• Aucun résultat trouvé

Search for Pair Production of Scalar Top Quarks in <em>R</em>-Parity Violating Decay Modes in <em>pp</em> Collisions at s√=1.8  TeV

N/A
N/A
Protected

Academic year: 2022

Partager "Search for Pair Production of Scalar Top Quarks in <em>R</em>-Parity Violating Decay Modes in <em>pp</em> Collisions at s√=1.8  TeV"

Copied!
8
0
0

Texte intégral

(1)

Article

Reference

Search for Pair Production of Scalar Top Quarks in R -Parity Violating Decay Modes in pp Collisions at s√=1.8  TeV

CDF Collaboration

CLARK, Allan Geoffrey (Collab.), et al.

Abstract

We present the results of a search for pair production of scalar top quarks (t˜1) in an R-parity violating supersymmetry scenario in 106   pb−1 of pp¯ collisions at s√=1.8  TeV collected by the Collider Detector at Fermilab. In this mode each t˜1 decays into a τ lepton and a b quark. We search for events with two τ's, one decaying leptonically (e or μ) and one decaying hadronically, and two jets. No candidate events pass our final selection criteria. We set a 95%

confidence level lower limit on the t˜1 mass at 122  GeV/c2 for Br(t˜1→τb)=1.

CDF Collaboration, CLARK, Allan Geoffrey (Collab.), et al . Search for Pair Production of Scalar Top Quarks in R -Parity Violating Decay Modes in pp Collisions at s√=1.8  TeV. Physical

Review Letters , 2004, vol. 92, no. 05, p. 051803

DOI : 10.1103/PhysRevLett.92.051803

Available at:

http://archive-ouverte.unige.ch/unige:38065

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Search for Pair Production of Scalar Top Quarks in R-Parity Violating Decay Modes in pp Collisions at

p s

1:8 TeV

D. Acosta,14T. Affolder,25H. Akimoto,51M. G. Albrow,13D. Ambrose,37D. Amidei,28K. Anikeev,27J. Antos,1 G. Apollinari,13T. Arisawa,51A. Artikov,11T. Asakawa,49W. Ashmanskas,2F. Azfar,35P. Azzi-Bacchetta,36 N. Bacchetta,36H. Bachacou,25W. Badgett,13S. Bailey,18P. de Barbaro,41A. Barbaro-Galtieri,25V. E. Barnes,40

B. A. Barnett,21S. Baroiant,5M. Barone,15G. Bauer,27F. Bedeschi,38S. Behari,21S. Belforte,48W. H. Bell,17 G. Bellettini,38J. Bellinger,52D. Benjamin,12J. Bensinger,4A. Beretvas,13J. Berryhill,10A. Bhatti,42M. Binkley,13 D. Bisello,36M. Bishai,13R. E. Blair,2C. Blocker,4K. Bloom,28B. Blumenfeld,21S. R. Blusk,41A. Bocci,42A. Bodek,41 G. Bolla,40A. Bolshov,27Y. Bonushkin,6D. Bortoletto,40J. Boudreau,39A. Brandl,31C. Bromberg,29M. Brozovic,12

E. Brubaker,25N. Bruner,31J. Budagov,11H. S. Budd,41K. Burkett,18G. Busetto,36K. L. Byrum,2S. Cabrera,12 P. Calafiura,25M. Campbell,28W. Carithers,25J. Carlson,28D. Carlsmith,52W. Caskey,5A. Castro,3D. Cauz,48 A. Cerri,38L. Cerrito,20A.W. Chan,1P. S. Chang,1P. T. Chang,1J. Chapman,28C. Chen,37Y. C. Chen,1M.-T. Cheng,1

M. Chertok,5G. Chiarelli,38I. Chirikov-Zorin,11G. Chlachidze,11F. Chlebana,13L. Christofek,20M. L. Chu,1 J. Y. Chung,33W.-H. Chung,52Y. S. Chung,41C. I. Ciobanu,33A. G. Clark,16M. Coca,41A. P. Colijn,13A. Connolly,25 M. Convery,42J. Conway,44M. Cordelli,15J. Cranshaw,46R. Culbertson,13D. Dagenhart,4S. D’Auria,17S. De Cecco,43

F. DeJongh,13S. Dell’Agnello,15M. Dell’Orso,38S. Demers,41L. Demortier,42M. Deninno,3D. De Pedis,43 P. F. Derwent,13T. Devlin,44C. Dionisi,43J. R. Dittmann,13A. Dominguez,25S. Donati,38M. D’Onofrio,38T. Dorigo,36

N. Eddy,20K. Einsweiler,25E. Engels, Jr.,39R. Erbacher,13D. Errede,20S. Errede,20R. Eusebi,41Q. Fan,41 S. Farrington,17R. G. Feild,53J. P. Fernandez,40C. Ferretti,28R. D. Field,14I. Fiori,3B. Flaugher,13

L. R. Flores-Castillo,39G.W. Foster,13M. Franklin,18J. Freeman,13J. Friedman,27Y. Fukui,23I. Furic,27S. Galeotti,38 A. Gallas,32M. Gallinaro,42T. Gao,37M. Garcia-Sciveres,25A. F. Garfinkel,40P. Gatti,36C. Gay,53D.W. Gerdes,28

E. Gerstein,9S. Giagu,43P. Giannetti,38K. Giolo,40M. Giordani,5P. Giromini,15V. Glagolev,11D. Glenzinski,13 M. Gold,31N. Goldschmidt,28J. Goldstein,13G. Gomez,8M. Goncharov,45I. Gorelov,31A. T. Goshaw,12Y. Gotra,39

K. Goulianos,42C. Green,40A. Gresele,3G. Grim,5C. Grosso-Pilcher,10M. Guenther,40G. Guillian,28 J. Guimaraes da Costa,18R. M. Haas,14C. Haber,25S. R. Hahn,13E. Halkiadakis,41C. Hall,18T. Handa,19R. Handler,52 F. Happacher,15K. Hara,49A. D. Hardman,40R. M. Harris,13F. Hartmann,22K. Hatakeyama,42J. Hauser,6J. Heinrich,37

A. Heiss,22M. Hennecke,22M. Herndon,21C. Hill,7A. Hocker,41K. D. Hoffman,10R. Hollebeek,37L. Holloway,20 S. Hou,1B. T. Huffman,35R. Hughes,33J. Huston,29J. Huth,18H. Ikeda,49C. Issever,7J. Incandela,7G. Introzzi,38 M. Iori,43A. Ivanov,41J. Iwai,51Y. Iwata,19B. Iyutin,27E. James,28M. Jones,37U. Joshi,13H. Kambara,16T. Kamon,45 T. Kaneko,49J. Kang,28M. Karagoz Unel,32K. Karr,50S. Kartal,13H. Kasha,53Y. Kato,34T. A. Keaffaber,40K. Kelley,27 M. Kelly,28R. D. Kennedy,13R. Kephart,13D. Khazins,12T. Kikuchi,49B. Kilminster,41B. J. Kim,24 D. H. Kim,24

H. S. Kim,20M. J. Kim,9S. B. Kim,24S. H. Kim,49T. H. Kim,27Y. K. Kim,25M. Kirby,12M. Kirk,4L. Kirsch,4 S. Klimenko,14 P. Koehn,33K. Kondo,51J. Konigsberg,14A. Korn,27A. Korytov,14K. Kotelnikov,30E. Kovacs,2

J. Kroll,37M. Kruse,12V. Krutelyov,45S. E. Kuhlmann,2K. Kurino,19T. Kuwabara,49N. Kuznetsova,13 A. T. Laasanen,40N. Lai,10S. Lami,42S. Lammel,13J. Lancaster,12K. Lannon,20M. Lancaster,26R. Lander,5A. Lath,44 G. Latino,31T. LeCompte,2Y. Le,21J. Lee,41S.W. Lee,45N. Leonardo,27S. Leone,38J. D. Lewis,13K. Li,53C. S. Lin,13

M. Lindgren,6T. M. Liss,20J. B. Liu,41T. Liu,13Y. C. Liu,1D. O. Litvintsev,13O. Lobban,46N. S. Lockyer,37 A. Loginov,30J. Loken,35M. Loreti,36D. Lucchesi,36P. Lukens,13S. Lusin,52L. Lyons,35J. Lys,25R. Madrak,18

K. Maeshima,13P. Maksimovic,21L. Malferrari,3M. Mangano,38G. Manca,35M. Mariotti,36G. Martignon,36 M. Martin,21A. Martin,53V. Martin,32M. Martı´nez,13J. A. J. Matthews,31P. Mazzanti,3K. S. McFarland,41 P. McIntyre,45M. Menguzzato,36A. Menzione,38P. Merkel,13C. Mesropian,42A. Meyer,13T. Miao,13R. Miller,29 J. S. Miller,28H. Minato,49S. Miscetti,15M. Mishina,23G. Mitselmakher,14Y. Miyazaki,34N. Moggi,3E. Moore,31 R. Moore,28Y. Morita,23T. Moulik,40M. Mulhearn,27A. Mukherjee,13T. Muller,22A. Munar,38P. Murat,13S. Murgia,29 J. Nachtman,6V. Nagaslaev,46S. Nahn,53H. Nakada,49I. Nakano,19R. Napora,21F. Niell,28C. Nelson,13T. Nelson,13

C. Neu,33M. S. Neubauer,27D. Neuberger,22C. Newman-Holmes,13C.-Y. P. Ngan,27T. Nigmanov,39H. Niu,4 L. Nodulman,2A. Nomerotski,14S. H. Oh,12Y. D. Oh,24T. Ohmoto,19T. Ohsugi,19R. Oishi,49T. Okusawa,34J. Olsen,52 W. Orejudos,25C. Pagliarone,38F. Palmonari,38R. Paoletti,38V. Papadimitriou,46D. Partos,4J. Patrick,13G. Pauletta,48 M. Paulini,9T. Pauly,35C. Paus,27D. Pellett,5A. Penzo,48L. Pescara,36T. J. Phillips,12G. Piacentino,38J. Piedra,8 K. T. Pitts,20A. Pomposˇ,40L. Pondrom,52G. Pope,39T. Pratt,35F. Prokoshin,11J. Proudfoot,2F. Ptohos,15O. Pukhov,11

(3)

G. Punzi, J. Rademacker, A. Rakitine, F. Ratnikov, H. Ray, D. Reher, A. Reichold, P. Renton, M. Rescigno,43A. Ribon,36W. Riegler,18F. Rimondi,3L. Ristori,38M. Riveline,47W. J. Robertson,12T. Rodrigo,8 S. Rolli,50L. Rosenson,27R. Roser,13R. Rossin,36C. Rott,40A. Roy,40A. Ruiz,8D. Ryan,50A. Safonov,5R. St. Denis,17

W. K. Sakumoto,41D. Saltzberg,6C. Sanchez,33A. Sansoni,15L. Santi,48S. Sarkar,43H. Sato,49P. Savard,47 A. Savoy-Navarro,13P. Schlabach,13E. E. Schmidt,13M. P. Schmidt,53M. Schmitt,32L. Scodellaro,36A. Scott,6 A. Scribano,38A. Sedov,40S. Seidel,31Y. Seiya,49A. Semenov,11F. Semeria,3T. Shah,27M. D. Shapiro,25P. F. Shepard,39

T. Shibayama,49M. Shimojima,49M. Shochet,10A. Sidoti,36J. Siegrist,25A. Sill,46P. Sinervo,47P. Singh,20 A. J. Slaughter,53K. Sliwa,50F. D. Snider,13R. Snihur,26A. Solodsky,42J. Spalding,13T. Speer,16M. Spezziga,46

P. Sphicas,27F. Spinella,38M. Spiropulu,10L. Spiegel,13J. Steele,52A. Stefanini,38J. Strologas,20F. Strumia,16 D. Stuart,7A. Sukhanov,14K. Sumorok,27T. Suzuki,49T. Takano,34R. Takashima,19K. Takikawa,49P. Tamburello,12

M. Tanaka,49B. Tannenbaum,6M. Tecchio,28R. J. Tesarek,13P. K. Teng,1K. Terashi,42S. Tether,27J. Thom,13 A. S. Thompson,17E. Thomson,33R. Thurman-Keup,2P. Tipton,41S. Tkaczyk,13D. Toback,45K. Tollefson,29 D. Tonelli,38M. Tonnesmann,29H. Toyoda,34W. Trischuk,47J. F. de Troconiz,18J. Tseng,27D. Tsybychev,14N. Turini,38

F. Ukegawa,49T. Unverhau,17T. Vaiciulis,41J. Valls,44 A. Varganov,28E. Vataga,38S. Vejcik III,13G. Velev,13 G. Veramendi,25R. Vidal,13I. Vila,8R.Vilar,8I. Volobouev,25M. von der Mey,6D.Vucinic,27R. G. Wagner,2R. L. Wagner,13 W. Wagner,22N. B. Wallace,44Z. Wan,44C. Wang,12M. J. Wang,1S. M. Wang,14B. Ward,17S. Waschke,17T. Watanabe,49 D. Waters,26T. Watts,44M. Weber,25H. Wenzel,22W. C. Wester III,13B. Whitehouse,50A. B. Wicklund,2E. Wicklund,13

T. Wilkes,5H. H. Williams,37P. Wilson,13B. L. Winer,33D. Winn,28S. Wolbers,13D. Wolinski,28J. Wolinski,29 S. Wolinski,28M. Wolter,50S. Worm,44X. Wu,16F. Wu¨rthwein,27J. Wyss,38U. K. Yang,10W. Yao,25G. P. Yeh,13P. Yeh,1

K. Yi,21J. Yoh,13C. Yosef,29T. Yoshida,34I. Yu,24S. Yu,37Z. Yu,53J. C. Yun,13L. Zanello,43A. Zanetti,48 F. Zetti,25and S. Zucchelli3

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

2Argonne National Laboratory, Argonne, Illinois 60439, USA

3Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy

4Brandeis University, Waltham, Massachusetts 02254, USA

5University of California at Davis, Davis, California 95616, USA

6University of California at Los Angeles, Los Angeles, California 90024, USA

7University of California at Santa Barbara, Santa Barbara, California 93106, USA

8Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

9Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

10Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

11Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

12Duke University, Durham, North Carolina 27708, USA

13Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

14University of Florida, Gainesville, Florida 32611, USA

15Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

16University of Geneva, CH-1211 Geneva 4, Switzerland

17Glasgow University, Glasgow G12 8QQ, United Kingdom

18Harvard University, Cambridge, Massachusetts 02138, USA

19Hiroshima University, Higashi-Hiroshima 724, Japan

20University of Illinois, Urbana, Illinois 61801, USA

21The Johns Hopkins University, Baltimore, Maryland 21218, USA

22Institut fu¨r Experimentelle Kernphysik, Universita¨t Karlsruhe, 76128 Karlsruhe, Germany

23High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan

24Center for High Energy Physics: Kyungpook National University, Taegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; and SungKyunKwan University, Suwon 440-746, Korea

25Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

26University College London, London WC1E 6BT, United Kingdom

27Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

28University of Michigan, Ann Arbor, Michigan 48109, USA

29Michigan State University, East Lansing, Michigan 48824, USA

30Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

31University of New Mexico, Albuquerque, New Mexico 87131, USA

051803-2 051803-2

(4)

32Northwestern University, Evanston, Illinois 60208, USA

33The Ohio State University, Columbus, Ohio 43210, USA

34Osaka City University, Osaka 588, Japan

35University of Oxford, Oxford OX1 3RH, United Kingdom

36Universita di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy

37University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

38Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, Italy

39University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

40Purdue University, West Lafayette, Indiana 47907, USA

41University of Rochester, Rochester, New York 14627, USA

42Rockefeller University, New York, New York 10021, USA

43Istituto Nazionale di Fisica Nucleare, Sezione di Roma, University di Roma I, ‘‘La Sapienza,’’ I-00185 Roma, Italy

44Rutgers University, Piscataway, New Jersey 08855, USA

45Texas A&M University, College Station, Texas 77843, USA

46Texas Tech University, Lubbock, Texas 79409, USA

47Institute of Particle Physics, University of Toronto, Toronto M5S 1A7, Canada

48Istituto Nazionale di Fisica Nucleare, University of Trieste/Udine, Italy

49University of Tsukuba, Tsukuba, Ibaraki 305, Japan

50Tufts University, Medford, Massachusetts 02155, USA

51Waseda University, Tokyo 169, Japan

52University of Wisconsin, Madison, Wisconsin 53706, USA

53Yale University, New Haven, Connecticut 06520, USA (Received 7 May 2003; published 5 February 2004)

We present the results of a search for pair production of scalar top quarks (~tt1) in anR-parity violating supersymmetry scenario in 106 pb1 of pp collisions at ps

1:8 TeV collected by the Collider Detector at Fermilab. In this mode each~tt1decays into alepton and abquark. We search for events with two’s, one decaying leptonically (e or ) and one decaying hadronically, and two jets. No candidate events pass our final selection criteria. We set a 95% confidence level lower limit on the~tt1 mass at122 GeV=c2 forBr~tt1!b 1.

DOI: 10.1103/PhysRevLett.92.051803 PACS numbers: 14.80.Ly, 11.30.Er, 12.60.Jv, 13.85.Rm

Many supersymmetry (SUSY) models [1] predict that the first two generations of SUSY partners of the quarks and the leptons (squarks and sleptons) are approximately mass degenerate and heavy. However, the mass of the lightest top squark (~tt1 or ‘‘stop’’) can be relatively light due to a large mixing between the interaction eigenstates,

~ttL and ~ttR. This mixing depends on the top Yukawa cou- pling. Because of the heavy top (t) quark mass,Mt, it is possible thatM~tt1< Mt[2].

R parity (Rp) is a multiplicative quantum number defined asRp 13BL2S, whereS,B, andLare the spin, baryon, and lepton numbers of a particle [3]. Rp distinguishes standard model (SM) particles (Rp 1) from SUSY particles (Rp 1). Conservation of Rp requires SUSY particles to be produced in pairs and to decay ultimately to SM particles plus the stable lightest SUSY particle.Rpconservation is not required by SUSY.

It is motivated phenomenologically by limits on the pro- ton lifetime, the absence of flavor-changing neutral cur- rents, etc. ViableRpviolating (6Rp) models can be built by adding explicit 6Rp terms with trilinear couplings (ijk, 0ijk,00ijk) and spontaneous 6Rp terms with bilinear cou- plings (i) to the SUSY Lagrangian [4,5], wherei,j, andk are generation indices. These couplings allow B or L violating interactions and, if033k or3 is nonzero, a ~tt1

may decay directly to SM final states which are experi- mentally observable.

In pp collisions, stop pairs can be produced via Rp-conserving processes. In6Rp scenarios each stop could decay into a tau () lepton and a bottom (b) quark with a branching ratio, Br, which depends on the coupling con- stants of the particular model. A good final state topology identifies either an electron or a muon (‘eor) from the! decay, as well as a hadronically decaying tau (h) lepton, and two or more jets.

We present the results of a search for ~tt1~tt1 !hjj events, in the framework of6Rp– minimal supersymmetric standard model (MSSM), using106 pb1ofppcollisions

at

ps

1:8 TeV collected by the Collider Detector at Fermilab (CDF) [6,7] during the 1992 –1995 run of the Tevatron (Run 1). In CDF theppcollision vertex (zvtx) [8]

is measured with a time projection chamber. The trans- verse momentum (pT) of charged particles havingjj<

1:0 is measured by a central tracking chamber (CTC) immersed in a uniform 1.4 T solenoidal magnetic field [8]. Electromagnetic (EM) and hadronic (HAD) calorim- eters, segmented in a projective tower geometry, surround the solenoid and cover the regionjj<4:2. They identify electrons, taus, and jets and measure the missing trans- verse energy (6ET). The central strip chamber (CES),

(5)

embedded in the central EM calorimeter near shower maximum, aids in electron identification and 0! identification from h decays. A muon subsystem is lo- cated outside the HAD calorimeter and has trigger cover- age for the regionjj<0:6.

Events must pass a three-level trigger system [6] which requires a single lepton (e or ) with pT >8 GeV=c (jj<1:0 for electrons and jj<0:6 for muons) [9].

Offline, the lepton must havepT >10 GeV=c, originate from the event vertex, and pass more restrictive identi- fication and isolation requirements [7,10]. An event is removed as aZboson candidate if it contains a second, loosely identified same-flavor opposite-sign lepton with 76< M‘‘<106 GeV=c2. All events are required to have jzvtxj 60 cm.

An inclusivehsubsample is made by requiring each event to further contain a highpT, isolated, hadronically decaying lepton candidate with pTh >15 GeV=c [11]

andjj<1:0. Ahcandidate is identified as a calorime- ter cluster satisfying the following requirements [12]: (i) not identified as aneor a; (ii) one or three tracks with pT >1 GeV=c in a 10 cone around the calorimeter cluster center; (iii) the scalar sum of thepT of all tracks inR0:4around the cluster center, excluding those in the 10 cone, less than1 GeV=c; (iv) fewer than three 0 !candidates identified in the CES; (v) more than 4 GeV of ET measured in the calorimeter; (vi) 0:5<

ET=pTh <2:0(1.5) for one track (three tracks); (vii) the width of the calorimeter cluster in-! space less than 0.11 (0.13) –0:0250:034 ET GeV=100 for one track (three tracks); and (viii) the invariant mass reconstructed from tracks and0’s less than1:8 GeV=c2. The charge of theh is defined as the sum of the track charges, and is required to have unit magnitude and have the opposite- sign (OS) of the‘. A total of 642 events pass the above requirements; 16 of these have two or more jets (recon- structed by a fixed cone algorithm withR0:4[13]) with ET >15 GeV and jj<2:4. The four hjets candidates found in the search for tt! WbWb [12] pass the kinematic requirements for this search.

The dominant backgrounds come from Z=! jets,tt, diboson (WW,WZ,ZZ) production, and fake h combinations from Wjets and QCD events. Monte Carlo (MC) programs with CTEQ4L parton distribution functions (PDFs) [14] and a detector simulation are used to estimate the background rates from Z=,W,tt, and diboson events. All SM processes except W=Zjets events are generated using ISAJET [15];

VECBOS[16] is used for vector boson plus jets production and decay, followed by HERWIG[17] for the fragmenta- tion and hadronization of the quarks and gluons. The cross sections for Z=, tt, and WW production are normalized to CDF measurements [18– 21] and next-to- leading order (NLO) calculations forWZandZZproduc- tion are used [22]. The number of QCD fake events is estimated from the data assuming that the number of OS

events, after subtracting off the nonfake contribution, is identical to the number of like-sign (LS) events observed in the data as expected from QCD sources, i.e.,NQCDOS NLSdataNMCLS.

The final data selection is optimized to maximize the sensitivity for ~tt1~tt1 production over simulated SM back- grounds and LS data. To reduce the Wjets events we require MT‘;6ET<35 GeV=c2 where MT‘;6Et is the transverse mass of theand 6ET, defined asMT‘;6ET

2pT6ET1cos!‘6ET q

, and!‘6ET is the azimuthal angle difference between the and 6ET. To reduce the QCD backgrounds we require P

pT‘; h;6ET pT pTh 6ET >75 GeV=c. The MT‘;6ET cut precedes the PpT‘; h;6ET cut because of possible charge correla- tions between the lepton fromWdecay and a fakehfrom a jet. Figure 1 shows the MT‘;6ET and P

pT‘; h;6ET distributions for the OS h 2jet sample. A control sample of h0 jet events with similar kinematic requirements [MT‘;6ET<25 GeV=c2, jpp~T6E6E~Tj>

25 GeV=c] is selected to show that the backgrounds are well modeled, dominated by realZ!production, and for later use in the acceptance calculations. Figure 2

0 2 4 6 8 10 12

0 20 40 60 80 100 120 140

CDF Run 1, 106 pb-1 Data (OS τh + 2 jets)

t

1t1 MC (M t = 100 GeV/c2) _

W+jets + tt- + diboson Z/γ*(→τ+τ-)+jets QCD

MT( ,E/T) (GeV/c2)

Events / 7 GeV/c2

MT( ,E/T) < 35 GeV/c2 cut

0 1 2 3 4 5 6 7 8 9

0 25 50 75 100 125 150 175 200 After MT( ,E/T) cut

ΣpT( ,τh,E/T) (GeV/c)

Events / 15 GeV/c

ΣpT( ,τh,E/T) > 75 GeV/c cut

FIG. 1 (color online). The final data selection criteria for the OSh 2 jet sample. The arrows show the final event selection requirements.

051803-4 051803-4

(6)

shows the charged track multiplicity of theh’s (remov- ing the1and3-prong requirements) for this sample.

A breakdown of the backgrounds and data is given in Table I. The backgrounds appear well modeled. A total of 3:21:40:3 events are predicted from all SM sources, domi- nated by Z! jets production. No candidate events pass the final~tt1~tt1 selection criteria, which is ex- pected in3%of experiments when taking into account the statistical and systematic uncertainties.

In order to set limits on~tt1~tt1 production and decay, the acceptances and efficiencies are normalized to the rate of Z! 0jet decays using the following relation:

*~tt1~tt1!bb Nobs

~tt1~tt1NBG

~tt1~tt1

NZobsNZBG

RaccRtrig*Z

BrZ!; (1) where Nobs

~tt1~tt1

and NBG

~tt1~tt1

(NZobs and NBGZ ) are the number of candidates observed in the data and expected back- grounds in the 2jet=~tt1~tt1 (0jet=Z) selections, Racc is

the ratio of theZto~tt1~tt1 acceptances andRtrig is the ratio of the trigger efficiencies. The primary advantage of this approach is that potential systematic uncertainties in the estimate of identification and isolation efficiencies are reduced in the ratio of~tt1~tt1 toZproduction.

The 95% confidence level (C.L.) limits on *~tt1~tt1! bb in thee,, and combined channels are found using Eq. (1) and come from a Bayesian integration of the likelihood as a function of the cross section, integrating over the correlated and uncorrelated systematic uncer- tainties on the expected signal with a flat prior. TheRacc is a function of the M~tt1 and varies in the range 0:34<

Reacc<2:15 0:35< Racc<1:87 for the e () channel over the range 70< M~tt1<130 GeV=c2. The Rtrig varies between 0:95< Retrig<0:97(0:99< Rtrig<1:00) for the e() channel with an uncertainty of1%. [The accep- tance and trigger efficiencies for theZcontrol sample are 1.19% (0.69%) and 74.5% (83.0%) for thee() channel.]

Assuming lepton universality gives *ZBrZ! *ZBrZ! 23112statsyspb [23]. The dominant uncertainty is due to the statistical uncertainty in NZobsNZBG and is 17.0% (24.9%) [24].

Additional uncertainty comes from our estimation of Racc which is dominated by the variation in the ~tt1~tt1 acceptance from choices of the QCD renormalization scaleQ2, PDFs, amount of gluon radiation, the jet energy scale, and the statistical uncertainty in the MC samples [25]. The total uncorrelated uncertainties vary between 17.1 and 17.7% (25.1 and 25.4%), and the total correlated uncertainties vary between 9.3 and 14.1%.

Figure 3 shows the final 95% C.L. upper limits on the cross section times Br for thee,, and combined chan- nels, along with the NLO prediction of the production cross section [26]. The lower limits on M~tt1 are 110 and 75 GeV=c2 for the e and channels, where we have assumedBr1. Combining the two results yields a limit of 122 GeV=c2. Since our analysis does not distinguish the quark flavors in jet reconstruction, these results are equally valid for any 033k coupling. These results sub- stantially improve on the currently most stringent mass limit [27] which excludesM~tt1below93 GeV=c2.

In conclusion, we searched for ~tt1~tt1 production using 106 pb1 data in pp collisions at

ps

1:8 TeV. We examined the h 2 jet final state within an 6Rp SUSY scenario in which each ~tt1 decays to a lepton

TABLE I. Summary of the number of OS events in the data and expectations for the background sources as each selection requirement is applied.

Sample tt Diboson Wjets Z=! QCD Tot Nobs

OSh 1:20:3 2:30:8 1016 2259 30118 63121 642

h 2jets 1:00:2 0:40:1 3:40:4 7:70:5 83 213 16

MT‘;6ET<35 GeV=c2 0:150:07 0:140:06 0:50:2 6:00:4 83 153 10 PpT‘; h;6ET>75 GeV=c 0:150:07 0:080:03 0:20:1 2:80:3 01:40 3:21:40:3 0

0 10 20 30 40 50 60

0 1 2 3 4 5 6 7

Data (OS τh+0 jets) Z→τ+τ-

QCD

Ntrack(τ)

Events

CDF Run 1, 106 pb-1

FIG. 2 (color online). The number of charged tracks in each h candidate for the opposite-sign (OS) h0 jet control sample. The data are compared to the MC expectation (all backgrounds are summed) which is dominated by real h’s fromZ!production.

(7)

and abquark via nonzero0333or3couplings. No events pass our selection criteria and we set a 95% C.L. lower limit on the~tt1 mass at122 GeV=c2 forBr1.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions.

This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science, Sports and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fuer Bildung und Forschung, Germany; the Korea Science and Engineering Foundation (KoSEF), the Korea Research Foundation; and the Comision Interministerial de Ciencia y Tecnologia, Spain.

[1] H. P. Nilles, Phys. Rep. 110, 1 (1984); H. E. Haber and G. L. Kane,ibid.117, 75 (1985).

[2] K. Inoue, A. Kakuo, H. Komatsu, and S. Takeshita, Prog.

Theor. Phys.68, 927 (1982);71, 413 (1984); L. E. Ibanez and C. Lopez, Nucl. Phys. B233, 511 (1984); J. R. Ellis and S. Rudaz, Phys. Lett.128B, 248 (1983).

[3] A. Salam and J. Strathdee, Nucl. Phys. B87, 85 (1975);

P. Fayet,ibid. B90, 104 (1975); G. Farrar and P. Fayet, Phys. Lett.76B, 575 (1978).

[4] S. Weinberg, Phys. Rev. D26, 287 (1982); G. Farrar and S. Weinberg, ibid. 27, 2732 (1983); S. Dawson, Nucl.

Phys.B261, 297 (1985).

p

Dreiner, hep-ph/9707435; F. de Camposet al., hep-ph/

9903245.

[6] CDF Collaboration, F. Abe et al., Nucl. Instrum.

Methods Phys. Res., Sect. A 271, 387 (1988).

[7] CDF Collaboration, F. Abeet al., Phys. Rev. D50, 2966 (1994).

[8] We use a coordinate system where,and!are the polar and azimuthal angles with respect to the proton beam direction (z axis). The pseudorapidity is defined as lntan,=2. The transverse momentum of a particle is denoted as pTpsin,. The analogous quantity using energies, defined as ETEsin,, is called transverse energy. The missing transverse energy, 6ET, is a magni- tude of6E6E~T P

EiTnn^i, wherenn^iis the unit vector in the transverse plane pointing from the interaction point to the energy deposition in calorimeter celli.

[9] CDF Collaboration, F. Abe et al., Phys. Rev. D 58, 092002 (1998).

[10] Each lepton is required to have less than 4 GeV ofET(as measured in the calorimeter) in a cone of R

2 !2

p 0:4 around the lepton, excluding the lepton energy. Similarly, the isolation in CTC is also required to be less than 4 GeV=c. Also, see CDF Collaboration, T. Affolder et al., Phys. Rev. Lett. 87, 251803 (2001).

[11] pThis defined as the sum of thepTof any tracks in a10 cone around the center of the candidate, plus theET of any identified0’s, as measured in the EM calorimeter.

[12] CDF Collaboration, F. Abe et al., Phys. Rev. Lett.79, 3585 (1997).

[13] CDF Collaboration, F. Abeet al., Phys. Rev. D45, 1448 (1992).

[14] H. L. Laiet al., Phys. Rev. D55, 1280 (1997).

[15] H. Baer, F. E. Paige, S. D. Protopopescu, and X. Tata, hep- ph/0001086. We useISAJETversion 7.44.

[16] F. A. Berends, W. T. Giele, H. Kuijf, and B. Tausk, Nucl.

Phys. B357, 32 (1991); W. T. Giele, E.W. N. Glover, and D. A. Kosower, Nucl. Phys.B403, 633 (1993).

[17] G. Marchesini and B. R. Webber, Nucl. Phys. B310, 461 (1988); G. Marchesiniet al., Comput. Phys. Commun.67, 465 (1992).

[18] CDF Collaboration, F. Abe et al., Phys. Rev. Lett.76, 3070 (1996).

[19] CDF Collaboration, F. Abe et al., Phys. Rev. D 49, 1 (1994).

[20] CDF Collaboration, F. Abe et al., Phys. Rev. Lett.80, 2773 (1998).

[21] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 78, 4536 (1997).

[22] J. Ohnemus, Phys. Rev. D44, 3477 (1991); J. Ohnemus and J. Owens, Phys. Rev. D43, 3626 (1991).

[23] CDF Collaboration, F. Abeet al., Phys. Rev. Lett.77, 448 (1996).

[24] For the electron channel we have NobsZ NBGZ 54 8:12:5events which gives468 events when sta- tistical uncertainties are taken into account. Similarly, for the muon channel we have 23 2:91:5 which gives205events.

[25] The estimated systematic uncertainties in Racc due to ~tt1~tt1 production and decay for the stop mass range 10

10

60 70 80 90 100 110 120 130

NLO theory

(PROSPINO, µ=M∼)t1 95% C.L. upper limit

Combined results eτ + 2 jets µτ+ ≥2 jets

CDF Run 1, 106 pb-1 Br(t1→τ+b) = 100%

Mt1> 122 GeV/c2

M∼ (GeV/c2) σ(t1t_ 1τ+ τ- bb_ ) (pb)∼∼

t1

FIG. 3 (color online). The 95% C.L. upper limit on cross section times Br for ~tt1~tt1 production compared to the NLO calculations.

051803-6 051803-6

(8)

from 130 to70 GeV=c2 are between 4.5 and 8.2% due to choice of theQ2 scale (taken to be correlated, and equal for the eand cases), 2.0 and 4.6% due to the choice in PDFs (again taken to be correlated and equal for e and ), 2.3 and 6.4% due to uncertainty in the initial and final state gluon radiation (correlated, and averaged between e and ), 1.1 and 3.7% due to jet energy scale (correlated and averaged), and 1.7 and 4.7% fore’s and 2.3 and 4.8% for’s due to MC statistics (uncorrelated).

[26] W. Beenakker, R. Ho¨pker, M. Spira, and P. M. Zerwas, Nucl. Phys. B492, 51 (1997). The calculation of NLO cross section for ~tt1~tt1 production is made using the

PROSPINO program with CTEQ4M, hep-th/9611232 (1996). The theoretical uncertainty on the NLO squark production cross section is a function of the squark mass and ranges from 11% to 22% for the mass range 30 to 150 GeV=c2.

[27] ALEPH Collaboration, R. Barateet al., Eur. Phys. J. C 19, 415 (2001).

Références

Documents relatifs

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

4 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 5 Brandeis University, Waltham, Massachusetts

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy!. 6 Brandeis University, Waltham, Massachusetts

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts