• Aucun résultat trouvé

Increased production of cosmogenic 10 Be recorded in oceanic sediment sequences: Information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama–Brunhes transition

N/A
N/A
Protected

Academic year: 2021

Partager "Increased production of cosmogenic 10 Be recorded in oceanic sediment sequences: Information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama–Brunhes transition"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-01735837

https://hal.archives-ouvertes.fr/hal-01735837

Submitted on 16 Mar 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0

International License

Increased production of cosmogenic 10 Be recorded in

oceanic sediment sequences: Information on the age,

duration, and amplitude of the geomagnetic dipole

moment minimum over the Matuyama–Brunhes

transition

Quentin Simon, Nicolas Thouveny, Didier Bourlès, Franck Bassinot, Tatiana

Savranskaia, Jean-Pierre Valet

To cite this version:

Quentin Simon, Nicolas Thouveny, Didier Bourlès, Franck Bassinot, Tatiana Savranskaia, et al..

Increased production of cosmogenic 10 Be recorded in oceanic sediment sequences:

Informa-tion on the age, duraInforma-tion, and amplitude of the geomagnetic dipole moment minimum over the

Matuyama–Brunhes transition. Earth and Planetary Science Letters, Elsevier, 2018, 489,

pp.191-202. �10.1016/j.epsl.2018.02.036�. �hal-01735837�

(2)

Contents lists available atScienceDirect

Earth

and

Planetary

Science

Letters

www.elsevier.com/locate/epsl

Increased

production

of

cosmogenic

10

Be

recorded

in

oceanic

sediment

sequences:

Information

on

the

age,

duration,

and

amplitude

of

the

geomagnetic

dipole

moment

minimum

over

the

Matuyama–Brunhes

transition

Quentin Simon

a

,

b

,

,

Nicolas Thouveny

a

,

Didier

L. Bourlès

a

,

Franck Bassinot

c

,

Tatiana Savranskaia

b

,

Jean-Pierre Valet

b

,

ASTER

Team

1

aCEREGEUM34,AixMarseilleUniv.,CNRS,IRD,INRA,CollFrance,Aix-en-Provence,France

bInstitutdePhysiqueduGlobedeParis,SorbonneParis-Cité,UniversitéParisDiderot,UMR7154CNRS,Paris,France cLSCE,UMR8212,LSCE/IPSL,CEA–CNRS–UVSQandUniversitéParis-Saclay,Gif-Sur-Yvette,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received20December2017

Receivedinrevisedform22February2018 Accepted24February2018

Availableonlinexxxx Editor:M.Frank Keywords:

authigenic10Be/9Beratio

geomagneticdipolemomentminimum Matuyama–Brunhestransition(MBT) geomagneticpolarityreversal marineisotopestage19 atmospheric10Beproductionrates

Newhigh-resolutionauthigenic10Be/9Beratio(Be-ratio)recordscoveringthelastgeomagneticreversal, i.e.theMatuyama–Brunhestransition(MBT),havebeenobtainedandsetonatimescaleusingbenthic

δ18O(Cibicideswuellerstorfi)records.Thegeographic distributionofthefourstudiedsitesallowsglobal comparisonbetweenthe NorthAtlantic, Indianand PacificOceans.AllBe-ratiorecordscontain a two-foldincreasetriggeredbythegeomagneticdipolemoment(GDM)collapseassociatedwiththeMBT.The stratigraphicpositionoftheBe-ratiospike,relativetomarine isotopestages,allowsestablishmentofa robustastrochronological frameworkfortheMBT, anchoringitsagebetween778and 766ka(average mid-peaksat772ka),whichisconsistentwithallotheravailable10Be-proxyrecordsfrommarine,ice andloessarchives.Theglobal10Beatmosphericproductiondoublingrepresentsanincreaseofmorethan 300 atoms m−2s−1 that is compatiblewith the increased magnitudeofatmospheric 10Be production obtainedbysimulationsbetweenthepresentGDM andanull-GDM.Theminimum10Be-derivedGDM average computed for the 776–771 ka interval is 1.7±0.4×1022 Am2, in agreement with model simulationsandabsolutepaleointensitiesoftransitionallavaflows.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The systematic coupling of polarity reversals with geomag-netic dipole moment (GDM) collapses constitutes the main en-tryforunderstandingfundamentalmechanismsofthegeodynamo (e.g. Amit et al., 2010). Magnetohydrodynamic models are be-ginning to provide insights into these mechanisms (Glatzmaier and Coe, 2015), but high-resolution and high-quality observa-tions are vital to provide accurate constraints on long-term and rapidGDM variations. Paleomagnetic studies of the last geomag-netic reversal, i.e. the Matuyama–Brunhes transition (MBT), pro-vide numerous records of dipole moment variations and virtual geomagnetic pole (VGP) paths of transitional states (e.g.

synthe-*

Correspondingauthorat:CEREGEUM34,AixMarseilleUniv.,CNRS,IRD,INRA, CollFrance,Aix-en-Provence,France.

E-mailaddress:simon @cerege .fr(Q. Simon).

1 GeorgesAumaître,KarimKeddadouche.

sis by Valet and Fournier, 2016), but severalinconsistencies lead to conflicting interpretations on the geometry andchronology of the transitional field (Tauxe et al., 1996; Channell et al., 2010; Valet et al., 2012,2016; Sagnotti etal., 2016; Mark et al., 2017; Channell,2017).Insedimentarypaleomagneticrecords,thesources ofsuch unconformities inconsistencies aremultiple: i) multicom-ponent magnetizations (Roberts, 2015); ii) uncertainties or even ignoranceaboutsedimentmagnetizationlock-inprocesses(Roberts etal., 2013) andthe influenceof strongerpost-transitional fields and(partial-) remagnetization/realignment ofgrains deposited in weakfields(CoeandLiddicoat,1994; Simonetal.,2018);iii) sig-nalsmearingandaveragingduetoinsufficienttemporalresolution (RobertsandWinklhofer,2004; Valetetal.,2016; Channell,2017). Volcanicpaleomagneticrecordssufferfrom:i)spatial heterogene-ityofthermoremanentmagnetizationacquisitionalong/acrosslava flowsections;ii)theinfluenceofthemagnetizationofunderlying lavaflows onthelocalfieldrecordedby theoverlyingflow while cooling (Vellaetal., 2017);iii) discontinuous lavaemission rates. Other biasesthataffectboth typesofrecordsaredueto regional https://doi.org/10.1016/j.epsl.2018.02.036

0012-821X/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

Fig. 1. Geographiclocationsofthefourstudiedcores(blackcircles)alongwithBe-ratioand10Be-fluxfrommarineandglacialrecordsdiscussedinthetext(whitecircles).

Thesereferencesinclude:MontalbanoJonico(Simonetal.,2017);EpicaDomeC(EDC)(Raisbecketal.,2006);MD97-2140(Carcailletetal.,2003);MD97-2143(Simonet al.,2018);MD05-2930(Ménabréazetal.,2014; Simonetal.,2016a),andMD98-2187(Suganumaetal.,2010).(Forinterpretationofthecolorsinthefigure(s),thereaderis referredtothewebversionofthisarticle.)

effects of non-dipole field sources (Leonhardt and Fabian, 2007; Amitetal., 2010) and chronological uncertainties in astrochrono-logical,radiometricandother datingcalibrations(e.g.Lisieckiand Raymo,2009; Jichaetal.,2016; Niespoloetal.,2017).Allofthese factorsrestrictthereliabilityofourunderstandingofthe morphol-ogy(intensityanddirection)andchronology(timingandduration) oftransitionalfields.

Acomplementary andindependentmethod toreconstructthe GDMvariationisprovided byreconstruction oftime variations of theatmosphericproductionofthecosmogenicnuclide Beryllium-10(10Be).Pioneeringstudiesshowedthatcosmogenicnuclide

pro-ductionis inverselyproportionalto theGDM (e.g.LalandPeters,

1967).Thisinverserelationshipwaslaterdemonstratedand quan-tified (e.g. Kovaltsov and Usoskin, 2010 and references therein). The mostdetailed10Be recordsfrom marine sediments,loess, or

ice cores also document large 10Be overproduction episode that correspondsto thedipoleintensitycollapseattheMBT(Raisbeck etal., 1985, 2006; Carcaillet et al., 2003, 2004; Suganumaet al.,

2010; Zhou et al., 2014; Ménabréaz et al., 2014; Valet et al.,

2014; Simon et al., 2017, 2018). Recent studies by Simon et al. (2016a, 2018) further strengthen evidencefor the systematic oc-currenceof10Beoverproductionepisodesassociatedwith geomag-netic dipole minima linked to polarity reversals and excursions overthelast2Ma.Thissupportstheuseof10Beforreconstructing

accurateGDMchanges.

Here,wepresentnewauthigenic10Be/9Beratio(Be-ratio here-after)andbenthic

δ

18OresultsacrosstheMBTintervalfromthree marine sediment corescollected in theIndian, Pacific,andNorth AtlanticOceans,whichareintegratedwithpublished resultsfrom core MD90-0961 (Valet etal., 2014). The 2-cm sampling resolu-tion allows interpretation and comparison of Be-ratio variations during the last reversal from these four distant sites with un-precedentedhigh-resolution.The

δ

18Orecordspermit comparison ofthestratigraphicpositionsofBe-ratiovariationsandenable de-velopmentofareliableastrochronologicalframeworkfortheMBT. Robust reconstruction of dipole moment variations over the last geomagneticreversalprovides newconstraints,independentfrom paleomagnetism, which assists with understanding paleo-records andgeodynamosimulations.

2. Materialsandmethods

2.1. Corelocationsandsamplingstrategy

Themarinesedimentcoresstudiedwereretrievedusingthe Ca-lypso coring systemon boardthe R/VMarion-Dufresne fromthe Indian (MD90-0949 and MD90-0961), Pacific (MD98-2183), and North Atlantic (MD95-2016) Oceans (Fig. 1 and Table 1). They were sampledusing u-channelsandindividual 8cm3 cubic plas-tic boxes forpaleomagnetic measurements. The cubeswere later subsampled forBe and

δ

18Omeasurements followingcompletion ofthepaleomagneticanalyses,whichensuresreliabledepth corre-lations betweenpaleomagneticandgeochemicalresults.Magnetic measurementsperformedonu-channelandindividualsamples in-dicate the depth ofthe MBTin coresMD98-2183 (Yamazakiand Oda,2005;Valetetal.,2016),MD90-0961(Valetetal.,2014),and MD90-0949/MD95-2016 (Valet etal., 2016). We usedthese pale-omagnetic results to sample at high-resolution over stratigraphic intervalsthatcorrespondtotheMBTineachcore.Beresultsfrom core MD90-0961 were presented by Valet etal. (2014) and cor-rectedbySimonetal. (2016a).

2.2. Oxygenisotopes

Stable oxygen isotopic compositions were measured on the benthicforaminiferaspeciesCibicideswuellerstorfi (

>

150 μm size-fraction)at

2to4cmstratigraphicintervals.Analyseswere per-formedwithVG-OptimaorElementarIsoprimedual-inletgasmass spectrometersattheLaboratoiredesSciencesduClimatetde l’En-vironnement(LSCE).Allresultsareexpressedas

δ

18Ovs. VPDB(in

h

)withrespecttoNBS19standard.Theinternalanalytical repro-ducibilitydeterminedfromreplicatemeasurementsofacarbonate standardis

±

0.05%(1

σ

).

2.3. Australasianmicrotektites

Microtektite analysis was carried out on cores MD90-0961, MD90-0949, andMD98-2183 todetect thethickness ofthe sedi-mentarymixedlayerandtoprovidean independentstratigraphic

(4)

Table 1

Corelocationsandaveragesedimentationrates. Cores Latitude/longitude (◦) Waterdepth (m) Averagesedimentation rate(cm/ka) #Be samples MD98-2183 2◦00.82N/135◦01.26E 4388 2.0±0.6 138 MD95-2016 57◦42.46N 29◦25.44’W 2318 3.1±1.0 182 MD90-0949 2◦06.90N 76◦06.50E 3600 2.0±0.5 124 MD90-0961 5◦03.71N 73◦52.57E 2446 4.2±0.6 116 MD97-2143a 1587N/12465E 2989 1.1±0.3 51

Averagesedimentationratesandsamplenumbersarefromthe∼700–850kaageintervalineachcore(seedata inthesupplementarymaterial,TablesS1–S4).

a DatafromSimonetal. (2018).

marker.Thesemicrotektiteswere producedafterameteoritic

im-pact that preceded the MBT by 12–15 ka, and are found in

marine sediments throughout much of the Indian Ocean and in marginalseasofthewesternPacificOcean(Schneideretal.,1992; LeeandWei,2000; Suganumaetal.,2011; Valetetal.,2014). Fol-lowingtheprocedureestablishedby Schneideretal. (1992), sedi-mentsamplesweretreatedwith0.1MHCl, a20%H2O2 solution,

anda5%sodiumhexametaphosphatesolutiontoremovecarbonate andresidualorganics,andtoaiddisaggregation.Thesampleswere wet-sievedandthe

>

100 μmfractionwasexaminedvisuallyusing abinocular microscope.Onlyobjectsidentified unambiguouslyas microtektiteswerecounted.

2.4.Berylliumprinciplesandmeasurements

The exchangeable-10Be concentration measured in sediments, or authigenic 10Be hereafter, corresponds to the fraction that is

adsorbedorchemicallyprecipitatedonto settling particles.It pri-marilydependson10Beatmosphericproductionratebutisalso

af-fectedbysecondaryenvironmentalcomponents(oceanictransport processesordetritalinputchanges).Thesesecondary environmen-talcomponentsareminimized/removedbyusingauthigenic9Beas

anormalizer (Bourlèsetal., 1989) inmostrecords,which makes itpossibletoinfergeomagneticpaleointensityvariations fromthe Be-ratio(Simonetal.,2016aandreferencestherein).

AuthigenicBeisotopesanalyseswerecarriedoutattheCEREGE NationalCosmogenicNuclidesLaboratory(LN2C),France.Atotalof 444samples were collected from coresMD90-0949, MD95-2016, and MD98-2183 over the

700–850 ka age interval with vari-ablesampling resolution rangingfrom 10to 1 cm. Theseresults complete previous Be-measurements performed using the same method on core MD90-0961 (Table 1). An average 2-cm sam-pling interval is attained within the MBT interval in each core. The sampleshave beentreatedaccording to thechemical proce-dure established by Bourlès et al. (1989) and revised by Simon et al. (2016b). Authigenic 10Be and its stable isotope 9Be were extracted from

1 g dry samples by soaking them in a 20 ml leaching solution (0.04 M hydroxylamine (NH2OH–HCl) and 25%

acetic acid) at 95

±

5◦C for 7 h. A 2 ml aliquot of the re-sulting leaching solution was sampled for measurement of the natural 9Be concentration using a graphite-furnace Atomic

Ab-sorption Spectrophotometer (AAS) with a double beam correc-tion (Thermo Scientific ICE 3400®). The remaining solution was

spiked with 300 μl of a 9

.

8039

×

10−4 g g−1 9Be-carrier before Be-purification by chromatography to determine accurately 10Be sample concentrationsfromacceleratormassspectrometer (AMS) measurements of 10Be/9Be ratiosat the French AMS national fa-cilityASTER(CEREGE).10Besampleconcentrationswerecalculated

fromthe measuredspiked 10Be/9Be ratiosnormalizedto theBeO STD-11in-housestandard

(

1

.

191

±

0

.

013

×

10−11

)

(Braucheretal.,

2015) forcoresMD95-2016andMD98-2183;andtotheNIST4325 StandardReferenceMaterial

(

2

.

79

±

0

.

03

×

10−11

)

(Nishiizumiet al., 2007) forcores MD90-0961 andMD90-0949.Authigenic 10Be

concentrationsare decay-corrected using the 10Be half-life (T 1/2)

of 1.387

±

0.012 Ma (Chmeleff et al., 2010; Korschinek et al.,

2010).

3. Resultsandinterpretations

Results are plotted in Fig. 2 as a function of the corrected depthsofeachcore,with

δ

18Oandmicrotektiteintheupperpanel,

and10Be and9BeconcentrationsandBe-ratiosinthemiddleand lower panels, respectively, and are listed in Supplementary Ma-terial (Tables S1 to S4). The polarity change associated with the MBT ismarked by thereversalangle(lower panel ofFig.2) that definestheangulardeviationbetweenthemeasuredmagnetic vec-tor andthedirection ofthe axialdipole field atthe sitelatitude (Valet et al., 2016). It describes the variabilityof the local mag-netic field vector without any a-priori assumption regarding the field geometryinherent to the VGP.The transitional interval cor-respondstothesedimentthicknessbetweenangulardeviationsof 30°and150°.

ThebenthicCibicideswuellerstorfi

δ

18Odatavarybetween

3.2 and4.7

h

attheNorthAtlanticsite(MD95-2016)andoscillate be-tween

2.4and4.2

h

attheIndian(MD90-0949andMD90-0961) andwesternPacificsites(MD98-2183)(Fig.2).Glacial–interglacial cycles are labeled according to the nomenclature proposed by Railsback et al. (2015). A sharp decrease of

1.2 to 1.5

h

char-acterizestermination9 (the deglaciation betweenmarine isotope stage (MIS) 20 and 19c) at each site, while the MIS 19c–MIS 18etransitionismoregradual,withsecondaryoscillationsat sub-stagesMIS19a–b.Theamplitudeofglacial–interglacial

δ

18O

tran-sitions corresponds to those observed in the LR04 global ben-thic stack (

1.2

h

), which is indicative of recording of a re-liable global ice volume signature (Lisiecki and Raymo, 2005). The record from core MD90-0961 is limited to the MIS 20–19a interval and has been completed by Cibicides wuellerstorfi

δ

18O data from sister coreMD90-0963 retrieved at the same location (Bassinot et al., 1994). Massive carbonate dissolution occurs in core MD98-2183 at the MIS 19 level, which complicates robust interpretation apart from primary glacial–interglacial oscillations. Furthermore,the rapid

δ

18Oincrease at3040cm towarda value closeto glacial onestogether withthefollowing 40cmdata gap precludesidentificationofanyMIS19sub-stagesinthiscore.

Amicrotektitelayerisidentified incoresMD90-0961(Valetet al.,2014) andMD90-0949,butisnotobservedincoreMD98-2183. Themaximumconcentrationcoincideswiththeonsetof termina-tion9inbothcores,andisfollowedbyaprogressivedecreaseover 23 and26 cm in coreMD90-0961 and MD90-0940,respectively. Thisreflectssmearinginducedbybioturbationinthesurficial mix-ing layer (Fig. 2). Similar 20–25 cm depth ranges between the maximum concentration anddisappearance ofmicrotektites have beenobservedatsitesODP758Band769A(Schmidtetal.,1993) andMD97-2142(LeeandWei,2000),whileitis15–20cmincores MD97-2187(Suganumaetal.,2011) andMD97-2143(LeeandWei,

2000).Microtektiteconcentrationsinthesetwocoresare,however, lowerthanthatattheothersites.Althoughlimited,thissite com-parison suggestsa first-order influence ofthe initial microtektite

(5)

Fig. 2. Oxygenandberylliumisotoperesults.ThebenthicCibicideswuellerstorfiδ18Orecordsandmicrotektitedistributions(orange)arerepresentedintheupperpanel.Marine

isotopicstage(MIS)andsub-stagenomenclatureisfromRailsbacketal.(2015).Authigenic10Be(blue)and9Be(green)concentrationareshowninthemiddlepanel.The

Be-ratio(red)andreversalangle(black)foreachcoreisrepresentedinthelowerpanel.NotethatdifferentscalesareusedfortheBe-data.Thereversalangle(Valetetal.,

2016) enablesdefinitionofthetransitionalfielddepthintervalineachcore.Thegreybandshighlightthetransitionalfieldsbetweenfullpolaritystates.

concentration,along withsedimentationrate, onthethicknessof the mixinginterval. This Australasian microtektitelayer was also usedtodeconvolvethe10BesignalbySuganumaetal. (2011) and

Valet etal. (2014), showing nostratigraphic displacement ofthe

10Be peak inducedby bioturbationfiltering.Volcanicglassshards

(tephra)werealsodetectedbetweendepthsof3710and3713cm in core MD90-0961 (Fig. 2) but were not geochemically studied here.

Authigenic 9Be concentrations vary from 0.77 to 1

.

94

×

1016 at g−1 incoreMD90-0961(meanvalue:1

.

34

±

0

.

22

×

1016at g−1) andfrom 0.88to 2

.

19

×

1016 at g−1 (mean value: 1

.

44

±

0

.

26

×

1016at g−1)innearbycoreMD90-0949.Inthetwoothercores,the higherauthigenic9Beconcentrationsvaryoverwiderranges,that isfrom1.45to3

.

36

×

1016at g−1 incoreMD98-2183(meanvalue: 2

.

27

±

0

.

32

×

1016 at g−1) and1.10to 2

.

86

×

1016 at g−1 incore MD95-2016(meanvalue:1

.

92

±

0

.

37

×

1016at g−1).IntheNorth

AtlanticOceancoreMD95-2016,authigenic9Bevariationsseemto

beinfluencedbytheglacial–interglacialpattern.9Beconcentration

maximacoincidewithglacial

δ

18Ovalues,whichsuggeststhat9Be

deliveryatthelocationisinfluencedbydenudationratesand clas-ticinputs (e.g.Simon etal., 2016b) and/or hydrographic changes (waterflowspeedandnorthernsourcewater;Kleivenetal.,2011). IncoreMD90-0949,onthecontrary,9Bemaximaoccurduring

in-terglacialMIS 19,while innearby MD90-0961 coreno particular

9BetrendisobservedduringMIS19,whichsuggestsdifferent9Be

oceanic pathways for these neighboring cores situated at

differ-entwaterdepths(Table1).Theserelationshipsarelikelyrelatedto i) sedimentprovenancechanges influencedby oceaniccirculation and ii)water massstratification changes. The 9Be record ofcore

MD98-2183ischaracterizedbyminoroscillationsbetweenMIS21 and19andtwosuccessiveminimawithintheMIS18b–cinterval andattheMIS17–18atransition.

Theauthigenic10Beconcentrations(decay-corrected)varyfrom 3.30to10

.

64

×

108 at g−1 and4.56to14

.

89

×

108 at g−1 incores MD90-0961(meanvalue:5

.

14

±

1

.

57

×

108at g−1)andMD90-0949 (mean value: 7

.

52

±

2

.

20

×

108 at g−1), respectively. The authi-genic 10Be concentrations in core MD95-2016 (North Atlantic) are similar to the authigenic 10Be concentration values of core MD90-0961, rangingfrom3.13to 8

.

85

×

108 at g−1 (meanvalue: 5

.

15

±

1

.

31

×

108 at g−1). In core MD98-2183 from the Pacific Ocean, the authigenic 10Be concentrations are nearly two times higher andare distributed over a wider range, that is from9.71 to25

.

34

×

108 at g−1(meanvalue:15

.

82

±

3

.

42

×

108 at g−1).The

mainfeatureinallstudiedcoresisthelargeincreasein10Be

con-centrationcomparedwiththesurroundingintervalsinMIS19a–b (Fig. 2). A secondary 10Be peak is also observed during MIS 17

while a minor10Be increase is observedduring MIS18a ateach

site.

IncoresMD90-0961andMD90-0949,Be-ratios varyfrom2.26 to 8

.

27

×

10−8 (mean value: 3

.

93

±

1

.

36

×

10−8) and 4.07 to

8

.

22

×

10−8(meanvalue:5

.

19

±

0

.

84

×

10−8),respectively.Incore

(6)

Fig. 3. Authigenic Be-ratios versus10Be and9Be concentrations. The grey-shaded area represent values within the MBT interval. See Table S5 for correlation coefficients. value:6

.

96

±

1

.

05

×

10−8) andin coreMD95-2016 from 1.53to

5

.

26

×

10−8 (meanvalue:2

.

78

±

0

.

89

×

10−8). Theseaverage Be-ratios correspond to differentocean basin averages estimated by vonBlanckenburgandBouchez (2014) frommodernseawaterand deepoceansurfacesedimentBeconcentrations,therefore support-ing complete homogenization of both Be isotopes in the water column (see Wittmann et al., 2017). The significant relationship between the long-term average Be-ratio and 10Be with site wa-ter depths

(

r

>

0

.

9

)

favors higher scavenging of 10Be at deeper siteslikelyresultingfromlongersinkingparticleresidencetimes,a higher10Bereservoiratthesesites,and/orassociatedwith carbon-ate compensation depth that could have contributed to increase therelativeconcentrationsofbothBeisotopesatsiteMD98-2183. A negative correlation between sedimentation rate and Be-ratio

(

r

= −

0

.

7

)

also suggests higher Be contents at slow deposition sites.Exceptfortheselong-termaverageBe-ratiofeaturesbetween cores,themain Be-ratiochange inall coresischaracterized by a doublinginMIS19a–bcomparedwithsurroundingintervals.

Inthreeofthefourcores,themainBe-ratiopeakcoincideswith transitionalpaleomagneticdirectionsthatidentifytheMatuyama– Brunhes polarity transition(dark grey banding inFig. 2). In core MD97-2183, an 18-cm stratigraphic offset between the Be-ratio mid-peakandthepolarity reversalisobserved.Such offsetshave been identified in clayey and carbonate sedimentary sequences from the Western Pacific Ocean (MD97-2140, Carcaillet et al.,

2003; MD97-2143, Suganuma et al., 2010; Simon et al., 2018) andfromtheNortheast AtlanticOcean(MD95-2040, MD95-2042,

Carcaillet etal., 2004;MD04-2811, Ménabréazetal., 2011). With thicknesses ofafew cmto severaltensofcm,they are compati-blewiththeeffectsofpost-depositionalmagnetizationlock-in(e.g. Robertsetal.,2013)astheresidencetimeofdissolvedBeisotopes in the oceans (200 to 700 years at studied sites; von Blancken-burgetal.,1996)canproduceatbestdepthoffsetsof0.5to2cm, dependingonsedimentationrateofeachsite.

ThefirstorderBe-ratiopeakinallstudiedcorescan,therefore, be related to enhanced cosmogenic nuclide productionproduced by thegeomagneticdipole minimumassociatedwiththelast po-larity reversal. Such a Be-ratio, or 10Be-flux, doubling has been observed in marine sediments and ice core records at the time oftheMBTreversalandduring themaindipole minimalinked to reversals and excursions of the late Matuyama chronand to ex-cursions of the Brunhes chron (e.g. Raisbeck et al., 1985, 2006; Franket al., 1997; Carcaillet etal., 2003; Suganumaet al., 2010; Ménabréazetal.,2014; Horiuchietal.,2016;Simonetal.,2016a,

2018andreferencestherein).

Significant positive correlation coefficients between 10Be and the Be-ratio (r

=

0

.

77 to 0.90) support a strong control of 10Be

variations on the Be-ratio over the studied interval (Fig. 3 and Table S5). No significant correlation between 9Be and Be-ratio is

noted, exceptin coresMD90-0961 andMD95-2016,where r val-uesaround

0.5suggestthatthenormalizationproceduredidnot fully remove possible environmental imprints. A principal com-ponent analysis on the four Be-ratio series provides a PC1 that explains 88% ofthe total variance (Fig. 4C). Three Be-ratio series

(7)

Fig. 4. Resultsplottedonacommondepthscale.(A)δ18Orecordssynchronizedto

acommondepthscale(MD90-961/963asatarget)usingminimaltiepoints num-bers(indicatedbydiamonds).(B)Be-ratiosfromeachcorestandardizedoverthe samecompositedepthforthesametimeperiod,i.e.700–850ka.(C)Scoresofthe firstprincipalcomponent(PC1explains88%ofthevariance)fromaprincipal com-ponentanalysisonthefourBe-ratioseriesstudied,andreversalanglesdefiningthe transitionalfielddepthintervalsineachcore(Valetet al.,2016).Thegreyband highlightsthetransitionalfieldsbetweenfullpolaritystates,asindicatedby rever-salanglesbetween30◦and150◦.

are highly correlated

(

r

>

0

.

92

)

with PC1,which supports a ma-jorcommonforcing bydipole momentchanges.Thefact thatthe MD95-2016 Be-ratio record presents a slightly lower correlation withPC1

(

r

=

0

.

82

)

isprobablyduetothesecondary environmen-talinfluenceoraweakstratigraphicoffsetwithintheuncertainty range(seebelow;Fig.4B–C).

If the data associated withthe MBT dipole minimum are re-moved, the correlation between 10Be and Be-ratio decreases sig-nificantly, while the correlation between 9Be and Be-ratio data

increases. This further confirms that the 10Be produced during

thegeomagneticdipoleminimumintervalprovidesthemain con-straintontheBe-ratiovariationandits dependenceonthedipole moment value. The MBT is, therefore, identified accurately by cosmogenic 10Be nuclideenhancements innatural archives (grey

shadedareainFig.3).Furthermore,anddespitetracesofpossible environmentalcomponentsintheBe-ratiooftwoofthefourcores

studied,theamplitudeoftheBe-ratioincreaseattheMBTremains constant between each site, oncestandardized (z-score) over the samecompositedepthinterval(representingthe700to850kaage interval)(Fig.4B). Alloftheseobservations confirmthereliability of the 9Be normalization method to provide a robust identifica-tion of the geomagnetic dipole moment collapseassociated with theMBTineachstudiedcore(Fig.4B).

4. Commondepthscaleandchronologicalframework

The chronological framework required to globally assess the age and duration of the MBT is obtained from radiometric dat-ing and/or astrochronological calibrations (e.g. Coe et al., 2004; Channelletal.,2010).Thesemethodsprovidereliablesolutionsbut contradictory results, andlead to disputed ages (see Mark etal.,

2017andcommentbyChannellandHodell,2017).Thechronology ofthepresentsyntheticrecordwasconstructedbyapplyingan or-bital tuning on thebenthic oxygen isotope records.This strategy providesarelativechronologywithmaximumageerrorsof

±

5ka for ages around the MBT interval due to uncertainties on delays betweentheinsolationsignal andthe globalresponse oficecaps (LisieckiandRaymo,2005).

The two-stepsapproach usedinthisstudyisdescribed as fol-lows. First, all recordswere placed on a commondepth scale by correlating high-resolution

δ

18O benthic records (Cibicides wuel-lerstorfi) (Fig.4A),assuming globalsynchronicitybetweenbenthic

δ

18O signals (see below). Site MD90-0961/0963 (Indian Ocean),

which hasbeenstudiedextensivelyforpaleomagnetismand oxy-genisotopegeochemistry(Bassinot etal.,1994;Valetetal.,2014,

2016),wasselectedasthecommonreferencetarget.Depthscales for all other recordswere rescaled using a minimumnumber of tie-pointstoavoidaccordion-likestratigraphicshifts(Fig.4A).This strategy leads to a clear androbust core-to-core correlation and permitsaccurateassessmentofthepositionofBe-ratiopeaks asso-ciatedwiththeMBTversusclimatostratigraphicmarkers(Fig. 4B). IncoreMD98-2183,benthicforaminiferadissolutionwithinMIS19 (dashedlineinFig.4A)hampersuseoftheisotopicsignalfor pro-viding independent constraints outsideof the primary glacial/in-terglacialoscillations.TheBe-ratiopeaklimitsassociatedwiththe MBT were, therefore, used to adjust the depth scale, providing better alignment that is not independent of Be measurements. In cores MD90-0961 and MD90-0949, perfect alignment of the microtektite peak at 3730 cm (common depth) provides a ro-buststratigraphicmarker,independentoftheadjustmentstrategy (Fig.4A).Moreover,allBe-ratiopeaksandtransitionalreversal an-gle paths arelocated between

3620and3680cmandbetween

3640 and 3690 cm, respectively (Fig. 4B–C). Such successful alignmentofindependentproxyrecordsisconsistentwiththe as-sumptionofglobalaverage synchronicityofbenthic

δ

18Orecords, withinuncertaintylimits,whichsupportsourstrategy. Chronolog-icaloffsetsbetweenbenthicseriesproducestratigraphic misalign-mentsby2to4kabetweenoceanicbasinsatglacialterminations (Lisiecki andRaymo,2009),butsincethey mainlyconcernglacial terminations,theyhaveminorimpactonastrochronologicaldating oftheMBTwithinMIS19.

Second,wederivedacommonchronologicalframeworkby tun-ingfine-scale

δ

18Ofeaturesfromeachrecordplacedonacommon depthscale,withtheglobalbenthic

δ

18OLR04stackofLisieckiand Raymo (2005) (Fig.5).Inparallel,tuningofindividual

δ

18Orecords ontheirowndepthscaleswiththeLR04stackwasalsoperformed to evaluate uncertainties inthe matchingprocedure. Averageage deviationsbetweenthetwoderivedchronologies(commonand in-dividualdepths)liebetween0.4and2ka,i.e.lessthanthe

±

5ka uncertainty associated with the LR04 stack in the 0–1 Ma time interval (Lisiecki and Raymo, 2005). This new chronological re-construction provides an ageof 793–794 ka forthe Australasian

(8)

Fig. 5. Chronostratigraphyfortherecordsstudiedhere.BenthicforaminiferaCibicides wuellerstorfi oxygenisotopestratigraphyfromallcores(seelegend)havebeentuned tothe benthicLR04globalstack(LisieckiandRaymo,2005) toderiveacommon astrochronologicalframework.

microtektitelayeridentifiedincoresMD90-0961andMD90-0949. Thisageliesbetweentwo 40Ar/39Arages obtainedforthislayer:

amaximumageat799.2

±

3.8ka(Smitetal.,1991) anda mini-mumageat786

±

2ka(Marketal.,2017).Furthermore,volcanic glassshards(tephra)detectedinthe3710–3713cmdepthinterval in core MD90-0961 lie at ca 789–790 ka. This is indistinguish-ablefromtheastronomicallytuned ageofAshDatODPSite758: 788.0

±

2.2ka(Leeetal.,2004) andiscoherentwithtwodistinct eruptionsfromthe Tobavolcano(OTTAandOTTB)that aredated radiometricallyat792.4

±

0.6kaand785.6

±

0.8ka(Marketal.,

2017).

The chronological coherency between the astronomical age modelandindependentlydated eventsconfirms the reliabilityof ourageframework.Thenewchronologicalframeworkallows accu-ratecomputationofsedimentationratesfortheMBTintervalinall studiedcores(Table1).The2-cmsamplingspacingthenimpliesan integratedtimeintervalrangingfrom0.5to1ka.Addingtheslight signal smoothinginduced frombioturbation andoceanicBe resi-dencetime, this samplingspacingprovides millennial resolution, whichisthefinestresolutionpossiblefromcoreswithsuchlowto moderatesedimentationrates.Aduration of30 to32 kaforMIS 19isdeducedfromsedimentationrates,inagreementwithother estimates(33ka,Tzedakisetal.,2012;34ka,Giaccioetal.,2015). Similarly, an average duration of 11 kaestimated for MIS 19cis alsocoherentwithrecordsfromMontalbanoJonico(11.2ka,Simon etal.,2017),Sulmonapaleolake(10.8ka,Giaccioetal.,2015),and theNorth Atlantic Ocean (10.5–12.5 ka, Tzedakiset al., 2012). It isworthnotingthataveragesedimentationratescomputedforthe 700–850 kainterval (Table 1) are12 to55% lower than previous estimates by Valet et al. (2016), which considered the complete sedimentthicknessbetweencoretopsandtheMBT.By doingso, theseestimatesneglectedthesignificantstretchingeffectimposed bytheCalypsocoreronthe upper10–15metersofthefirst gen-eration ofMarionDufresnes cores that has beendemonstrated by anisotropyof magneticsusceptibilitymeasurements (Thouvenyet al.,2004).

5. Global10BeoverproductionepisodeatthetimeoftheMBT 5.1. Generalcomments

The occurrence of a single large Be-ratio peak interval is demonstrated in all studied cores (Fig. 4B). Their alignment/co-incidence in the common stratigraphic/chronological framework indicates that they resultfromthesameglobal10Be overproduc-tion episode triggered by the GDM collapse linked to the MBT (Fig.4C).Afterstandardization,theseBe-ratiopeakshavethesame amplitude atall sites, whichconfirms the globalhomogenization anddepositionofatmospheric10BeproducedduringtheMBT.This isfurtherconfirmedbythehighcorrelationofeachBe-recordwith the first principal component PC1 (see section 3) that explains 88%ofthevarianceoftheBe-ratioserieswithabroadpeakwith highestscoresat766–778ka(midpeakat

772ka)(Fig.6).The fact thatthisBe-ratio peak coincideswiththe minimumof sum-merinsolationlinkedwiththeendofinterglacialMIS19c(Fig.6) allowsfixing oftheageoftheMBTbetween770and778ka. Us-ing June 21 as a reference instead of mean summer insolation accounts for a maximum 2 ka age shift toward older ages. This age range is compatible with: 1) astronomical calibration of pa-leomagneticrecords(e.g.Tauxeetal., 1996; Channelletal., 2010; Channell,2017);2)radiometricdatingofthetransitionalHaleakala lava flow (776.0

±

2.0ka; Coe etal., 2004), which hasbeen re-cently revised to 772.0

±

2.0 ka (Singer et al., 2017) using a new generation of multi-collector mass spectrometers (Jicha et al., 2016); 3) radiometric dating at 774.1

±

0.9 ka of a tephra layer in the Montalbano Jonico section (Nomade et al., in revi-sion) within the Be-ratio peak associated with the MBT (Simon et al., 2017) (Fig. 6);4) the ageof the VGP midpoint horizonin theChiba recordcalculated at770.9

±

7.3kafromtheU–Pb zir-con age of a tephra layer deposited immediately below (Okada et al., 2017); and 5) a weighted average age of 779

±

7.5 ka calculated by Mark et al. (2017) from the four transitional lava flows presented by Singer et al. (2005). Furthermore, our new Be-ratio records are remarkably similar to all currently available Be-ratioMBTrecordsfrommarinesedimentsequences(Fig.6). Fi-nally, the duration of the 10Be overproduction episode deduced

from our new Be-ratio records (766–778 ka) is similar to that measured inthe EPICADome C(EDC) icerecord (Raisbeck etal.,

2006) when seton the AICC2012chronology (Bazinetal., 2013) (Fig.6).

Alldatacurrentlyavailablefromdifferentgeologicalreservoirs, thus,confirmtheglobalstratigraphic/chronologiccoherenceofthe

10Be overproduction interval associated with the MBT (Fig. 6).

All of these 10Be data provide compelling arguments in favor of the younger agescenario forthe MBT (i.e.

772 ka) despite the fact that some recent paleomagnetic and radiometric dating re-sults support an overall older age at 783.4

±

0.6 ka (Mark et al., 2017).An accepted(common) definitionofreversalboundary from the continuous transitional process, together with evalua-tion and comparison of the resolution of each proxy will help to better constrain their respective limitations (e.g. pDRM lock-indepths,astronomicalandradiometric calibrations, environmen-talbiases) andto reducechronological disagreement(Valetetal.,

submitted).

The10BeoverproductionepisodetriggeredbytheMBT geomag-neticdipoleminimumprovidesagloballysynchronousmarkerthat is usefulfor inter-correlationof ice-cores and continental (lacus-trine andloess) andmarine sediment records.The ages ofGDM variationsreconstructedeitherbypaleointensityorby10Berecords

should be the same in different parts of the globe. Therefore, dipole moment proxies should be morereliable than magnetiza-tion directions for providing dating and an inventory of paleo-magneticeventssuchasexcursions andreversals,mostly because

(9)

Fig. 6. 10Be-proxy comparisonfor the Matuyama–Brunhes transition. (A) Stack

ofthefour benthic δ18Orecordsand meansummerinsolation at65N (Laskar

et al., 2004).(B) Scores ofthe firstprincipal component (PC1),which explains 88%ofthe total variancebetween allseries.Theage ofc.772ka corresponds to the mid-PC1 peak. The colored diamonds correspond to radiometric esti-matesofMBTage(seereferencesinthelegend).(C)All10Be-proxyrecordshave

beenstandardizedoverthesametimeintervalandinclude:theMontalbano Jon-ico(Simon et al.,2017; Nomade et al., in revision); MD97-2143(Simon et al.,

2018);MD98-2187(Suganumaetal.,2010);MD97-2140(Carcailletetal., 2003); MD05-2930(Ménabréazet al., 2014; Simonet al.,2016a); EpicaDomeC(EDC) (Raisbecketal.,2006).

rapiddirectionaltransitionsarenotadequatelyrecordedin low-to-moderatesedimentationratecores(RobertsandWinklhofer,2004; Valetetal., 2016; Channell,2017) andstratigraphic/temporal off-sets,such aspDRM effects, leadto chronological errorsand mis-interpretations. Cosmogenic signatures of reversals or excursions should, thus, be investigated systematically together with paleo-magneticsignatures,especiallywhenhypothesesofpaleomagnetic field–paleoclimateconnectionsarediscussed.

Despiteoverallagreementbetweenpaleomagneticand cosmo-genicexpressionsofdipolefield variations,unresolveddifferences appearorpersist,whichgivesrisetomethodologicalortheoretical discussions. The best example isthe occurrence of a paleointen-sityminimumreportedbeforetheMBTinsomemarinesediments andlavaflows,whichsuggeststheoccurrenceofaprecursorevent priortotheMBT(e.g.HartlandTauxe,1996).Ontheonehand, Be-ratiorecordsfromtheNorthAtlanticOcean(MD95-2016), Mediter-ranean Sea (Montalbano Jonico; Simon et al., 2017), and Indian

Ocean (MD90-0961 and MD90-0949) do not document such an

occurrence (Fig. 6), but onthe other hand,Be-ratio recordsfrom thePacificOceanandAntarcticacontainweak10Beenhancements prior to the MBT. In core MD98-2183, a small Be-ratio increase before the MBTis coherentwith a 10Be-fluxmaximum observed in the nearby core MD98-2187 (Suganuma et al., 2010). In core MD05-2930,suchasignaturecanbeidentifiedatthecorebottom (Fig. 6). IncoresMD97-2143(Simonetal.,2018) andMD97-2140 (Carcaillet etal., 2003), the MBT ispreceded by a two steps en-hancement.TheAntarcticEDCicecorerecordalsocontainsa10Be flux enhancement prior to the MBT signature (Raisbeck et al.,

2006).However, severalcriticalpointsare evidentforthese stud-ies.Forexample,1)theexact10Besignatureoftheprecursorinthe

EDCrecordcanbequestionedbasedonglaciologicalconstraints in-ducedbyhighpressuresatthebottom(below3000mdeep)ofthe EDCcore(Simonetal.,2016a),2)alargefractionofthehigh10 Be-fluxes attributed to the precursor by Suganuma et al. (2010) in coreMD98-2187likelyresultsfromstrongenvironmentalimprints duringtermination9(Simonetal.,2018).Moreover,theprominent minimum inthe PISO-1500stack is mainlyinduced by the IODP Site U1308 record (Channell et al., 2009) and is less obvious in other high-resolutionNorthAtlanticrecords(seeFig.10binXuan etal.,2016).Theprecursormay,therefore,resulteitherfrom pale-omagneticbiasesorfromstillunquantifiedthresholdeffectsofthe dipole momenton magnetosphericshielding, andin turnon cos-mogenicnuclideproduction,orfromamix ofboth. Thisquestion deservestobeclarifiedinnewhigh-resolution paleomagneticand cosmogenicrecordspriortodrawinganyfirmgeomagnetic conclu-sions.

5.2. Cosmogenicproductionmodels

The concurrent increaseof 10Be-proxy (i.e.Be-ratio, 10Be-flux)

observed inall records,includingpolariceandmid-to-lower lat-itude marine sediment cores, atthe MBT supports a global 10Be production rateincrease. In orderto estimate the amountof ad-ditional atmospheric 10Be produced during this dipole moment minimum, the Be-ratio GDM calibration of Simon et al. (2018) is compared with the global atmospheric 10Be production rate

model ofPoluianov etal. (2016) usinga constant mean modula-tion potential of 650 MV (Fig. 7). Calibration of empirical versus theoreticalproductionmodelsallowstheestimationofpastglobal

10Beproductionratechanges(Fig.7B).AnormalizedBe-ratiostack

wasconstructedbycompilingtheindividualBe-ratiorecordsafter even-spacing andaveraging each seriesover 1ka time windows. Theglobalproductionrateofatmospheric10Bechangescalculated

usingthisfunctionandtheBe-ratiostackincreasestwo-foldfrom thebasetothepeakofthe10Beenhancement(Fig.8).Theperiods that surroundthe main increase interval haveaverage 10Be pro-ductionratessimilartothosemeasuredinyear1980byMonaghan etal. (1986) orsimulatedformodernperiods(seeboxinFig.8or Table 4inSimonetal.,2016b).

Atmospheric 10Be production change computed during the

dipole moment collapse of the last geomagnetic reversal that passes from

300 to

>

600 atoms m−2s−1 is a doubling of the average productionoutside the event, so that global10Be atmo-spheric production increases by more than 300 atoms m−2s−1

(Fig. 8). This is statistically comparable with the result (

+

272 atoms m−2s−1) ofthe theoretical modelof Heikkilä etal. (2009)

applied topresentdayproductionconditions(controlrun)andto theso-called“Laschamp-run”,asimulated10Beproductionmodel for a zero geomagnetic field strength (Fig. 8). This comparison supportsaglobal10Beoverproductionperiodinducedby geomag-netic modulation at the MBT, and also indirectly confirms that stratospheric homogenization of 10Be is the controlling process

(10)

Fig. 7. Calibrationoftheauthigenic10Be/9Beratiointermsof10Beglobalproductionrates.(A)ComparisonbetweentheempiricalcalibrationsfromSimonetal. (2018) and

theglobalatmospheric10BeproductionratemodelofPoluianovetal. (2016).(B)Calibrationcurve.

Fig. 8. Globalproduction rate enhancement ofatmospheric10Beover the MBT.

(A) Stackofthefourbenthicδ18Orecords.(B)10Beglobalproductionratecurve

obtainedfromtheBe-rationormalizedstackofthefourauthigenic10Be/9Beratio

recordscalibratedtotheglobal10BeproductionmodelofPoluianovetal. (2016).

Atmospheric10Beproductionratesarecomparedtoseveralreferencesfrom

numer-icalsimulationsandmeasurementestimates: i)globaldistribution(average area-weightedglobalflux)ofHolocene10BefluxesfromHeikkiläandvonBlanckenburg

(2015),ii)modernaverageglobal10BeproductionratesfromthePoluianovetal.

(2016) model,iii)presentdayand“Laschamprun”(zerogeomagneticdipole) ex-perimentoutcomesoftheHeikkiläetal. (2009) simulation,andiv)globalaverage

10Beproductionmeasuredandcalculatedforyear1980byMonaghanetal. (1986).

productionincrease reachesa maximum plateauduring the MBT (Fig.7A).

6. GDMcalibrationofthe10Berecordandindependentinsight

intofieldintensitychanges

Determination and quantification of minimum value of GDM thresholdrequiredtotriggerreversalsandexcursionsareof funda-mentalimportance forunderstanding geodynamo processes. Crit-ical dipole moment values between

1 and 2

.

5

×

1022 Am2,

i.e. 10 to 30% of the current dipole moment, have been sug-gestedby simulations (e.g.Glatzmaierand Roberts,1995; Buffett et al., 2013), paleomagnetic studies (e.g. Channell et al., 2009; Valetetal.,2005),andearliercosmogenicnuclideproduction stud-ies (Ménabréazet al., 2012; Simon et al., 2016a). Acombination ofapproachesisrequired toprovideaccurate valuesandto eval-uatethe relevance ofinput parameters forexperimental and

nu-merical geodynamo simulations. OurnormalizedBe-ratio stack is calibratedusingtheglobalatmospheric10Beproductionmodelof

Poluianov et al. (2016) to produce a 10Be-derived GDM record (Fig. 7B). This approach differs from that used in earlier stud-ies by Simon etal. (2016a, 2018), but relieson similar Be-ratios from marine sedimentary sequences to give comparable relative results(amplituderange)andonlyminorchangesforquantitative reconstructions.Themethodalsocomplementsvirtualaxialdipole moment(VADM)andvirtualdipolemoment(VDM)estimates de-rivedfrompaleointensityrecordsthatcanbeaffectedsignificantly bynon-dipolecomponents,particularlywhenthedipolevanishes.

Alongstanding 10Be-derivedGDMminimumthatlasted12ka,

from 778 to 766 ka, corresponds to the broad minimum in the PISO-1500 record (Fig. 9). This period is characterized by values below 2

.

2

×

1022 Am2 (i.e.

35% of the time-averaged VADM

withinthe700–850kaperiodor

30%ofthecurrentVADM).The sharperfield recoveryobservedin thePISO-1500stackcompared to the 10Be-derived record might result either from a

smooth-ing of the Be-ratio signal, or an overprint from the high inten-sitypost-transitionalfieldonmagneticgrainsdepositedduringthe low intensityMBT interval (Coeand Liddicoat, 1994; Fig. 9).The factthatnosimilaroffsetisobservedelsewheresupportsthislast interpretation,butitneedstobecarefullyscrutinizedforother pa-leointensity minima.Theaverage ofminimum 10Be-derivedGDM values between 776 and 771 ka (1

.

7

±

0

.

4

×

1022 Am2) is the

same as the minimum value for transitions in numerical simu-lations (e.g. Glatzmaier and Roberts, 1995; Buffett et al., 2013; Wicht and Meduri, 2016). It is also the same value as that de-rived fromcalibrated RPIstacks (1.6

±

0.2, 1.7

±

0.2, and 1

.

6

±

0

.

4

×

1022Am2forthePISO-1500,SINT-2000andPADM2Mstacks, respectively), and absolute paleointensities measured from tran-sitional lavaflows: La Palma (1

.

4

±

0

.

5

×

1022 Am2,Valet etal., 1999)(1

.

9

±

0

.

6

×

1022 Am2,Brownetal., 2009);Tahiti–Punaruu (1

.

6

±

0

.

5

×

1022Am2,Mochizukietal.,2011).The5katime inter-valbetween776and771kacharacterizedinourrecordbydipole momentminima(highlightedbyadarkgreybaratFigs.8and9), thereforeprovides thebestestimate oftheMBTduration.Similar VADMranges forthe MBT fromdifferentvolcanic measurements andfromdifferentcalibrationmethods/productionsimulations fur-thersupportourevaluationusingtheindependent10Beapproach. Furthermore, calibrations of different RPI stacks used different strategies: forSINT-2000,Valet et al. (2005) averaged VADM val-uesover100katimeintervals, thencalculatedthetime-averaged VADMoverthepast800ka(7

.

46

±

1

.

16

×

1022Am2)andusedthis valuetocalibratethe2MaRPIstack.Channelletal. (2009) scaled their RPIstacktothemeanVADMvalueofValetetal. (2005) for

(11)

Fig. 9.10Be-derivedGDMreconstruction overthe700–850kainterval.(A) Stack

ofthefourstudiedbenthicδ18Orecords.(B)The10Be-derivedGDMrecord

con-structedusingthetheoreticalglobal10Beproductionrate modelofPoluianovet

al. (2016) (seeFig.7)iscomparedtothe calibratedrelativepaleointensity PISO-1500stack(Channelletal.,2009) andtoaveragetransitionalVADMvaluesfrom theSINT-2000(Valetet al.,2005) andPADM2M(Ziegleret al.,2011) globalRPI stacks.Thefieldpercentagesarecalculatedrelativetothe modernVADM value. A longstandingdipolemomentminimum(lightgreybanding)occurredat778–766 ka(<2.2×1022Am2)andischaracterizedbyamainlowinterval(averagevalue: 1.7±0.4×1022 Am2)associatedwiththeMBTwithinthe771–776ka(darkgrey

band)timeperiod.

thelast 800 kaandthen assignedan intensityof7.5 μT atIODP SiteU1308(whichservesasthereferencerecordforthestack)for theminimumRPIvalue(attheCobbMountainSubchron)arguing thatthe minimumintensityvaluecorresponds tothe likelyvalue oftheresidualfieldaftertotalcollapseoftheaxialdipoleattimes of reversals (Constable andTauxe, 1996). In the PADM2M stack, a penalized iterative spline model was used for sparse absolute paleointensitydata topredict a PADMvalue atevery time point, thenestimatedthescaleneededtotransformeachRPIseriesinto VADMvalues(Ziegleretal., 2011).Thesethreecalibration proce-duresagreewithour10Be-derivedcalculation toprovideaVADM

thresholdof1

.

7

±

0

.

4

×

1022Am2 fortheoccurrenceoftheMBT,

which corresponds to about 20% of the present dipole moment. Othercasestudiesneedtobemadebeforegeneralizingthis eval-uationtootherpolarityreversalsorexcursions.

7. Conclusions

Wepresentnewhigh-resolutionauthigenic10Be/9Be ratio

(Be-ratio) and benthic

δ

18O (Cibicideswuellerstorfi) records spanning

the Matuyama–Brunhestransition. The geographic distribution of thestudiedsites intheNorthAtlantic,Indian,andPacific Oceans allowsglobalscaleassessmentofrelatedcosmogenicnuclide10Be

productionchanges.Astrochronologicalcalibrationof

δ

18Obenthic

recordsprovidesarobustchronologicalframeoverthe700–850 ka time interval. All records include two-fold increases of the Be-ratio through the polarity transition, which supports a common originlinked totheGDMcollapseassociatedwiththeMBT.These newBe-ratiorecords together withall other available 10Be-proxy records obtained from other sediment sequences and the EPICA DomeC Antarcticaicecore, confirmtheglobalsynchronizationof this10Be overproduction episode. Ourcomputedage of theMBT

between776and771ka agreeswiththeage derivedfrom high-resolution North Atlantic paleomagnetic records (Channell et al.,

2010).

We used the atmospheric 10Be production rate model of

Poluianov et al. (2016) to calibrate our Be-ratio stack in terms of global10Be productionandGDM changesthrough thelast

ge-omagneticreversal. Thetwo-foldBe-ratioincrease corresponds to a global 10Be atmospheric productionincrease of morethan 300 atoms m−2s−1triggeredbytheGDMcollapse.Thisorderof

magni-tude iscomparablewiththat obtainedfroman atmospheric10Be production simulation in modern and zero dipole moment con-ditions (Heikkilä et al., 2009). The dynamics of our 10Be-derived

GDM reconstruction agree well with the best records obtained fromrelative(RPI)andabsolute(PI)paleointensitymeasurements.

Minimum GDM values between 776 and 771 ka averaging to

1

.

7

±

0

.

4

×

1022 Am2 are similar to the minimum value from models and to VADM values calibrated from RPI stacks or de-ducedfromabsolutepaleointensitiesmeasuredontransitionallava flows extrudedduring theMBT.Itis,therefore,areasonable GDM threshold for the occurrence of geomagnetic reversals. Coupling Be-ratio and oxygen isotope studies on sedimentary sequences providesanaccuratemeanstoestimatetheage,duration,and dy-namics of the last polarity reversal, and enables deciphering of geomagnetic dipole momentforreconstructionsofpaleomagnetic fieldvariationsandgeodynamosimulations.

Acknowledgements

TheauthorsparticularlyacknowledgeSandrineChoy(CEREGE), Adrien Duvivier (CEREGE) and Anouk Villedieu (LSCE) for sam-plespreparation. WeacknowledgeStepanPoluianov(Universityof Oulu) for his advice on the cosmogenic production model and code. We thank the editor, MartinFrank, Andrew P. Robertsand two anonymous reviewers for very constructive comments that contributedtoimprovesignificantlythe qualityofthispaper.The ASTER AMS national facility (CEREGE, Aix en Provence) is sup-portedbyINSU/CNRS,ANRthroughtheEQUIPEX“ASTER-CEREGE” action, and IRD. This study is supported by the ERC advanced grant to JPV “GA 339899-EDIFICE” under the ERC’s 7th Frame-work Program (FP7-IDEA-ERC). The data presented in this study are available within the supporting information and archived at thePangaeadatabase(www.pangaea.de).

Appendix A. Supplementarymaterial

Supplementarymaterialrelatedtothisarticlecanbefound on-lineathttps://doi.org/10.1016/j.epsl.2018.02.036.

References

Amit, H., Leonhardt, R., Wicht, J., 2010. Polarity reversals from paleomagnetic obser-vations and numerical dynamo simulations. Space Sci. Rev. 155, 293–335. Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y.,

1994. The astronomical theory of climate and the age of the Brunhes–Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, 91–108.

Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Par-renin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S.O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., Wolff, E., 2013. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim. Past 9, 1715–1731.

Bourlès, D.L., Raisbeck, G.M., Yiou, F., 1989. 10Be and 9Be in marine sediments and

their potential for dating. Geochim. Cosmochim. Acta 53 (2), 443–452. Braucher, R., Guillou, V., Bourlès, D.L., Arnold, M., Aumaître, G., Keddadouche, K.,

Nottoli, E., 2015. Preparation of ASTER in-house 10Be/9Be standard solutions.

Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 361, 335–340.

Brown, M.C., Gratton, M.N., Shaw, J., Holme, R., Soler, V., 2009. Microwave palaeoin-tensity results from the Matuyama–Brunhes geomagnetic field reversal. Phys. Earth Planet. Inter. 173, 75–102.

(12)

Buffett, B.A., Ziegler, L., Constable, C.G., 2013. A stochastic model for palaeomagnetic field variations. Geophys. J. Int. 195, 86–97.

Carcaillet,J.T.,Bourlès,D.L.,Thouveny,N., 2004.Geomagneticdipolemomentand

10Be production rate intercalibration from authigenic 10Be/9Be for the last

1.3 Ma. Geochem. Geophys. Geosyst. 5 (5), Q05006. https://doi .org /10 .1029 / 2003GC000641.

Carcaillet,J.T., Thouveny,N., Bourlès,D.L.,2003. Geomagneticmomentinstability between0.6 and1.3Mafromcosmonuclideevidence.Geophys.Res.Lett. 30 (15),1792.https://doi .org /10 .1029 /2003GL017550.

Channell, J.E.T., 2017. Complexity in Matuyama–Brunhes polarity transitions from North Atlantic IODP/ODP deep-sea sites. Earth Planet. Sci. Lett. 467, 43–56. Channell, J.E.T., Hodell, D.A., 2017. Comment on Mark et al. (2017): High-precision

40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama–

Brunhes boundary. Quat. Geochronol. 42, 56–59.

Channell,J.E.T.,Hodell,D.A.,Singer,B.S.,Xuan,C.,2010.Reconciling astrochrono-logicaland 40Ar/39Ar agesfor the Matuyama–Brunhesboundary inthe late

MatuyamaChron.Geochem. Geophys.Geosyst. 11,Q0AA12.https://doi .org /10 . 1029 /2010GC003203.

Channell,J.E.T.,Xuan,C.,Hodell,D.A.,2009.Stackingpaleointensityandoxygen iso-topedataforthelast1.5 Myr(PISO-1500).EarthPlanet.Sci.Lett. 283(1–4), 14–23.https://doi .org /10 .1016 /j .epsl .2009 .03 .012.

Chmeleff,J.,vonBlanckenburg,F.,Kossert,K.,Jakob,D.,2010.Determinationofthe

10Behalf-lifebymulticollectorICP-MSandliquidscintillationcounting.Nucl.

Instrum.MethodsPhys.Res.B 268(2),192–199.https://doi .org /10 .1016 /j .nimb . 2009 .09 .012.

Coe,R.S.,Liddicoat,J.C.,1994.Overprintingofnaturalmagneticremanenceinlake sedimentsbyasubsequenthigh-intensityfield.Nature 367,57–59.https://doi . org /10 .1038 /367057a0.

Coe, R.S., Singer, B.S., Pringle, M.S., Zhao, X., 2004. Matuyama–Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40Ar/39Ar ages and

im-plications. Earth Planet. Sci. Lett. 222, 667–684.

Constable, C., Tauxe, L., 1996. Towards absolute calibration of sedimentary paleoin-tensity records. Earth Planet. Sci. Lett. 143, 269–274.

Frank, M., Schwarz, B., Baumann, S., Kubik, P.W., Suter, M., Mangini, A., 1997. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Earth Planet. Sci.

Lett. 149 (1–4), 121–129.

Giacco, B., Regattieri, E., Zanchetta, G., Nomade, S., Renne, P.R., Sprain, C.J., Drys-dale, R.N., Tzedakis, P.C., Messina, P., Scardia, G., Sposato, A., Bassinot, F., 2015. Duration and dynamics of the best orbital analogue to the present interglacial. Geology 43 (7), 603–606.

Glatzmaier, G.A., Coe, R.S., 2015. Magnetic polarity reversals in the core. In: Trea-tise on Geophysics, vol. 8, Geomagnetism, second edition. Elsevier, Amsterdam, pp. 279–295. Chapter 11.

Glatzmaier, G.A., Roberts, P.H., 1995. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209.

Hartl, P., Tauxe, L., 1996. A precursor to the Matuyama/Brunhes transition field in-stability as recorded in pelagic sediments. Earth Planet. Sci. Lett. 138, 121–135. Heikkilä, U., Beer, J., Feichter, J., 2009. Meridional transport and deposition of

atmo-spheric 10Be. Atmos. Chem. Phys. 9, 515–527.

Heikkilä,U.,vonBlanckenburg,F.,2015.TheglobaldistributionofHolocene me-teoric10Befluxesfromatmosphericmodels.Distributionmapsfor terrestrial

Earthsurfaceapplications. GFZData Services.https://doi .org /10 .5880 /GFZ .3 .4 . 2015 .001.

Horiuchi, K., Kamata, K., Maejima, S., Sasaki, S., Sasaki, N., Yamazaki, T., Fujita, S., Motoyama, H., Matsuzaki, H., 2016. Multiple 10Be records revealing the history

of cosmic-ray variations across the Iceland Basin excursion. Earth Planet. Sci. Lett. 440, 105–114.

Jicha, B.R., Singer, B.S., Sobol, P., 2016. Re-evaluation of the ages of 40Ar/39Ar

sani-dine standards and supereruptions in the western U.S. using a Noblesse multi-collector mass spectrometer. Chem. Geol. 431, 54–66.

Kleiven,H.F.,Hall,I.R.,McCave,I.N.,Knorr,G.,Jansen,E.,2011.Coupleddeep-water flowandclimatevariabilityinthemiddlePleistoceneNorthAtlantic.Geology 39 (4),343–346.https://doi .org /10 .1130 /G31651.1.

Korschinek,G.,Bergmaier,A.,Faestermann,T.,Gerstmann,U.C.,Knie,K.,Rugel,G., Wallner,A., Dillmann,I.,Dollinger, G.,von Gostomski Ch,Lierse,Kossert,K., Maiti,M.,Poutivtsev,M.,Remmert,A.,2010.Anewvalueforthehalf-lifeof10Be

byHeavy-IonElasticRecoilDetectionandliquidscintillationcounting.Nucl. In-strum.MethodsPhys. Res.B 268(2),187–191.https://doi .org /10 .1016 /j .nimb . 2009 .09 .020.

Kovaltsov,G.A.,Usoskin,I.G.,2010.Anew3Dnumericalmodelofcosmogenic nu-clide10Beproduction inthe atmosphere. EarthPlanet.Sci. Lett. 291(1–4),

182–188.https://doi .org /10 .1016 /j .epsl .2010 .01.011.

Lal, D., Peters, B., 1967. Cosmic ray produced radioactivity on the Earth. In: Hand-buch der Physik, vol. XLVI/2. Springer, New York, pp. 551–612.

Laskar,J.,Robutel,P.,Joutel,F.,Gastineau,M.,Correia,A.C.M.,Levrard,B.,2004.A long-termnumericalsolutionfortheinsolationquantitiesoftheEarth.Astron. Astrophys. 428(1),261–285.https://doi .org /10 .1051 /0004 -6361 :20041335.

Lee, M.Y., Chen, C.H., Wei, K.Y., Iizuka, Y., Carey, S., 2004. First Toba supereruption revival. Geology 32 (1), 61–64.

Lee, M.Y., Wei, K.Y., 2000. Australasian microtektites in the South China Sea and the West Philippine Sea: implications for age, size and location of the impact crater. Meteorit. Planet. Sci. 35, 1151–1156.

Leonhardt, R., Fabian, K., 2007. Paleomagnetic reconstruction of the global ge-omagnetic field evolution during the Matuyama/Brunhes transition: iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253 (1–2), 172–195.

Lisiecki,L.E.,Raymo,M.E.,2005. APliocene–Pleistocenestack of57globally dis-tributedbenthicδ18Orecord.Paleoceanography 20,PA1003.https://doi .org /10 . 1029 /2004PA001071.

Lisiecki,L.E.,Raymo, M.E.,2009.Diachronousbenthicδ18Oresponsesduringlate

Pleistoceneterminations.Paleoceanography 24,PA3210.https://doi .org /10 .1029 / 2009PA001732.

Mark, D.F., Renne, P.R., Dymock, R., Smith, V.C., Simon, J.I., Morgan, L.E., Staff, R.A., Ellis, B.S., 2017. High-precision 40Ar/39Ar dating of Pleistocene tuffs and

tempo-ral anchoring of the Matuyama–Brunhes boundary. Quat. Geochronol. 39, 1–23.

Ménabréaz,L.,Thouveny,N.,Bourlès,D.L.,Deschamps,P.,Hamelin,B.,Demory,F., 2011.TheLaschampgeomagneticdipolelowexpressedasacosmogenic10Be

at-mosphericoverproductionat∼41 ka.EarthPlanet.Sci.Lett. 312(3–4),305–317.

https://doi .org /10 .1016 /j .epsl .2011.10 .037.

Ménabréaz, L., Bourlès, D.L., Thouveny, N., 2012. Amplitude and timing ofthe Laschamp geomagnetic dipole low from the global atmospheric 10Be

over-production: contribution of authigenic 10Be/9Be ratios in west equatorial

Pacific sediments. J. Geophys. Res. 117 (B11101). https://doi .org /10 .1029 / 2012JB009256.

Ménabréaz,L.,Thouveny,N.,Bourlès,D.L.,Vidal,L.,2014.Thegeomagneticdipole momentvariationbetween250and800kaBPreconstructedfromthe authi-genic10Be/9BesignatureinWestEquatorialPacificsediments.EarthPlanet.Sci.

Lett. 385,190–205.https://doi .org /10 .1016 /j .epsl .2013 .10 .037.

Mochizuki,N.,Oda,H.,Ishizuka,O.,Yamazaki,T.,Tsunakawa,H.,2011.Paleointensity variationacrosstheMatuyama–Brunhespolaritytransition:observationsfrom lavasatPunaruuValley,Tahiti.J.Geophys.Res. 116,B06103.https://doi .org /10 . 1029 /2010JB008093.

Monaghan, M.C., Krishnaswami, S., Turekian, K.K., 1986. The global-average produc-tion rate of 10Be. Earth Planet. Sci. Lett. 76, 279–287.

Niespolo, E.M., Rutte, D., Deino, A.L., Renne, P.R., 2017. Intercalibration and age of the Alder Creek sanidine 40Ar/39Ar standard. Quat. Geochronol. 39, 205–2013.

Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nucl. Instrum. Methods Phys.

Res., Sect. B 258, 403–413.

Nomade, S., Bassinot, F., Marino, M., Simon, Q., Dewilde, F., Maiorano, P., Isguder, G., Blamart, D., Girone, A., Scao, V., Pereira, A., Toti, F., Bertini, A., Combourieu-Nebout, N., Peral, M., Bourlès, D.L., Petrosino, P., Ciaranfi, N., in revision. High-resolution foraminifer stable isotope record of MIS 19 at Montalbano Jonico, southern Italy: a window into Mediterranean climatic variability during a low-eccentricity interglacial. Quat. Sci. Rev.

Okada,M., Suganuma, Y.,Haneda,Y.,Kazaoka,O.,2017. Paleomagneticdirection andpaleointensityvariationsduringtheMatuyama–Brunhespolaritytransition fromamarinesuccessionintheChibacompositesectionoftheBosoPeninsula, centralJapan.EarthPlanetsSpace 69,45.https://doi .org /10 .1186 /s40623 -017 -0627 -1.

Poluianov,S.V.,Kovaltsov,G.A.,Mishev,A.L.,Usoskin,I.G.,2016.Productionof cos-mogenicisotopes7Be,10Be,14C,22Na,and36Clintheatmosphere:altitudinal

profilesofyield functions.J. Geophys.Res., Atmos. 121,8125–8136. https:// doi .org /10 .1002 /2016JD025034.

Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S., 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quat. Sci. Rev. 111, 94–106.

Raisbeck,G.M.,Yiou,F.,Bourlès,D.,Kent,D.V.,1985.Evidence foranincreasein cosmogenic10Beduringageomagneticreversal.Nature 315,315–317.https://

doi .org /10 .1038 /315315a0.

Raisbeck, G.M., Yiou, F., Cattani, O., Jouzel, J., 2006. 10Be evidence for the

Matuyama–BrunhesgeomagneticreversalintheEPICADomeCicecore. Na-ture 444(7115),82–84.https://doi .org /10 .1038 /nature05266.

Roberts, A., 2015. Magnetic mineral diagenesis. Earth-Sci. Rev. 151, 1–47.

Roberts, A.P., Winklhofer, M., 2004. Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magneti-zation lock-in modelling. Earth Planet. Sci. Lett. 227, 345–359.

Roberts, A.P., Tauxe, L., Heslop, D., 2013. Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: successes and future challenges. Quat. Sci. Rev. 61, 1–16.

Sagnotti,L.,Giaccio,B.,Liddicoat,J.C.,Nomade,S.,Renne,P.R.,Scardia,G.,Sprain, C.J.,2016.HowfastwastheMatuyama–Brunhesgeomagneticreversal?Anew subcentennialrecordfromtheSulmonaBasin,centralItaly.Geophys.J.Int. 204, 798–812.https://doi .org /10 .1093 /gji /ggv486.

Schmidt, G., Zhou, L., Wasson, J.T., 1993. Iridium anomaly associated with the Aus-tralasian tektite-producing impact: masses of the impactor and of the Aus-tralasian tektites. Geochim. Cosmochim. Acta 57, 4851–4859.

Figure

Fig. 1. Geographic locations of the four studied cores (black circles) along with Be-ratio and 10 Be-flux from marine and glacial records discussed in the text (white circles).
Fig. 2. Oxygen and beryllium isotope results. The benthic Cibicides wuellerstorfi δ 18 O records and microtektite distributions (orange) are represented in the upper panel
Fig. 3. Authigenic Be-ratios versus 10 Be and 9 Be concentrations. The grey-shaded area represent values within the MBT interval
Fig. 4. Results plotted on a common depth scale. (A) δ 18 O records synchronized to a common depth scale (MD90-961/963 as a target) using minimal tie points  num-bers (indicated by diamonds)
+5

Références

Documents relatifs

Our 17 new data together with 62 previously published results were used to obtain, by Bayesian modeling, the geomagnetic field intensity over the past two millennia for western

Plotting the measured 230 Th/ 238 U and 234 U/ 238 U on the classical isotope evolution diagram (Fig. 2), we observe that most of samples for which finite ages were determined,

Analysis of the Sint-2000 data shows that the geomagnetic dipole mode has a linear growth time of 20 +13 −7 kyr, and that the nonlinear quenching of the growth rate follows a

hirschi Schuurmans-Stekhoven 1942 (espèce type) carac- térisée par 3 rangées de ponctuations longitudinales différenciées, un spicule régulièrement courbe et un

Les caractères morphologiques principaux de cette espèce sont les suivants : corps mou, atténué aux 2 extrémités, recouvert d'une épaisse couche de mucus

The results of the experimental program indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer

We only included objects where the CIII] λ1909Å (or HeII λ1640Å) were reasonably clear of skyline residuals and had a S/N ≥ 3, to allow a precise mea- surement of the line peak

The beetles found at the Lebanese, Spanish, French and Myanmar amber sites had not participated in the resin production that resulted in early and mid-Cretaceous ambers..