation

tn= n ∆t, n ∈ N ; xj = a +  j − 1 2  ∆x, xj+1/2= a + j∆x, j = 1, . . . , N ; λ = ∆t ∆x. Throughout, an initial datum ρ0∈ (L∞∩ BV)(R; R) is fixed and we denote

ρ0j = 1 ∆x

Z xj+1/2

xj−1/2

ρ0(x) dx dy for j = 1, . . . , N.

We define a piecewise constant approximate solution ρ∆ to (1.1) as

ρ∆(t, x) = ρnj for ( t ∈ [tn, tn+1[ , x ∈ [xj−1/2, xj+1/2[ , where n ∈ N, j = 1, . . . , N, through the following adapted Lax-Friedrichs scheme

ρn+1j = ρnj − λhFj+1/2n (ρnj, ρnj+1) − Fj−1/2n (ρnj−1, ρnj)i, (2.1) where Fj+1/2n (ρnj, ρnj+1) := 1 2 h f (tn, xj, ρnj, Rnj) + f (tn, xj+1, ρnj+1, Rnj+1) + α(ρnj − ρnj+1) i (2.2) is the numerical flux (for some α ∈ R, α > 0) and

Rnj := ∆xX

k∈Z

η(xj−k)ρnk, j = 1, . . . , N,

are the quadrature formulae approximating the convolution terms. Remark that, due to the bound-edness of the domain ]a, b[, we can set

Rnj := ∆x N X k=1 η(xj−k)ρnk+ ρna∆x X k≤0 η(xj−k) + ρnb ∆x X k>N η(xj−k) = ∆x N X k=1 η(xj−k)ρnk+ ρna∆x X k≥j η(xk) + ρnb ∆x X k<j−N η(xk) .

The proof of the convergence of approximate solutions is divided in several steps, which are intended to show that the sequence verifies the hypotheses of Helly’s compactness theorem.

(6)

2.1 Positivity

The following lemma ensures the positivity of approximate solutions corresponding to positive initial and boundary data.

Lemma 1 Let ρ0 ∈ L∞ I; R+ and ρa, ρb ∈ L∞ R+; R+. Moreover, assume that

α ≥ L, λ ≤ 1 3min  1 α, 1 L (1 + ∆x)  . (2.3)

Then ρ∆(t, x) ≥ 0 for all x ∈ I, t > 0.

Proof. We rearrange (2.1) as ρn+1j = ρnj − λhFj+1/2n (ρnj, ρnj+1) ± Fj+1/2n (ρnj, ρnj) ± Fj−1/2n (ρnj, ρnj) − Fj−1/2n (ρnj−1, ρnj)i =  1 − αnj − βjnρnj + αnjρnj−1+ βjj+1n − λFj+1/2n (ρnj, ρjn) − Fj−1/2n (ρnj, ρnj)  , where, for j ∈ {1, · · · , N }, αnj :=    λF n j−1/2(ρnj,ρnj)−Fj−1/2n (ρnj−1,ρnj) ρn j−ρnj−1 if ρ n j 6= ρnj−1, 0 if ρnj = ρnj−1, (2.4) and βjn:=    −λF n j+1/2(ρnj,ρnj+1)−Fj+1/2n (ρnj,ρnj) ρn j+1−ρnj if ρ n j+16= ρnj , 0 if ρnj+1= ρnj . (2.5)

We consider the following estimates: F n j+1/2(ρnj, ρnj) − Fj−1/2n (ρnj, ρnj) = = 1 2 f (t n, x j+1, ρnj, Rj+1n ) − f (tn, xj−1, ρnj, Rj−1n ) = 1 2 f (t n, x j+1, ρnj, Rj+1n ) ± f (tn, xj−1, ρnj, Rj+1n ) − f (tn, xj−1, ρnj, Rj−1n ) ≤ 1 2 f (t n, x j+1, ρnj, Rj+1n ) − f (tn, xj−1, ρnj, Rj+1n ) +1 2 f (t n, x j−1, ρnj, Rnj+1) + 1 2 f (t n, x j−1, ρnj, Rnj−1) ≤ L ρ n j ∆x + 1 2 f (t n, x j−1, ρnj, Rj+1n ) − f (tn, xj−1, 0, Rnj+1) +1 2 f (t n, x j−1, ρnj, Rnj−1) − f (tn, xj−1, 0, Rnj−1) ≤ L ρ n j (1 + ∆x) .

Moreover, we observe that, whenever ρnj 6= ρn

j−1 and ρnj+1 6= ρnj, αjn= λ 2ρn j − ρnj−1   f (tn, xj−1, ρnj, Rnj−1) − f (tn, xj−1, ρnj−1, Rnj−1) + α  ρnj − ρnj−1 

(7)

= λ 2  ∂ρf (tn, xj−1, ξj−1/2n , Rnj−1) + α  (2.6) and βjn= − λ 2ρn j+1− ρnj   f (tn, xj+1, ρnj+1, Rnj+1) + α  ρnj − ρnj+1− f (tn, xj+1, ρnj, Rnj+1)  = λ 2  α − ∂ρf (tn, xj+1, ξnj+1/2, Rnj+1)  , (2.7)

for some ξj−1/2n ∈ I(ρn

j−1, ρnj) and ξj+1/2n ∈ I(ρ n j, ρnj+1). Assuming that α ≥ L, λα ≤ 1 3, λL (1 + ∆x) ≤ 1 3, we get αnj, βjn∈  0,1 3  , 1 − αnj − βjn∈ 1 3, 1  , λFj+1/2n (ρnj, ρnj) − Fj−1/2n (ρnj, ρnj)≤ 1 3 ρ n j , which allow us to recover the sought estimate

ρn+1j ≥1 − αnj − βjnρjn+ αjnρnj−1+ βnjρnj+1−1 3 ρ n j , ≥ 2 3 − α n j − βjn  ρnj + αnjρnj−1+ βjnρnj+1 ≥ 0 .  2.2 L1 bound

Lemma 2 Let hypotheses (1.2) and conditions (2.3) hold. If ρ0 ∈ L∞ I; R+



and ρa, ρb ∈

L∞ R+; R+, then for all T > 0

kρ∆(T, ·)kL1(I)≤ kρ0kL1(I)+ α



kρakL1([0,T ])+ kρbkL1([0,T ])



=: C1(T ) . (2.8)

Proof. Thanks to the positivity of the discrete solution, using the definition of the scheme, we compute kρn+1kL1(a,b)= ∆x N X j=1 ρn+1j = ∆x N X j=1  ρnj − λFj+1/2n (ρnj, ρnj+1) − Fj−1/2n (ρnj−1, ρnj)  = ∆x N X j=1 ρnj − λ∆xFN +1/2n (ρnN, ρnb) − F1/2n (ρna, ρn1) = ∆x N X j=1 ρnj −∆t 2  f (tn, xN, ρnN, RnN) + f (tn, xN +1, ρnb, RnN +1) + α ρnN− ρnb 

(8)

+∆t 2  f (tn, x0, ρna, Rn0) + f (tn, x1, ρn1, Rn1) + α ρna− ρn1  = ∆x N X j=1 ρnj −∆t 2  ∂ρf (tn, xN, ξN,0n , RnN)ρnN + ∂ρf (tn, xN +1, ξN +1,0n , RnN +1)ρnb + α ρnN − ρnb  +∆t 2  ∂ρf (tn, x0, ξa,0n , R0n)ρna+ ∂ρf (tn, x1, ξ1n, Rn1)ρn1 + α ρna− ρn1  = ∆x N X j=1 ρnj +∆t 2  ∂ρf (tn, x0, ξa,0n , Rn0) + α  ρna +∆t 2  −∂ρf (tn, xN +1, ξN +1,0n , RnN +1) + α  ρnb +∆t 2  −∂ρf (tn, xN, ξN,0n , RnN) − α  ρnN +∆t 2 ∂ρf (t n, x 1, ξ1n, Rn1) − α ρn1.

Being the last two coefficients in the previous estimate non positive, we can conclude that

∆x N X j=1 ρn+1j ≤ ∆x N X j=1 ρnj + α∆t ρna+ ρnb ,

thus ending the proof. 

2.3 L∞ bound

Lemma 3 Let hypotheses (1.2) and conditions (2.3) hold. If ρ0 ∈ L∞ I; R+



and ρa, ρb ∈

L∞ R+; R+, then for all T > 0

(T, ·)kL(I) ≤ eLTkρ0kL(I), (2.9)

where L is given by (2.12). Proof. We observe that

R n j+1− Rnj−1 ≤ ≤ ∆x ρn a X k≤0 η(xj+1−k) − η(xj−1−k) + ∆x N X k=1 ρnk η(xj+1−k) − η(xj−1−k) + ∆x ρnb X k≥N +1 η(xj+1−k) − η(xj−1−k) = ∆x ρnaX k≤0 Z j+1−k xj−1−k η0(s) ds + ∆x N X k=1 ρnk Z j+1−k xj−1−k η0(s) ds + ∆xρnb X k≤0 Z j+1−k xj−1−k η0(s) ds ≤ 2∆x20k L∞(R)  ρna+ N X j=1 ρnj + ρnb  

(9)

≤ 2∆x kη0kL(R)  kρ0kL1(I)+ α  kρakL1([0,T ])+ kρbkL1([0,T ])  ≤ 2T ∆x , (2.10)

where we have set

T := kη0kL(R)  kρ0kL1(I)+ α  kρakL1([0,T ])+ kρbkL1([0,T ])  (2.11) and for the latest bound we have applied Lemma 2.

Proceding as in Lemma 1, we can rearrange (2.1) as ρn+1j =1 − αnj − βn

j



ρnj + αnjρnj−1+ βjnρnj+1− λFj+1/2n (ρnj, ρnj) − Fj−1/2n (ρnj, ρnj),

where αnj and βjn are as in (2.6) and (2.7) respectively. Using (2.10), we get F n j+1/2(ρ n j, ρnj) − Fj−1/2n (ρ n j, ρnj) = = 1 2 f (t n, x j+1, ρnj, Rnj+1) − f (tn, xj−1, ρnj, Rnj−1) = 1 2  ∂xf (t n, ˜x j, ρnj, ˜Rnj) xj+1− xj−1 + ∂xf (t n, ˜x j, ρnj, ˜Rnj) R n j+1− Rj−1n  ≤ 2C ρ n j ∆x + C ρ n j R n j+1− Rnj−1 ≤ 2C∆x ρ n j (1 + T ) . Thus, ρn+1j ≤ 1 − αnj − βjnρjn+ αnjρnj−1+ βjnρnj+1+ λ F n j+1/2(ρ n j, ρnj) − Fj−1/2n (ρ n j, ρnj) ≤ 1 − αnj − βn j  kρnk

L∞(I)+ αnjkρnkL(I)+ βjnkρnkL(I)+ 2Cλ∆xkρnkL(I)(1 + T )

= kρnkL(I)(1 + ∆tL) ≤ eL∆tkρnk L∞(I), for j = 1, · · · , N , being L := 2C 1 + kη0kL(R)  kρ0kL1(I)+ α  kρakL1([0,T ])+ kρbkL1([0,T ])  ! . (2.12)

A standard iterative argument completes the proof. 

2.4 BV estimates

Proposition 1 (BV estimate in space) Let hypotheses (1.2) and conditions (2.3) hold. If ρ0 ∈ L∞ I; R+ and ρa, ρb ∈ L∞ R+; R+, then ρ∆satisfies the following Total Variation estimate

N X j=0 ρ n j+1− ρnj ≤ Cx(t n) , (2.13)

(10)

for all n ∈ N, where Cx(tn) := eK1tn N X j=0 ρ 0 j+1− ρ0j + K2 K1  eK1tn− 1+ n X m=1 ρ m a − ρm−1a + n X m=1 ρ m b − ρm−1b ,

with K1 and K2 positive constants defined in (2.18), (2.19), (2.24).

Proof. We consider separately the central and boundary terms. For j = 1, · · · , N − 1, n ∈ N, we consider the difference

ρn+1j+1 − ρn+1j = ρnj+1− ρnj − λhFj+3/2n (ρnj+1, ρnj+2) − Fj−1/2n (ρnj−1, ρnj) ± Fj+1/2n (ρnj, ρnj+1) i ∓ λFj+3/2n (ρnj, ρnj+1) + Fj+1/2n (ρnj−1, ρnj) = ρnj+1− ρnj − λFj+3/2n (ρnj+1, ρj+2n ) − Fj+1/2n (ρnj, ρnj+1) − Fj+3/2n (ρnj, ρnj+1) + Fj+1/2n (ρnj−1, ρnj) − λFj+3/2n (ρnj, ρnj+1) − Fj+1/2n (ρnj, ρj+1n ) + Fj−1/2n (ρnj−1, ρnj) − Fj+1/2n (ρnj−1, ρnj)  = Anj − λBnj, (2.14)

where we have set An

j := ρnj+1− ρnj − λ



Fj+3/2n (ρnj+1, ρnj+2) − Fj+1/2n (ρnj, ρnj+1) − Fj+3/2n (ρnj, ρnj+1) + Fj+1/2n (ρnj−1, ρnj), Bnj := Fj+3/2n (ρnj, ρnj+1) − Fj+1/2n (ρnj, ρj+1n ) + Fj−1/2n (ρnj−1, ρnj) − Fj+1/2n (ρnj−1, ρnj) .

Concerning the first term Anj and recalling (2.4) and (2.5), after suitable rearrangements we get Anj =  ρnj+1− ρnj × " 1 + λF n j+1/2(ρ n j, ρnj+1) − Fj+1/2n (ρ n j, ρnj) ρn j+1− ρnj − λF n j+3/2(ρ n j+1, ρnj+1) − Fj+3/2n (ρ n j, ρnj+1) ρn j+1− ρnj # +ρnj+2− ρnj+1 −λF n j+3/2(ρ n j+1, ρnj+2) − Fj+3/2n (ρ n j+1, ρnj+1) ρn j+2− ρnj+1 ! +ρnj − ρnj−1 λF n j+1/2(ρ n j, ρnj) − Fj+1/2n (ρ n j−1, ρnj) ρn j − ρnj−1 ! = 1 − βjn− γn j+1   ρnj+1− ρn j  + βj+1n ρnj+2− ρn j+1  + γjnρnj − ρn j−1  , (2.15) where γjn:= λF n j+1/2(ρnj, ρnj) − Fj+1/2n (ρnj−1, ρnj) ρnj − ρn j−1 , and the bounds γn

j ∈ [0, 1/3] can be proved exactly as it has been done for αnj, thanks to (2.3).

From (2.15) we recover N −1 X j=1 |Anj| ≤ N −1 X j=1   1 − βnj − γj+1n  ρ n j+1− ρnj + β n j+1 ρ n j+2− ρnj+1 + γ n j ρ n j − ρnj−1 

(11)

= N −1 X j=1 |ρnj+1− ρnj| − β1n ρ n2 − ρn1 + γ1n ρn1 − ρna + βNn ρnb − ρnN − γNn ρnN − ρnN −1 . (2.16)

We now focus on the term Bnj in (2.14):

Bn j = 1 2  f (tn, xj+2, ρnj+1, Rnj+2) − f (tn, xj+1, ρnj+1, Rnj+1)  −1 2  f (tn, xj, ρnj−1, Rnj) − f (tn, xj−1, ρnj−1, Rnj−1)  =∂xf (tn, ˜xj+3/2, ρnj+1, ˜Rj+3/2n )∆x + ∂Rf (tn, ˜xj+3/2, ρnj+1, ˜Rnj+3/2)(R n j+2− Rnj+1)  −1 2  ∂xf (tn, ˜xj−1/2, ρnj−1, ˜Rnj−1/2)∆x + ∂Rf (tn, ˜xj−1/2, ρnj−1, ˜Rnj−1/2)(Rnj − Rnj−1)  = ∆x 2  ∂xx2 f (tn, ˆxj, ˆρjn, ˆRnj)(˜xj+3/2− ˜xj−1/2) + ∂ρx2 f (tn, ˆxj, ˆρnj, ˆRnj)(ρnj+1− ρnj−1) + ∂Rx2 f (tn, ˆxj, ˆρjn, ˆRnj)( ˜Rnj+3/2− ˜R n j−1/2)  +1 2  ∂xR2 f (tn, ¯xj, ¯ρjn, ¯Rnj) ˇRnj+1/2(˜xj+3/2− ˜xj−1/2) + ∂2ρRf (tn, ¯xj, ¯ρnj, ¯Rnj) ˇRnj+1/2(ρ n j+1− ρnj−1) + ∂RR2 f (tn, ¯xj, ¯ρnj, ¯Rnj) ˇRnj+1/2( ˜Rj+3/2n − ˜Rnj−1/2) + ∂Rf (tn, ¯xj, ¯ρnj, ¯Rjn)(Rnj+2− Rnj+1− Rnj + Rnj−1)  , with ˜xj−1/2∈ (xj−1, xj), ˆρnj, ¯ρnj ∈ I(ρnj−1, ρnj+1), ˜Rnj−1/2∈ I(R

n j−1, Rnj), ˆRnj, ¯Rnj ∈ I( ˜Rnj−1/2, ˜R n j+3/2), ˆ xj, ¯xj ∈ I(˜xj−1/2x˜j+3/2), ˇRj+1/2n ∈ I(Rnj − Rnj−1, Rnj+2− Rnj+1).

Notice that as in (2.10) we can estimate R n j+2− Rnj+1 ≤ T ∆x , R n j − Rnj−1 ≤ T ∆x , R n j+2− Rnj ≤ 2T ∆x . Moreover, by their very definition,

R˜ n j+3/2− ˜R n j−1/2 = λ n j+3/2R n j+2+ (1 − λnj+3/2)R n j+1− µnj−1/2R n j−1− (1 − µnj−1/2)R n j ≤ R n j+2− Rj+1n + R n j − Rnj−1 + R n j+1− Rnj ≤ 3T ∆x , and | ˇRj+1/2n | = δj+1/2n Rjn− Rj−1n + (1 − δnj+1/2)Rnj+2− Rnj+1 ≤ δnj+1/2 R n j − Rnj−1 + (1 − δ n j+1/2) R n j+2− Rnj+1 ≤ T ∆x , for some δn j+1/2, λnj+3/2, µnj−1/2 ∈ [0, 1]. Finally, |ˆρnj| = ˆ n jρnj−1+ (1 − ˆnj)ρnj+1 ≤ ˆ n j ρ n j−1 + (1 − ˆ n j) ρ n j+1 ,

(12)

|¯ρnj| = ¯ n jρnj−1+ (1 − ¯nj)ρnj+1 ≤ ¯ n j ρ n j−1 + (1 − ¯ n j) ρ n j+1 , with ˆn j, ¯nj ∈ [0, 1]. Therefore |Bnj| ≤ 3 2C(∆x) 2ρn j| + 1 2∆xk∂ 2 ρxf kL∞ ρ n j+1− ρnj−1 +3 2CT (∆x) 2ρn j| + 3 2CT (∆x) 2ρn j| + 1 2T k∂ 2 ρRf kL∞∆x ρ n j+1− ρnj−1 +3 2CT 2(∆x)2 ρ¯ n j + CT (∆x) 2 ρ¯ n j ≤ 1 2∆x ρ n j+1− ρnj−1  k∂ρx2 f kL(R)+ T k∂ρR2 f kL∞  +3 2C (1 + T ) (∆x) 2ρn j| + 1 2CT (5 + 3T ) (∆x) 2ρn j|. Thus N −1 X j=1 λ|Bnj| ≤ 1 2∆t  k∂2 ρxf kL∞+ T k∂ρR2 f kL∞ N −1X j=1 ρ n j+1− ρnj−1 +1 2C∆t 3 (1 + T ) + T (5 + 3T ) ∆x N −1 X j=1  (ˆnj + ¯nj) ρ n j−1 + (2 − ˆ n j − ¯nj) ρ n j+1  ≤ K1∆t N X j=0 ρ n j+1− ρnj + eK2∆t∆x N X j=1 ρ n j+1 , (2.17)

where we have set

K1 = k∂ρx2 f kL∞+ T k∂ρR2 f kL∞, (2.18)

e K2 = C



3 + 8T + 3T2. (2.19)

Collecting (2.16) and (2.17), we conclude that

N X j=1 ρ n+1 j+1 − ρ n+1 j ≤ N X j=1 |An j| + λ N X j=1 |Bn j| ≤ (1 + K1∆t) N X j=1 ρ n j+1− ρnj + eK2∆t∆x N X j=1 ρ n j+1 + 1 2K1∆t ρn1 − ρna ≤ (1 + K1∆t) N X j=1 ρ n j+1− ρnj + eK2C1(t n)∆t + 1 2K1∆t ρn1 − ρna . (2.20)

We now take into account the boundary terms. From the definition of the scheme we know that ρn+11 − ρn+1a = 1 − αn1 − β1n ρn 1 + αn1ρna+ βn1ρn2 − λ  F3/2n (ρn1, ρn1) − F1/2n (ρn1, ρn1)  − ρn+1a ± ρna = βn1 ρn2 − ρn1 + 1 − αn 1  ρn1 − ρna +ρna − ρn+1a 

(13)

− λF3/2n (ρn1, ρn1) − F1/2n (ρn1 − ρn1) = βn1 ρn2 − ρn 1 + 1 − γ1n  ρn1 − ρn a +  ρna− ρn+1 a  − λF3/2n (ρna, ρ1n) − F1/2n (ρna, ρn1)  . Indeed, by definition of αn1 and of γ1n we get

αn1 ρn1 − ρna + λF3/2n (ρ1n, ρn1) − F1/2n (ρn1, ρn1)= = λ  F3/2n (ρn1, ρn1) − F1/2n (ρan, ρn1) ± F3/2n (ρna, ρn1)  = λF n 3/2(ρn1, ρn1) − F3/2n (ρna, ρn1) ρn1 − ρn a ρn1 − ρna + λF3/2n (ρan, ρn1) − F1/2n (ρna, ρn1)  = γ1n ρn1 − ρna + λF3/2n (ρna, ρn1) − F1/2n (ρna, ρn1)  . Since λ  F3/2n (ρna, ρn1) − F1/2n (ρna, ρn1)  = = λ 2 f (t n, x 1, ρna, Rn1) − f (tn, x0, ρna, Rn0) + λ 2 f (t n, x 2, ρn1, Rn2) − f (tn, x1, ρn1, Rn1)  = λ 2  ∂xf (tn, ˜x1/2, ρna, ˜Rn1/2)∆x + ∂Rf (tn, ˜x1/2, ρna, ˜R1/2n ) Rn1 − Rn0  + λ 2  ∂xf (tn, ˜x3/2, ρn1, ˜Rn3/2)∆x + ∂Rf (tn, ˜x3/2, ρn1, ˜Rn3/2) R n 2 − Rn1 

(where we used obvious notations for ˜x1/2, ˜x3/2, ˜Rn

1/2 and ˜Rn3/2), we can conclude that

λ F n 3/2(ρna, ρn1) − F1/2n (ρna, ρn1) ≤ ∆t C 2 (1 + T ) |ρ n a| + |ρn1| .

Thus, because of the positivity of the coefficients involved, we get ρ n+1 1 − ρn+1a ≤ β n 1 ρn2 − ρn1 + 1 − γ1n  ρn1 − ρna + ρ n a− ρn+1a + ∆tC 2 (1 + T ) |ρ n a| + |ρn1| . (2.21)

Concerning the right boundary data, we have ρn+1N − ρn+1 b = 1 − α n N− βNn ρnN+ αnNρnN −1+ βNnρnb − λ  FN +1/2n (ρnN, ρnN) − FN −1/2n (ρnN, ρnN) − ρn+1b ± ρnb = − αnN ρnN − ρnN −1 + 1 − βn N  ρnN− ρnb +ρnb − ρn+1b  + αnN ρnN− ρn N −1 − γNn ρnN − ρnN −1  − λFN +1/2n (ρnN −1, ρnN) − FN −1/2n (ρnN −1, ρnN) = 1 − βNn ρnN− ρnb +ρbn− ρn+1b − γNn ρnN − ρnN −1 − λFN +1/2n (ρnN −1, ρnN) − FN −1/2n (ρnN −1, ρnN). (2.22)

(14)

We can justify the above equalities as follows. Taking into account of the expressions of αNn and of γNn, we can rearrange −λFN +1/2n (ρnN, ρNn) − FN −1/2n (ρnN, ρnN)  = = − λ  FN +1/2n (ρnN, ρnN) − FN −1/2n (ρnN, ρnN) ± FN −1/2n (ρnN −1, ρnN) ± FN +1/2n (ρnN −1, ρnN)  = − λFN −1/2n (ρnN −1, ρnN) − FN −1/2n (ρnN, ρnN)− λFN +1/2n (ρnN, ρnN) − FN +1/2n (ρnN −1, ρnN) − λFN +1/2n (ρnN −1, ρNn) − FN −1/2n (ρnN −1, ρnN)  = αnN ρnN − ρn N −1 − γNn ρnN− ρnN −1 − λ  FN +1/2n (ρnN −1, ρnN) − FN −1/2n (ρnN −1, ρnN).

Let us estimate the last term in (2.22): λ F n N +1/2(ρ n N −1, ρnN) − FN −1/2n (ρ n N −1, ρnN) = = λ 2 f (tn, xN, ρnN −1, RnN) − f (tn, xN −1, ρnN −1, RN −1n ) + f (tn, xN +1, ρnN, RnN +1) − f (tn, xN, ρnN, RnN) = λ 2 ∂xf (t n, ˜x N −1/2, ρnN −1, ˜RnN −1/2)∆x + ∂Rf (t n, ˜x N −1/2, ρnN −1, ˜RnN −1/2) R n N − RnN −1  +∂xf (tn, ˜xN +1/2, ρnN, ˜RnN +1/2)∆x + ∂Rf (t n, ˜x N +1/2, ρnN, ˜RnN +1/2) R n N +1− RnN  ≤ ∆tC 2(1 + T ) |ρ n N −1| + |ρnN| . Therefore we get ρ n+1 N − ρ n+1 b ≤ 1 − β n N  ρnN − ρnb + γNn ρnN − ρnN −1 + ρ n b − ρn+1b + ∆tC 2 (1 + T ) |ρ n N −1| + |ρnN| . (2.23)

Collecting estimates (2.20), (2.21) and (2.23), we obtain

N X j=0 ρ n+1 j+1 − ρ n+1 j = ρ n+1 1 − ρ n+1 a + ρ n+1 b − ρ n+1 N + N −1 X j=1 A n j − λBnj ≤ β1n ρn2 − ρn1 + 1 − γ1n  ρn1 − ρna + ρ n a − ρn+1a + ∆t C 2 (1 + T ) |ρ n a| + |ρn1|  + 1 − βNn ρnb − ρn N + γNn ρnN − ρn N −1 + ρ n b − ρ n+1 b + ∆t C 2 (1 + T ) |ρ n N −1| + |ρnN|  + N −1 X j=1 ρ n j+1− ρnj − β n 1 ρn2 − ρn1 + γ1n ρn1 − ρna + βNn ρnb − ρnN − γNn ρnN − ρnN −1 + λ N −1 X j=1 |Bjn|

(15)

≤ ρ n a− ρn+1a + ρ n b − ρn+1b + N X j=0 ρ n j+1− ρnj + ∆tC 2 (1 + T ) |ρ n a| + |ρn1| + |ρnN −1| + |ρnN|  + K1∆t N X j=0 ρ n j+1− ρnj + eK2∆t∆x N X j=1 ρ n j+1 ≤ ρ n a− ρn+1a + ρ n b − ρn+1b + (1 + K1∆t) N X j=0 ρ n j+1− ρnj + eK2C1(t n)∆t + C (1 + T ) 3 2e Ltn kρ0kL∞(I)+1 2kρakL∞([0,T ])  ∆t . Setting K2:= eK2C1(tn) + C (1 + T )  3 2e Ltn kρ0kL∞(I)+ 1 2kρakL∞[0,T ]  , (2.24)

we deduce from the previous estimate

N X j=0 ρ n j+1− ρnj ≤ (1 + K1∆t) tn/∆t N X j=0 ρ 0 j+1− ρ0j + K2 (1 + K1∆t)t n/∆t − 1 K1 + n X m=1 ρ m a − ρm−1a + n X m=1 ρ m b − ρm−1b ≤ eK1tn N X j=0 ρ 0 j+1− ρ0j + K2 K1  eK1tn− 1+ n X m=1 ρ m a − ρm−1a + n X m=1 ρ m b − ρm−1b ,

thus concluding the proof. 

Corollary 2 (BV estimate in space and time) Let hypotheses (1.2) and conditions (2.3) hold. If ρ0 ∈ L∞ I; R+



and ρa, ρb ∈ L∞ R+; R+, then ρ∆ satisfies the following Total Variation

estimate in space and time

n−1 X m=0 N X j=0 ∆t ρ m j+1− ρmj + n−1 X m=0 N X j=0 ∆x ρ m+1 j − ρ m j ≤ Cxt(n∆t) , (2.25) with Cxt(n∆t) given by (2.30).

Proof. The spatial BV estimate (2.13) yields

n−1 X m=0 N X j=0 ∆t ρ m j+1− ρmj ≤ n∆t Cx(n∆t) . (2.26)

In order to bound the second term in (2.25), we make use of the definition of the numerical scheme (2.1), (2.2). In fact, by (1.2) and (2.10) we have the following estimate

ρ m+1 j − ρ m j ≤ λα 2  ρ m j − ρmj−1 + ρ m j+1− ρmj 

(16)

+λ 2 " 2 ∂xf (t m, ˜x j, ξjm, ˜Rmj ) ∆x + ∂ρf (tm, ˜xj, ξmj , ˜Rmj )  ρmj+1− ρmj−1 + ∂Rf (tm, ˜xj, ξjm, ˜Rmj )  Rmj+1− Rj−1m  # ≤ λ 2(α + L)  ρ m j − ρmj−1 + ρ m j+1− ρmj  + C∆t|ρmj+1+ (1 − )ρmj−1| + T ∆t ρ m j+1+ (1 − )ρmj−1 ≤ λ 2(α + L)  ρ m j − ρmj−1 + ρ m j+1− ρmj  + ∆t (C + T )  |ρmj+1| + (1 − )|ρmj−1| for j = 1, · · · , N − 1, where ξm j = ρmj+1+ (1 − )ρmj−1 ∈ I(ρmj−1, ρmj−1),  ∈ [0, 1], ˜xj ∈ [xj−1, xj+1] and ˜Rmj ∈ I(Rm j−1, Rmj+1). Therefore, N X j=0 ∆x ρ m+1 j − ρ m j = ∆x  ρ m+1 a − ρma + ρ m+1 b − ρ m b  + N −1 X j=1 ∆x ρ m+1 j − ρ m j ≤ ∆x  ρ m+1 a − ρma + ρ m+1 b − ρ m b  + ∆t (α + L) N −1 X j=0 ρ m j+1− ρmj + 2∆x∆t (C + T ) N X j=0 |ρmj | ≤ ∆x  ρ m+1 a − ρma + ρ m+1 b − ρ m b  + ∆t (α + L) Cx(m∆t) + 2∆x∆t (C + T ) C1(m∆t) , (2.27)

due to estimates (2.13) and (2.8). In particular,

N X j=0 ∆x ρ m+1 j − ρmj ≤ ∆t Ct(m∆t) , where Ct(m∆t) := λ  ρ m+1 a − ρma + ρ m+1 b − ρ m b  + (α + L) Cx(m∆t) + 2∆x (C + T ) C1(m∆t) , (2.28)

which allows to derive the L1 Lipschitz continuity in time (1.12). Summing over = 0, · · · , n − 1, we get

n−1 X m=0 N X j=0 ∆x ρ m+1 j − ρ m j ≤ ∆x n−1 X m=0  ρ m+1 a − ρma + ρ m+1 b − ρ m b  + n∆t (α + L) Cx(n∆t) + 2n∆t∆x (C + T ) C1(n∆t) . (2.29)

Summing (2.26) and (2.29) we get (2.25) with Cxt(n∆t) := n∆t (α + L + 1) Cx(n∆t)

(17)

+ ∆x  2∆t (C + T ) C1(n∆t) + n−1 X m=0  ρ m+1 a − ρma + ρ m+1 b − ρ m b   , (2.30)

thus completing the proof. 

2.5 Discrete entropy inequalities

We adopt the following notation Fj+1/2n (u, v) := 1 2  f (tn, xj, u, Rnj) + f (tn, xj+1, v, Rnj+1) + α (u − v)  , Hj(u, v, z) := v − λ  Fj+1/2n (v, z) − Fj−1/2n (u, v), Gκj+1/2:= Fj+1/2n (u ∧ κ, v ∧ κ) − Fj+1/2n (κ, κ) . The approximate solution ρ∆satisfies the following inequalities.

Lemma 4 Under the hypotheses (1.2) and the conditions (2.3), the following discrete entropy inequalities hold for j = 1, · · · , N , n ∈ N, κ ∈ R:

 ρn+1j − κ+−ρnj − κ++ λ  Gκj+1/2(ρnj, ρnj+1) − Gκj−1/2(ρnj−1, ρnj)  +λ 2 sgn +ρn+1 j − κ   f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rnj−1)  ≤ 0. (2.31) Proof. Let us consider the map (u, v, z) 7→ Hj(u, v, z). By (2.3), it holds

∂H ∂u(u, v, z) = − λ 2  ∂ρf (tn, xj−1, u, Rnj−1) − α  ≥ 0 , ∂H ∂v(u, v, z) = 1 − αλ 2 ≥ 0 , ∂H ∂z (u, v, z) = − λ 2  ∂ρf (tn, xj+1, z, Rnj+1) − α  ≥ 0 . Notice that Hj(κ, κ, κ) = κ − λ 2  f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rnj−1)  .

For κ ∈ R, j = 1, · · · , N , noticing that ρn+1j = Hj(ρnj−1, ρnj, ρnj+1) and using the monotonicity

above, we get Hj(ρnj−1∧ κ, ρnj ∧ κ, ρnj+1∧ κ) − Hj(κ, κ, κ) ≥ ≥ Hj(ρnj−1, ρnj, ρnj+1) ∧ Hj(κ, κ, κ) − Hj(κ, κ, κ) =  Hj(ρnj−1, ρnj, ρnj+1) − Hj(κ, κ, κ) + =  ρn+1j − κ +λ 2  f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rnj−1) + . On the other hand we obtain

(18)

=ρnj − κ+ − λFj+1/2n (ρnj ∧ κ, ρnj+1∧ κ) − Fj−1/2n (ρnj−1∧ κ, ρnj ∧ κ) − Fj+1/2n (κ, κ) + Fj−1/2n (κ, κ)  =  ρnj − κ+− λGκj+1/2jn, ρnj+1) − Gκj−1/2(ρnj−1, ρnj)  . Thus,  ρnj − κ+− λGκj+1/2jn, ρnj+1) − Gκj−1/2(ρnj−1, ρnj)  ≥ ≥  ρn+1j − κ + λ 2  f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rnj−1) + = sgn+  ρn+1j − κ + λ 2  f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rnj−1)  ×  ρn+1j − κ + λ 2  f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rnj−1)  ≥ sgn+ρn+1 j − κ  ρn+1j − κ + λ 2  f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rj−1n )  = ρn+1j − κ++λ 2sgn +ρn+1 j − κ   f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rnj−1)  , which proves (2.31). 

2.6 Convergence towards a weak entropy solution

The estimates given by Lemmas 3 and Corollary 2 allow to apply Helly’s compactness theorem, ensuring the existence of a subsequence, still denoted {ρ∆} converging to a function ρ ∈ L∞([0, T ]×

I) in the L1-norm, for all T > 0 (see for example [16, Section 5.3.5]). We need now to prove that the limit of approximate solutions is indeed a weak entropy solution, in the sense of Definition 1. Lemma 5 Let hypotheses (1.2) and conditions (2.3) hold. If ρ0∈ (L∞∩ BV) I; R+ and ρa, ρb∈

(L∞∩ BV) R+; R+, then the piecewise constant approximate solutions ρ

∆ resulting from the

adapted Lax-Friedrichs scheme (2.1) converge, as ∆x & 0, towards a weak entropy solution of the initial boundary value problem (1.1).

Proof. We follow closely [27]. Adding and subtracting Gκj+1/2(ρnj, ρnj), we rearrange (2.31) as

0 ≥  ρn+1j − κ+−ρnj − κ++ λ  Gκj+1/2(ρnj, ρnj+1) − Gκj+1/2(ρnj, ρnj)  + λGκj+1/2(ρnj, ρnj) − Gκj−1/2(ρnj−1, ρnj) +λ 2sgn +ρn+1 j − κ   f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rnj−1)  . (2.32)

Let ϕ ∈ Cc1([0, T )×[a, b], R+) for some T > 0. Multiplying (2.32) by ∆x ϕ(tn, xj) ≥ 0, and summing

over j = 1, · · · , N , n ∈ N, we get the inequality 0 ≥ ∆x +∞ X n=0 N X j=1  η+κ(ρn+1j ) − η+κ(ρnj)ϕ(tn, xj)

(19)

+ ∆t +∞ X n=0 N X j=1   Gκj+1/2(ρnj, ρnj+1) − Gκj+1/2(ρnj, ρnj)−Gκj−1/2(ρnj−1, ρnj) − Gκj+1/2(ρnj, ρnj)  ϕ(tn, xj) +∆t 2 +∞ X n=0 N X j=1 sgn+ρn+1j − κ f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rnj−1)  ϕ(tn, xj) . (2.33)

Summing by parts in (2.33) we obtain

T1 := ∆x +∞ X n=0 N X j=1  ηκ+(ρn+1) − η+κ(ρnj)ϕ(tn, xj) = −∆x N X j=1 ϕ(0, xj)ηκ+(ρ0j) − ∆x∆t +∞ X n=1 N X j=1 ηκ+(ρnj)ϕ(t n, x j) − ϕ(tn−1, xj) ∆t −→∆x&0+ − Z b a ϕ(0, x)ρ0(x) dx − Z +∞ 0 Z b a ∂tϕ(t, x)ηκ+(ρ(t, x)) dx dt , and T3:= ∆t 2 +∞ X n=0 N X j=1 sgn±  ρn+1j − κ f (tn, xj+1, κ, Rnj+1) − f (tn, xj−1, κ, Rnj−1)  ϕ(tn, xj) = ∆t∆x +∞ X n=0 N X j=1 sgn+  ρn+1j − κf (t n, x j+1, κ, Rnj+1) − f (tn, xj−1, κ, Rj−1n ) 2∆x −→∆x&0+ Z +∞ 0 Z b a sgn+ρn+1j − κ∂xf (t, x, κ, R(t, x))ϕ dx dt ,

by the Dominated Convergence Theorem. Furthermore

∆t +∞ X n=0 N X j=1   Gκj+1/2(ρnj, ρnj+1) − Gκj+1/2(ρnj, ρnj)  −Gκj−1/2(ρnj−1, ρjn) − Gκj+1/2(ρnj, ρnj)  ϕ(tn, xj) = ∆t +∞ X n=0 N X j=1  Gκj+1/2(ρnj, ρnj+1) − Gκj+1/2(ρnj, ρnj)ϕ(tn, xj) − ∆t +∞ X n=0 N −1 X j=0  Gκj+1/2(ρnj, ρnj+1) − Gκj+3/2(ρnj+1, ρnj+1)ϕ(tn, xj+1) = ∆t +∞ X n=0 N −1 X j=1   Gκj+1/2(ρnj, ρnj+1) − Gκj+1/2(ρnj, ρnj)ϕ(tn, xj) −Gκj+1/2(ρnj, ρnj+1) − Gj+3/2κ (ρnj+1, ρnj+1)ϕ(tn, xj+1)  + ∆t +∞ X n=0  GκN +1/2(ρnN, ρnb) − GκN +1/2(ρnN, ρnN)ϕ(tn, xN) −  Gκ1/2(ρna, ρn1) − Gκ3/2(ρn1, ρn1)ϕ(tn, x1) =: T2int+ T2b =: T2. (2.34)

(20)

Let us define T20= − ∆t∆x X n∈N N X j=1 Gκj+1/2(ρnj, ρnj)ϕ(t n, x j+1) − ϕ(tn, xj) ∆x − α∆tX n∈N  ϕ(tn, b)ηκ+(ρnb) + ϕ(tn, a)ηκ+(ρna). Being Gκj+1/2(ρnj, ρnj) = Fj+1/2n (ρnj ∧ κ, ρnj ∧ κ) − Fj+1/2n (κ, κ) = 1 2  f (tn, xj, ρnj ∧ κ, Rjn) − f (tn, xj, κ, Rnj)  +1 2  f (tn, xj+1, ρnj ∧ κ, Rj+1n ) − f (tn, xj+1, κ, Rnj+1)  = 1 2sgn +ρn j − κ   f (tn, xj, ρnj, Rjn) − f (tn, xj, κ, Rnj)  +1 2sgn +ρn j − κ   f (tn, xj+1, ρnj, Rj+1n ) − f (tn, xj+1, κ, Rj+1n )  , it is straightforward to see that

T20−→∆x&0+ − Z +∞ 0 Z b a sgn+(ρ − κ) f (t, x, ρ, R(t, x)) − f (t, x, κ, R(t, x)) ∂xϕ(t, x) dx dt − Lip(f ) Z +∞ 0 ρa(t) − κ + ϕ(t, a) dt − Lip(f ) Z +∞ 0 ρb(t) − κ + ϕ(t, b) dt . We decompose T20 as T20= − ∆t +∞ X n=0 N X j=1 Gκj+1/2(ρnj, ρnj) ϕ(tn, xj+1) − ϕ(tn, xj)  − α∆t +∞ X n=0   ϕ(tn, b)ηκ+(ρnb) + ϕ(tn, a)η+κ(ρna)  = − ∆t +∞ X n=0   N X j=1 Gκj+1/2(ρnj, ρnj)ϕ(tn, xj+1) − N −1 X j=0 Gκj+3/2(ρnj+1, ρnj+1)ϕ(tn, xj+1)   − α∆t +∞ X n=0   ϕ(tn, b)ηκ+(ρnb) + ϕ(tn, a)η+κ(ρna)  = − ∆t +∞ X n=0 N −1 X j=1  Gκj+1/2(ρnj, ρnj) − Gκj+3/2(ρnj+1, ρnj+1)ϕ(tn, xj+1) − ∆t +∞ X n=0  GκN +1/2(ρnN, ρNn)ϕ(tn, xN +1) − Gκ3/2(ρ n 1, ρn1)ϕ(tn, x1)  − α∆t +∞ X n=0   ϕ(tn, b)ηκ+(ρnb) + ϕ(tn, a)η+κ(ρna)  =: T20int+ T20b .

(21)

We rewrite T20int= − ∆t +∞ X n=0 N −1 X j=1  Gκj+1/2(ρnj, ρnj) ∓ Gκj+1/2jn, ρnj+1) − Gκj+3/2(ρnj+1, ρnj+1)  ϕ(tn, xj+1) = ∆t +∞ X n=0 N −1 X j=1 ϕ(tn, xj+1)  Gκj+1/2(ρnj, ρnj+1) − Gκj+1/2(ρnj, ρnj) − ∆t +∞ X n=0 N −1 X j=1 ϕ(tn, xj+1)  Gκj+1/2(ρnj, ρnj+1) − Gκj+3/2(ρnj+1, ρnj+1). Hence T int 2 − T20int ≤ ∆t +∞ X n=0 N −1 X j=1 ϕ(tn, xj) − ϕ(tn, xj+1) G κ j+1/2(ρ n j, ρnj+1) − Gκj+1/2(ρ n j, ρnj) . Notice that G κ j+1/2(ρ n j, ρnj+1) − Gκj+1/2(ρ n j, ρnj) = = 1 2 f (tn, xj+1, ρnj+1∧ κ, Rnj+1) − f (tn, xj+1, ρnj ∧ κ, Rj+1n ) + α  ρnj ∧ κ − ρn j+1∧ κ  ≤ L + α 2 ρ n j+1− ρnj ≤ α ρ n j+1− ρnj ,

according to conditions (2.3). Therefore T int 2 − T20int ≤ α∆x∆tkϕxkL∞ +∞ X n=0 N −1 X j=1 ρ n j+1− ρnj ≤ α∆x T kϕxkL∞ max 0≤n≤T /∆tTV(ρ∆(t n, ·)) = O(∆x) ,

thanks to the uniform BV bound (2.13). We now compare the terms T2b and T20b :

T20b − Tb 2 = − ∆t +∞ X n=0  GκN +1/2(ρnN, ρnN)ϕ(tn, xN +1) − Gκ3/2(ρn1, ρn1)ϕ(tn, x1)  − α∆t +∞ X n=0  ϕ(tn, b)η+κ(ρnb) + ϕ(tn, a)ηκ+(ρna)  − ∆t +∞ X n=0  GκN +1/2(ρnN, ρnb) − GκN +1/2(ρnN, ρnN)  ϕ(tn, xN) + ∆t +∞ X n=0  Gκ1/2(ρna, ρn1) − Gκ3/2(ρn1, ρn1)ϕ(tn, x1) = ∆t +∞ X n=0  Gκ1/2(ρna, ρn1)ϕ(tn, x1) − αηκ+(ρna)ϕ(tn, a) 

(22)

− ∆t +∞ X n=0  αη+κ(ρnb)ϕ(tn, b) + GκN +1/2(ρnN, ρnb)ϕ(tn, xN)  − ∆t +∞ X n=0  GκN +1/2(ρnN, ρnN) ϕ(tn, xN +1) − ϕ(tn, xN)  = ∆t +∞ X n=0   Gκ1/2(ρna, ρn1) − αη+κ(ρna)ϕ(tn, a) −αηκ+(ρnb) + GκN +1/2(ρnN, ρnb)ϕ(tn, b)  + O(∆x) ,

owing to the regularity of ϕ. Indeed, we observe that

∆t X n∈N  GκN +1/2(ρnN, ρnN) ϕ(tn, xN +1) − ϕ(tn, xN)  ≤ ∆t∆xkϕxkL∞ X n∈N G κ N +1/2(ρ n N, ρnN) = ∆t∆xkϕxkL∞ X n∈N F n N +1/2(ρ n N ∧ κ, ρnN ∧ κ) − FN +1/2n (κ, κ) ≤ ∆t∆xkϕxkL∞ 2 X n∈N  f (tn, xN, ρnN∧ κ, RnN) − f (tn, xN, κ, RnN)  +∆t∆xkϕxkL∞ 2 X n∈N  f (tn, xN +1, ρnN∧ κ, RnN +1) − f (tn, xN +1, κ, RN +1n )  ≤ L∆t∆xkϕxkL∞ X n∈N ρnN − κ+ ≤ LT kϕxkL∞eLTkρ0kL(I)∆x = O(∆x) ,

thanks to the L∞-bound (2.9). Moreover, since

j+1/2(u, v) = Fj+1/2n (u ∧ κ, v ∧ κ) − Fj+1/2n (κ, κ) ≥ Fj+1/2n (κ, v ∧ κ) − Fj+1/2n (κ, κ) = 1 2  f (tn, xj+1, v ∧ κ, Rnj+1) − f (tn, xj+1, κ, Rj+1n ) − α (v ∧ κ − κ)  ≥ −1 2  L|v ∧ κ − κ| + α (v − κ)+ = −1 2  L (v − κ)++ α (v − κ)+  ≥ −α (v − κ)+ and Gκj+1/2(u, v) = Fj+1/2n (u ∧ κ, v ∧ κ) − Fj+1/2n (κ, κ) ≤ Fn j+1/2(u ∧ κ, κ) − Fj+1/2n (κ, κ) = 1 2  f (tn, xj, u ∧ κ, Rnj) − f (tn, xj, κ, Rnj) + α (u ∧ κ − κ)  ≤ 1 2  L|u ∧ κ − κ| + α (u − κ)+ 

(23)

= 1 2  L (u − κ)++ α (u − κ)+  ≤ α (u − κ)+, we conclude that T20b − Tb 2 ≤ O(∆x) . Therefore we get 0 ≥ T1+ T3+ T2 = T1+ T3+ T2int+ T2b ≥ T1+ T3+ T2int+ T20b − O(∆x) = T1+ T3+ T20− O(∆x) ,

thus concluding the proof. 

3

Stability

Proposition 2 Under hypotheses (1.2), let ρ, σ ∈ C0 R+; L1(I; R+) ∩ BV [0, T ] × I; R, T > 0, be two weak entropy solutions to (1.1), with initial data ρ0, σ0 ∈ L∞ I, R+ and boundary data

ρa, ρb, σa, σb∈ L∞ R+; R+ respectively. Then the following estimate holds:

kρ(T, ·) − σ(T, ·)kL1(I) ≤ eST  kρ0− σ0kL1(I)+ (L + S0)  kρa− σakL1([0,T ])+ kρb− σbkL1([0,T ])  , (3.1) where the constants S, S0 are defined by (3.6), (3.7) and (3.10), and L is as in (2.28).

Proof. Let ρ, σ be two weak entropy solutions to (1.1), with fluxes f (t, x, ρ, R(t, x)) and f (t, x, σ, S(t, x)) respectively, where R(t, x) := Z R ρ(t, y)η(x − y) dy and S(t, x) := Z R σ(t, y)η(x − y) dy . In particular from Definition 2, they satisfy

∂t|ρ − κ| + d dx h sgn (ρ − κ) f (t, x, ρ, R(t, x)) − f (t, x, κ, R(t, x)) i + sgn (ρ − κ) d dxf (t, x, κ, R(t, x)) ≤ 0, (3.2) ∂t|σ − κ| + d dx h sgn (σ − κ) f (t, x, σ, S(t, x)) − f (t, x, κ, S(t, x))i + sgn (σ − κ) d dxf (t, x, κ, S(t, x)) ≤ 0, (3.3)

in distributional sense on R+× I. Rearranging (3.2) we get

0 ≥ ∂t|ρ − κ| + sgn (ρ − κ)

d

dx f (t, x, κ, R(t, x)) ± f (t, x, κ, S(t, x)) 

(24)

+ d dx h sgn (ρ − κ) f (t, x, ρ, R(t, x)) − f (t, x, κ, R(t, x)) ± f (t, x, ρ, S(t, x)) ± f (t, x, κ, S(t, x)) i = ∂t|ρ − κ| + d dx h sgn (ρ − κ) f (t, x, ρ, S(t, x)) − f (t, x, κ, S(t, x))i + sgn (ρ − κ) d dxf (t, x, κ, S(t, x)) + d dx  sgn (ρ − κ) f (t, x, ρ, R(t, x)) − f (t, x, ρ, S(t, x)) − f (t, x, κ, R(t, x)) − f (t, x, κ, S(t, x))  + sgn (ρ − κ) d dxf (t, x, κ, R(t, x)) − f (t, x, κ, S(t, x)) , thus ∂t|ρ − κ| + d dx h sgn (ρ − κ) f (t, x, ρ, S(t, x)) − f (t, x, κ, S(t, x)) i + sgn (ρ − κ) d dxf (t, x, κ, S(t, x)) ≤ d dx  sgn (ρ − κ) h f (t, x, ρ, S(t, x)) − f (t, x, ρ, R(t, x)) − f (t, x, κ, S(t, x)) − f (t, x, κ, R(t, x))i  + sgn (ρ − κ) d dxf (t, x, κ, S(t, x)) − f (t, x, κ, R(t, x)) . (3.4) Notice that from (1.5) we can bound

R(t, x) − S(t, x) ≤ kηkL∞ Z b a ρ(t, x) − σ(t, x) dx + ρa(t) − σa(t) + ρb(t) − σb(t) , ∂xR(t, x) − ∂xS(t, x) ≤ k∂xηkL∞ Z b a ρ(t, x) − σ(t, x) dx + kηkL∞  ρa(t) − σa(t) + ρb(t) − σb(t)  . Therefore we recover the following estimate:

d dx f (t, x, κ, S(t, x)) − f (t, x, κ, R(t, x))  ≤ ≤ ∂xf (t, x, κ, S(t, x)) − ∂xf (t, x, κ, R(t, x)) + ∂Rf (t, x, κ, S(t, x)) ∂xS(t, x) − ∂Rf (t, x, κ, R(t, x)) ∂xR(t, x) ± ∂Rf (t, x, κ, S(t, x)) ∂xR(t, x) ≤ ∂ 2 xRf (t, x, κ, ˜R1(t, x)) S(t, x) − R(t, x) + ∂Rf (t, x, κ, S(t, x)) ∂xS(t, x) − ∂xR(t, x) + ∂Rf (t, x, κ, S(t, x)) − ∂Rf (t, x, κ, R(t, x)) ∂xR(t, x) ≤  ∂ 2 xRf (t, x, κ, ˜R1(t, x)) + ∂ 2 RRf (t, x, κ, ˜R2(t, x)) ∂xR(t, x)  S(t, x) − R(t, x) + ∂Rf (t, x, κ, S(t, x)) ∂xS(t, x) − ∂xR(t, x) ≤ C|κ|1 + ∂xR(t, x)  S(t, x) − R(t, x) + C|κ| ∂xS(t, x) − ∂xR(t, x) = C|κ| 1 + Z R ∂xη(x − y)ρ(t, y)dy ! S(t, x) − R(t, x) + C|κ| ∂xS(t, x) − ∂xR(t, x) ≤ C|κ|1 + ρ(t, ·) L∞k∂xηkL1  S(t, x) − R(t, x) + C|κ| ∂xS(t, x) − ∂xR(t, x) ≤ C|κ|1 + ρ(t, ·) L∞k∂xηkL1  " kηkL∞ Z b a ρ(t, x) − σ(t, x) dx + ρa(t) − σa(t) + ρb(t) − σb(t) # + C|κ| " k∂xηkL∞ Z b a ρ(t, x) − σ(t, x) dx + kηkL∞  ρa(t) − σa(t) + ρb(t) − σb(t)  #

(25)

≤ C|κ|  kηkL∞  1 + ρ(t, ·) L∞k∂xηkL1  + k∂xηkL∞  Z b a ρ(t, x) − σ(t, x) dx + C|κ|1 + ρ(t, ·) L∞k∂xηkL1+ kηkL∞   ρa(t) − σa(t) + ρb(t) − σb(t)  ≤ S1 Z b a ρ(t, y) − σ(t, y) dy + S10  ρa(t) − σa(t) + ρb(t) − σb(t)  , (3.5) where S1= C sup t∈[0,T ] ( maxn ρ(t, ·) L∞, σ(t, ·) L∞ o kηkL∞  1 + ρ(t, ·) L∞k∂xηkL1  + k∂xηkL∞ ) , (3.6) S10 = C sup t∈[0,T ]  maxn ρ(t, ·) L∞, σ(t, ·) L∞ o  1 + ρ(t, ·) L∞k∂xηkL1 + kηkL∞  , (3.7)

which are bounded by assumption. Moreover d dx  sgn (ρ − κ) h f (t, x, ρ, S(t, x)) − f (t, x, ρ, R(t, x)) − f (t, x, κ, S(t, x)) − f (t, x, κ, R(t, x))i  = ∂xf (t, x, ρ, S(t, x)) − ∂xf (t, x, ρ, R(t, x)) + ∂xf (t, x, κ, R(t, x)) − ∂xf (t, x, κ, S(t, x)) + ∂Rf (t, x, ρ, S(t, x)) ∂xS(t, x) − ∂xR(t, x) + ∂xR(t, x) ∂xf (t, x, ρ, S(t, x)) − ∂xf (t, x, ρ, R(t, x))  + ∂Rf (t, x, κ, S(t, x)) ∂xR(t, x) − ∂xS(t, x) + ∂xR(t, x) ∂xf (t, x, κ, R(t, x)) − ∂xf (t, x, κ, S(t, x)) o = ∂ 2 xRf (t, x, ρ, ˜R1) S(t, x) − R(t, x) + ∂xR2 f (t, x, κ, ˜R2) R(t, x) − S(t, x)  + ∂Rf (t, x, ρ, S(t, x)) ∂xS(t, x) − ∂xR(t, x) + ∂xR(t, x) ∂xR2 f (t, x, ρ, ˜R3) S(t, x) − R(t, x)  + ∂Rf (t, x, κ, S(t, x)) ∂xR(t, x) − ∂xS(t, x) +∂xR(t, x) ∂xR2 f (t, x, κ, ˜R4) R(t, x) − S(t, x)  ≤ C kρ(t, ·)kL∞+ |κ| 1 + kρ(t, ·)kL∞k∂xηkL1  R(t, x) − S(t, x) + C kρ(t, ·)kL∞+ |κ| ∂xR(t, x) − ∂xS(t, x) = S2 Z b a ρ(t, y) − σ(t, y) dy + S20  ρa(t) − σa(t) + ρb(t) − σb(t)  , (3.8) being S2 = 2S1 and S20 = 2S10.

Inserting estimates (3.5) and (3.8) in (3.4) we get ∂t|ρ − κ| + d dx h sgn (ρ − κ) f (t, x, ρ, S(t, x)) − f (t, x, κ, S(t, x))i+ sgn (ρ − κ) d dxf (t, x, κ, S(t, x)) ≤ S Z b a ρ(t, y) − σ(t, y) dy + S0  ρa(t) − σa(t) + ρb(t) − σb(t)  , (3.9) with S = S1+ S2 = 3S1 and S0 = S10 + S 0 2 = 3S 0 1. (3.10)

Following [6, Theorem 2] and [25, Theorem 15.1.5], we apply the standard Kruˇzhkov doubling of variable technique [20, Section 3] to (3.9) and (3.3), with a test function ϕ ∈ Cc1(R × I; R+). We obtain the following Kato inequality

Z b a ρ0(x) − σ0(x) ϕ(0, x) dx

(26)

+ Z +∞ 0 Z b a  ρ(t, x) − σ(t, x) ∂tϕ + sgn (ρ − σ)f (t, x, ρ, S(t, x)) − f (t, x, σ, S(t, x)) ∂xϕ  dx dt + SkϕkL∞ Z +∞ 0 Z b a ρ(t, x) − σ(t, x) dx ! dt + S0kϕkL∞ Z +∞ 0  ρa(t) − σa(t) + ρb(t) − σb(t)  dt ≥ 0 . (3.11)

We now consider in (3.11) a test function of the form ϕ(t, x) = ψ(t)θδ(x), where θδ ∈ C1([a, b]) be

such that

θδ(a) = 0, θδ(b) = 0,

δ0k∞≤ K/δ,

θδ≡ 1 on [a + δ, b − δ],

0 ≤ θδ(x) ≤ 1 for all x ∈ [a, b],

where C does not depend on δ, and ψ ∈ Cc1([0, T [). In this case, (3.11) becomes Z b a ρ0(x) − σ0(x) ψ(0)θδ(x) dx + Z +∞ 0 Z b a  ρ(t, x) − σ(t, x) θδ(x)ψ0(t) +ψ(t)θ0δ(x) sgn (ρ − σ)f (t, x, ρ, S(t, x)) − f (t, x, σ, S(t, x))dx dt + SkϕkL∞ Z T 0 Z b a ρ(t, x) − σ(t, x) dx ! dt + S0kϕkL∞ Z T 0  ρa(t) − σa(t) + ρb(t) − σb(t)  dt ≥ 0 . (3.12)

Integrating by parts in (3.12) and letting δ & 0 we obtain Z b a ρ0(x) − σ0(x) ψ(0) dx + Z +∞ 0 Z b a ρ(t, x) − σ(t, x) ψ0(t) dx dt + SkϕkL∞ Z T 0 Z b a ρ(t, x) − σ(t, x) dx ! dt + S0kϕkL∞ Z T 0  ρa(t) − σa(t) + ρb(t) − σb(t)  dt + Z +∞ 0 ψ(t)  sgnρ(t, a+) − σ(t, a+) hf (t, a, ρ(t, a+), S(t, a)) − f (t, a, σ(t, a+), S(t, a))i − sgnρ(t, b−) − σ(t, b−) hf (t, b, ρ(t, b−), S(t, b)) − f (t, b, σ(t, b−), S(t, b))i  dt ≥ 0 . (3.13) From the weak boundary conditions (1.7) and (1.8), we earn

sgn  ρ(t, a+) − σ(t, a+)  h f (t, a, ρ(t, a+), S(t, a)) − f (t, a, σ(t, a+), S(t, a)) i = 1 2sgn  ρ(t, a+) − σ(t, a+)  h f (t, a, ρ(t, a+), S(t, a)) − f (t, a, σ(t, a+), S(t, a)) i

(27)

+ 1 2sgn  ρ(t, a+) − σ(t, a+)  h f (t, a, ρ(t, a+), S(t, a)) − f (t, a, σ(t, a+), S(t, a)) i ≤ 1 2sgn  ρa(t) − σ(t, a+)  h f (t, a, ρ(t, a+), S(t, a)) − f (t, a, σ(t, a+), S(t, a)) i + 1 2sgn  ρ(t, a+) − σa(t)  h f (t, a, ρ(t, a+), S(t, a)) − f (t, a, σ(t, a+), S(t, a))i = 1 2  sgnρa(t) − σ(t, a+)  + sgnρ(t, a+) − σa(t) h f (t, a, ρ(t, a+), S(t, a)) − f (t, a, σ(t, a+), S(t, a))i ≤ sup s,r∈I(ρa(t),σa(t)) f (t, a, s, S(t, a)) − f (t, a, r, S(t, a)) ≤ sup s,r∈I(ρa(t),σa(t)) L|s − r| ≤ L ρa(t) − σa(t) , (3.14) and sgn  ρ(t, b−) − σ(t, b−)  h f (t, b, ρ(t, b−), S(t, b)) − f (t, b, σ(t, b−), S(t, b)) i = 1 2sgn  ρ(t, b−) − σ(t, b−)  h f (t, b, ρ(t, b−), S(t, b)) − f (t, b, σ(t, b−), S(t, b)) i + 1 2sgn  ρ(t, b−) − σ(t, b−)  h f (t, b, ρ(t, b−), S(t, b)) − f (t, b, σ(t, b−), S(t, b)) i ≥ 1 2sgn  ρb(t) − σ(t, b−)  h f (t, b, ρ(t, b−), S(t, b)) − f (t, b, σ(t, b−), S(t, b)) i + 1 2sgn  ρ(t, b−) − σb(t)  h f (t, b, ρ(t, b−), S(t, b)) − f (t, b, σ(t, b−), S(t, b))i = 1 2  sgnρb(t) − σ(t, b−)  + sgnρ(t, b−) − σb(t) h f (t, b, ρ(t, b−), S(t, b)) − f (t, b, σ(t, b−), S(t, b))i ≥ − sup s,r∈I(ρb(t),σb(t)) f (t, b, s, S(t, b)) − f (t, b, r, S(t, b)) ≥ − sup s,r∈I(ρb(t),σb(t)) L|s − r| ≥ − L ρb(t) − σb(t) . (3.15)

Collecting (3.14) and (3.15) we conclude that Z +∞ 0 ψ(t)  sgn  ρ(t, a+) − σ(t, a+)  h f (t, a, ρ(t, a+), S(t, a)) − f (t, a, σ(t, a+), S(t, a)) i − sgnρ(t, b−) − σ(t, b−)  h f (t, b, ρ(t, b−), S(t, b)) − f (t, b, σ(t, b−), S(t, b)) i dt ≤ L Z +∞ 0 ψ(t) ρa(t) − σa(t) + ρb(t) − σb(t)  dt. Thus (3.13) becomes Z b a ρ0(x) − σ0(x) ψ(0) dx + Z +∞ 0 Z b a ρ(t, x) − σ(t, x) ψ0(t) dx dt + SkϕkL∞ Z T 0 Z b a ρ(t, x) − σ(t, x) dx ! dt

(28)

+ S0kϕkL∞ Z T 0  ρa(t) − σa(t) + ρb(t) − σb(t)  dt + L Z +∞ 0 ψ(t) ρa(t) − σa(t) + ρb(t) − σb(t)  dt ≥ 0 . We choose the test function ψ = ψ as

ψ(t) =        1 if t ∈ [0, T − [ ψ(t) ∈ [0, 1] for all t ∈ [0, T ] |ψ0 (t)| ≤ K/ for all t ∈ [0, T ] . As  & 0, we get kρ(T, ·) − σ(T, ·)kL1(I) ≤ kρ0− σ0kL1(I)+ L  kρb− σbkL1([0,T ])+ kρa− σakL1([0,T ])  +S Z T 0 kρ(t, ·) − σ(t, ·)kL1(I)dt + S0 Z T 0  ρa(t) − σa(t) + ρb(t) − σb(t)  dt ,

and Gronwall’s lemma allows us to recover (3.1). 

References

[1] A. Aggarwal, R. M. Colombo, and P. Goatin. Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal., 53(2):963–983, 2015.

[2] D. Amadori, S.-Y. Ha, and J. Park. On the global well-posedness of the bv weak solutions to the Kuramoto-Sakaguchi equation. Submitted.

[3] D. Amadori and W. Shen. An integro-differential conservation law arising in a model of granular flow. J. Hyperbolic Differ. Equ., 9(1):105–131, 2012.

[4] P. Amorim. On a nonlocal hyperbolic conservation law arising from a gradient constraint problem. Bull. Braz. Math. Soc. (N.S.), 43(4):599–614, 2012.

[5] P. Amorim, R. Colombo, and A. Teixeira. On the numerical integration of scalar nonlocal conservation laws. ESAIM M2AN, 49(1):19–37, 2015.

[6] C. Bardos, A. Y. le Roux, and J.-C. N´ed´elec. First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations, 4(9):1017–1034, 1979.

[7] F. Betancourt, R. B¨urger, K. H. Karlsen, and E. M. Tory. On nonlocal conservation laws modelling sedimentation. Nonlinearity, 24(3):855–885, 2011.

[8] S. Blandin and P. Goatin. Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math., 132(2):217–241, 2016.

[9] F. Bouchut and B. Perthame. Kruˇzkov’s estimates for scalar conservation laws revisited. Trans. Amer. Math. Soc., 350(7):2847–2870, 1998.

[10] J. A. Carrillo, S. Martin, and M.-T. Wolfram. An improved version of the Hughes model for pedestrian flow. Math. Models Methods Appl. Sci., 26(4):671–697, 2016.

[11] R. M. Colombo, M. Garavello, and M. L´ecureux-Mercier. A class of nonlocal models for pedestrian traffic. Mathematical Models and Methods in Applied Sciences, 22(04):1150023, 2012.

[12] R. M. Colombo, M. Herty, and M. Mercier. Control of the continuity equation with a non local flow. ESAIM Control Optim. Calc. Var., 17(2):353–379, 2011.

(29)

[13] R. M. Colombo and M. L´ecureux-Mercier. Nonlocal crowd dynamics models for several populations. Acta Math. Sci. Ser. B Engl. Ed., 32(1):177–196, 2012.

[14] G. Crippa and M. L´ecureux-Mercier. Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow. Nonlinear Differential Equations and Applications NoDEA, pages 1–15, 2012.

[15] F. Dubois and P. LeFloch. Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations, 71(1):93–122, 1988.

[16] R. Eymard, T. Gallou¨et, and R. Herbin. Finite volume methods. In Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, pages 713–1020. North-Holland, Amsterdam, 2000.

[17] P. Goatin and S. Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Netw. Heterog. Media, 11(1):107–121, 2016.

[18] S. G¨ottlich, S. Hoher, P. Schindler, V. Schleper, and A. Verl. Modeling, simulation and validation of material flow on conveyor belts. Applied Mathematical Modelling, 38(13):3295 – 3313, 2014.

[19] M. Gr¨oschel, A. Keimer, G. Leugering, and Z. Wang. Regularity theory and adjoint-based optimal-ity conditions for a nonlinear transport equation with nonlocal velocoptimal-ity. SIAM J. Control Optim., 52(4):2141–2163, 2014.

[20] S. N. Kruˇzhkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (123):228–255, 1970.

[21] A. Kurganov and A. Polizzi. Non-oscillatory central schemes for a traffic flow model with arrehenius look-ahead dynamics. Netw. Heterog. Media, 4(3):431–451, 2009.

[22] J. M´alek, J. Neˇcas, M. Rokyta, and M. R˚uˇziˇcka. Weak and measure-valued solutions to evolutionary PDEs, volume 13 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London, 1996.

[23] F. Otto. Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci. Paris S´er. I Math., 322(8):729–734, 1996.

[24] B. Perthame. Transport equations in biology. Frontiers in Mathematics. Birkh¨auser Verlag, Basel, 2007. [25] D. Serre. Systems of conservation laws. 1 & 2. Cambridge University Press, Cambridge, 1999. Translated

from the 1996 French original by I. N. Sneddon.

[26] A. Sopasakis and M. A. Katsoulakis. Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM J. Appl. Math., 66(3):921–944 (electronic), 2006.

[27] J. Vovelle. Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math., 90(3):563–596, 2002.

Références

Documents relatifs

In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with

In addition, sharing and participation in research may result in new forms of labour mobilization and value extraction related to the production, mobilization and

En effet, si l’on reprend le premier volet de leur argument – la construction d’une embarcation complexe –, nous avons vu antérieurement que les aptitudes techniques

In order to understand whether the mean growth rate of high-elevation forests over the MTP is stim- ulated by warming or suppressed by moisture limit- ation, we developed a

Keywords: scalar conservation law, nonlocal point constraint, well-posedness, fixed point argument, finite volume scheme, convergence of approximations, vehicular traffics,

exists a unique L ∞ (0, T ; BV (Ω)) entropy solution of the onservation law satisfying (pointwise on Σ ) the BLN boundary ondition; and that this solution is the limit of the

Perthame in [7,8] (see also [2] for another formulation of the same result using measure valued solutions): uniqueness is in fact proved in a broader class of solutions,

However, many missing proteins may be present at levels below detection limits or in under-studied cell types/tissues, expressed under particular conditions (e.g., stress/infection)