• Aucun résultat trouvé

First Observation of the Decay B<sub>s</sub><sup>0</sup> -&gt; D<sub>s</sub><sup>-</sup>D<sub>s</sub><sup>+</sup> and Measurement of Its Branching Ratio

N/A
N/A
Protected

Academic year: 2022

Partager "First Observation of the Decay B<sub>s</sub><sup>0</sup> -&gt; D<sub>s</sub><sup>-</sup>D<sub>s</sub><sup>+</sup> and Measurement of Its Branching Ratio"

Copied!
8
0
0

Texte intégral

(1)

Article

Reference

First Observation of the Decay B

s0

-> D

s-

D

s+

and Measurement of Its Branching Ratio

CDF Collaboration

CLARK, Allan Geoffrey (Collab.), et al.

Abstract

We report the observation of the exclusive decay B0s→D−sD+s at the 7.5 standard deviation level using 355  pb−1 of data collected by the CDF II detector in pp collisions at s√=1.96  TeV at the Fermilab Tevatron. We measure the relative branching ratio B(B0s→D−sD+s)/B(B0→D−D+s)=1.44+0.48−0.44. Using the world average value for B(B0→D−D+s), we find B(B0s→D−sD+s)=(9.4+4.4−4.2)×10−3. This provides a lower bound ΔΓCPs/Γs≥2B(B0s→D−sD+s)>1.2×10−2 at 95% C.L.

CDF Collaboration, CLARK, Allan Geoffrey (Collab.), et al . First Observation of the Decay B

s0

->

D

s-

D

s+

and Measurement of Its Branching Ratio. Physical Review Letters, 2008, vol. 100, no.

02, p. 021803

DOI : 10.1103/PhysRevLett.100.021803

Available at:

http://archive-ouverte.unige.ch/unige:38493

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

First Observation of the Decay B

0s

! D

s

D

s

and Measurement of Its Branching Ratio

T. Aaltonen,23J. Adelman,13T. Akimoto,54M. G. Albrow,17B. A´ lvarez Gonza´lez,11S. Amerio,42D. Amidei,34 A. Anastassov,51A. Annovi,19J. Antos,14M. Aoki,24G. Apollinari,17A. Apresyan,47T. Arisawa,56A. Artikov,15 W. Ashmanskas,17A. Attal,3A. Aurisano,52F. Azfar,41P. Azzi-Bacchetta,42P. Azzurri,45N. Bacchetta,42W. Badgett,17

A. Barbaro-Galtieri,28V. E. Barnes,47B. A. Barnett,25S. Baroiant,7V. Bartsch,30G. Bauer,32P.-H. Beauchemin,33 F. Bedeschi,45P. Bednar,14S. Behari,25G. Bellettini,45J. Bellinger,58A. Belloni,22D. Benjamin,16A. Beretvas,17 J. Beringer,28T. Berry,29A. Bhatti,49M. Binkley,17D. Bisello,42I. Bizjak,30R. E. Blair,2C. Blocker,6B. Blumenfeld,25 A. Bocci,16A. Bodek,48V. Boisvert,48G. Bolla,47A. Bolshov,32D. Bortoletto,47J. Boudreau,46A. Boveia,10B. Brau,10 A. Bridgeman,24L. Brigliadori,5C. Bromberg,35E. Brubaker,13J. Budagov,15H. S. Budd,48S. Budd,24K. Burkett,17

G. Busetto,42P. Bussey,21A. Buzatu,33K. L. Byrum,2S. Cabrera,16,sM. Campanelli,35M. Campbell,34F. Canelli,17 A. Canepa,44D. Carlsmith,58R. Carosi,45S. Carrillo,18,mS. Carron,33B. Casal,11M. Casarsa,17A. Castro,5P. Catastini,45

D. Cauz,53M. Cavalli-Sforza,3A. Cerri,28L. Cerrito,30,qS. H. Chang,27Y. C. Chen,1M. Chertok,7G. Chiarelli,45 G. Chlachidze,17F. Chlebana,17K. Cho,27D. Chokheli,15J. P. Chou,22G. Choudalakis,32S. H. Chuang,51K. Chung,12 W. H. Chung,58Y. S. Chung,48C. I. Ciobanu,24M. A. Ciocci,45A. Clark,20D. Clark,6G. Compostella,42M. E. Convery,17 J. Conway,7B. Cooper,30K. Copic,34M. Cordelli,19G. Cortiana,42F. Crescioli,45C. Cuenca Almenar,7,sJ. Cuevas,11,p R. Culbertson,17J. C. Cully,34D. Dagenhart,17M. Datta,17T. Davies,21P. de Barbaro,48S. De Cecco,50A. Deisher,28

G. De Lentdecker,48,eG. De Lorenzo,3M. Dell’Orso,45L. Demortier,49J. Deng,16M. Deninno,5D. De Pedis,50 P. F. Derwent,17G. P. Di Giovanni,43C. Dionisi,50B. Di Ruzza,53J. R. Dittmann,4M. D’Onofrio,3S. Donati,45P. Dong,8

J. Donini,42T. Dorigo,42S. Dube,51J. Efron,38R. Erbacher,7D. Errede,24S. Errede,24R. Eusebi,17H. C. Fang,28 S. Farrington,29W. T. Fedorko,13R. G. Feild,59M. Feindt,26J. P. Fernandez,31C. Ferrazza,45R. Field,18G. Flanagan,47

R. Forrest,7S. Forrester,7M. Franklin,22J. C. Freeman,28I. Furic,18M. Gallinaro,49J. Galyardt,12F. Garberson,10 J. E. Garcia,45A. F. Garfinkel,47H. Gerberich,24D. Gerdes,34S. Giagu,50V. Giakoumopolou,45,bP. Giannetti,45 K. Gibson,46J. L. Gimmell,48C. M. Ginsburg,17N. Giokaris,15,bM. Giordani,53P. Giromini,19M. Giunta,45V. Glagolev,15

D. Glenzinski,17M. Gold,36N. Goldschmidt,18A. Golossanov,17G. Gomez,11G. Gomez-Ceballos,32M. Goncharov,52 O. Gonza´lez,31I. Gorelov,36A. T. Goshaw,16K. Goulianos,49A. Gresele,42S. Grinstein,22C. Grosso-Pilcher,13 R. C. Group,17U. Grundler,24J. Guimaraes da Costa,22Z. Gunay-Unalan,35C. Haber,28K. Hahn,32S. R. Hahn,17 E. Halkiadakis,51A. Hamilton,20B.-Y. Han,48J. Y. Han,48R. Handler,58F. Happacher,19K. Hara,54D. Hare,51M. Hare,55 S. Harper,41R. F. Harr,57R. M. Harris,17M. Hartz,46K. Hatakeyama,49J. Hauser,8C. Hays,41M. Heck,26A. Heijboer,44 B. Heinemann,28J. Heinrich,44C. Henderson,32M. Herndon,58J. Heuser,26S. Hewamanage,4D. Hidas,16C. S. Hill,10,d D. Hirschbuehl,26A. Hocker,17S. Hou,1M. Houlden,29S.-C. Hsu,9B. T. Huffman,41R. E. Hughes,38U. Husemann,59

J. Huston,35J. Incandela,10G. Introzzi,45M. Iori,50A. Ivanov,7B. Iyutin,32E. James,17B. Jayatilaka,16D. Jeans,50 E. J. Jeon,27S. Jindariani,18W. Johnson,7M. Jones,47K. K. Joo,27S. Y. Jun,12J. E. Jung,27T. R. Junk,24T. Kamon,52

D. Kar,18P. E. Karchin,57Y. Kato,40R. Kephart,17U. Kerzel,26V. Khotilovich,52B. Kilminster,38D. H. Kim,27 H. S. Kim,27J. E. Kim,27M. J. Kim,17S. B. Kim,27S. H. Kim,54Y. K. Kim,13N. Kimura,54L. Kirsch,6S. Klimenko,18

M. Klute,32B. Knuteson,32B. R. Ko,16S. A. Koay,10K. Kondo,56D. J. Kong,27J. Konigsberg,18A. Korytov,18 A. V. Kotwal,16J. Kraus,24M. Kreps,26J. Kroll,44N. Krumnack,4M. Kruse,16V. Krutelyov,10T. Kubo,54S. E. Kuhlmann,2

T. Kuhr,26N. P. Kulkarni,57Y. Kusakabe,56S. Kwang,13A. T. Laasanen,47S. Lai,33S. Lami,45S. Lammel,17 M. Lancaster,30R. L. Lander,7K. Lannon,38A. Lath,51G. Latino,45I. Lazzizzera,42T. LeCompte,2J. Lee,48J. Lee,27

Y. J. Lee,27S. W. Lee,52,rR. Lefe`vre,20N. Leonardo,32S. Leone,45S. Levy,13J. D. Lewis,17C. Lin,59C. S. Lin,28 J. Linacre,41M. Lindgren,17E. Lipeles,9A. Lister,7D. O. Litvintsev,17T. Liu,17N. S. Lockyer,44A. Loginov,59M. Loreti,42

L. Lovas,14R.-S. Lu,1D. Lucchesi,42J. Lueck,26C. Luci,50P. Lujan,28P. Lukens,17G. Lungu,18L. Lyons,41J. Lys,28 R. Lysak,14E. Lytken,47P. Mack,26D. MacQueen,33R. Madrak,17K. Maeshima,17K. Makhoul,32T. Maki,23 P. Maksimovic,25S. Malde,41S. Malik,30G. Manca,29A. Manousakis,15,bF. Margaroli,47C. Marino,26C. P. Marino,24

A. Martin,59M. Martin,25V. Martin,21,kM. Martı´nez,3R. Martı´nez-Balları´n,31T. Maruyama,54P. Mastrandrea,50 T. Masubuchi,54M. E. Mattson,57P. Mazzanti,5K. S. McFarland,48P. McIntyre,52R. McNulty,29,jA. Mehta,29 P. Mehtala,23S. Menzemer,11,lA. Menzione,45P. Merkel,47C. Mesropian,49A. Messina,35T. Miao,17N. Miladinovic,6

J. Miles,32R. Miller,35C. Mills,22M. Milnik,26A. Mitra,1G. Mitselmakher,18H. Miyake,54S. Moed,22N. Moggi,5 C. S. Moon,27R. Moore,17M. Morello,45P. Movilla Fernandez,28J. Mu¨lmensta¨dt,28A. Mukherjee,17Th. Muller,26

R. Mumford,25P. Murat,17M. Mussini,5J. Nachtman,17Y. Nagai,54A. Nagano,54J. Naganoma,56K. Nakamura,54

(3)

I. Nakano,39A. Napier,55V. Necula,16C. Neu,44M. S. Neubauer,24J. Nielsen,28,gL. Nodulman,2M. Norman,9 O. Norniella,24E. Nurse,30S. H. Oh,16Y. D. Oh,27I. Oksuzian,18T. Okusawa,40R. Oldeman,29R. Orava,23K. Osterberg,23 S. Pagan Griso,42C. Pagliarone,45E. Palencia,17V. Papadimitriou,17A. Papaikonomou,26A. A. Paramonov,13B. Parks,38

S. Pashapour,33J. Patrick,17G. Pauletta,53M. Paulini,12C. Paus,32D. E. Pellett,7A. Penzo,53T. J. Phillips,16 G. Piacentino,45J. Piedra,43L. Pinera,18K. Pitts,24C. Plager,8L. Pondrom,58X. Portell,3O. Poukhov,15N. Pounder,41

F. Prakoshyn,15A. Pronko,17J. Proudfoot,2F. Ptohos,17,iG. Punzi,45J. Pursley,58J. Rademacker,41,dA. Rahaman,46 V. Ramakrishnan,58N. Ranjan,47I. Redondo,31B. Reisert,17V. Rekovic,36P. Renton,41M. Rescigno,50S. Richter,26 F. Rimondi,5L. Ristori,45A. Robson,21T. Rodrigo,11E. Rogers,24S. Rolli,55R. Roser,17M. Rossi,53R. Rossin,10P. Roy,33 A. Ruiz,11J. Russ,12V. Rusu,17H. Saarikko,23A. Safonov,52W. K. Sakumoto,48G. Salamanna,50O. Salto´,3L. Santi,53 S. Sarkar,50L. Sartori,45K. Sato,17A. Savoy-Navarro,43T. Scheidle,26P. Schlabach,17E. E. Schmidt,17M. A. Schmidt,13

M. P. Schmidt,59M. Schmitt,37T. Schwarz,7L. Scodellaro,11A. L. Scott,10A. Scribano,45F. Scuri,45A. Sedov,47 S. Seidel,36Y. Seiya,40A. Semenov,15L. Sexton-Kennedy,17A. Sfyria,20S. Z. Shalhout,57M. D. Shapiro,28T. Shears,29

P. F. Shepard,46D. Sherman,22M. Shimojima,54,oM. Shochet,13Y. Shon,58I. Shreyber,20A. Sidoti,45P. Sinervo,33 A. Sisakyan,15A. J. Slaughter,17J. Slaunwhite,38K. Sliwa,55J. R. Smith,7F. D. Snider,17R. Snihur,33M. Soderberg,34

A. Soha,7S. Somalwar,51V. Sorin,35J. Spalding,17F. Spinella,45T. Spreitzer,33P. Squillacioti,45M. Stanitzki,59 R. St. Denis,21B. Stelzer,8O. Stelzer-Chilton,41D. Stentz,37J. Strologas,36D. Stuart,10J. S. Suh,27A. Sukhanov,18 H. Sun,55I. Suslov,15T. Suzuki,54A. Taffard,24,fR. Takashima,39Y. Takeuchi,54R. Tanaka,39M. Tecchio,34P. K. Teng,1 K. Terashi,49J. Thom,17,hA. S. Thompson,21G. A. Thompson,24E. Thomson,44P. Tipton,59V. Tiwari,12S. Tkaczyk,17 D. Toback,52S. Tokar,14K. Tollefson,35T. Tomura,54D. Tonelli,17S. Torre,19D. Torretta,17S. Tourneur,43W. Trischuk,33

Y. Tu,44N. Turini,45F. Ukegawa,54S. Uozumi,54S. Vallecorsa,20N. van Remortel,23A. Varganov,34E. Vataga,36 F. Va´zquez,18,mG. Velev,17C. Vellidis,45,bV. Veszpremi,47M. Vidal,31R. Vidal,17I. Vila,11R. Vilar,11T. Vine,30 M. Vogel,36I. Volobouev,28,rG. Volpi,45F. Wu¨rthwein,9P. Wagner,44R. G. Wagner,2R. L. Wagner,17J. Wagner-Kuhr,26 W. Wagner,26T. Wakisaka,40R. Wallny,8S. M. Wang,1A. Warburton,33D. Waters,30M. Weinberger,52W. C. Wester III,17

B. Whitehouse,55D. Whiteson,44,fA. B. Wicklund,2E. Wicklund,17G. Williams,33H. H. Williams,44P. Wilson,17 B. L. Winer,38P. Wittich,17,hS. Wolbers,17C. Wolfe,13T. Wright,34X. Wu,20S. M. Wynne,29A. Yagil,9K. Yamamoto,40

J. Yamaoka,51T. Yamashita,39C. Yang,59U. K. Yang,13,nY. C. Yang,27W. M. Yao,28G. P. Yeh,17J. Yoh,17K. Yorita,13 T. Yoshida,40G. B. Yu,48I. Yu,27S. S. Yu,17J. C. Yun,17L. Zanello,50A. Zanetti,53I. Zaw,22X. Zhang,24

Y. Zheng,8,cand S. Zucchelli5 (CDF Collaboration)a

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, People’s Republic of China

2Argonne National Laboratory, Argonne, Illinois 60439, USA

3Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain

4Baylor University, Waco, Texas 76798, USA

5Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy

6Brandeis University, Waltham, Massachusetts 02254, USA

7University of California, Davis, Davis, California 95616, USA

8University of California, Los Angeles, Los Angeles, California 90024, USA

9University of California, San Diego, La Jolla, California 92093, USA

10University of California, Santa Barbara, Santa Barbara, California 93106, USA

11Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

12Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

13Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

14Comenius University, 842 48 Bratislava, Slovakia and Institute of Experimental Physics, 040 01 Kosice, Slovakia

15Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

16Duke University, Durham, North Carolina 27708, USA

17Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

18University of Florida, Gainesville, Florida 32611, USA

19Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

20University of Geneva, CH-1211 Geneva 4, Switzerland

21Glasgow University, Glasgow G12 8QQ, United Kingdom

22Harvard University, Cambridge, Massachusetts 02138, USA

23Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

021803-2

(4)

24University of Illinois, Urbana, Illinois 61801, USA

25The Johns Hopkins University, Baltimore, Maryland 21218, USA

26Institut fu¨r Experimentelle Kernphysik, Universita¨t Karlsruhe, 76128 Karlsruhe, Germany

27Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea;

Seoul National University, Seoul 151-742, Korea;

Sungkyunkwan University, Suwon 440-746, Korea;

Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea;

Chonnam National University, Gwangju, 500-757, Korea

28Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

29University of Liverpool, Liverpool L69 7ZE, United Kingdom

30University College London, London WC1E 6BT, United Kingdom

31Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain

32Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

33Institute of Particle Physics: McGill University, Montre´al, Canada H3A 2T8;

and University of Toronto, Toronto, Canada M5S 1A7

34University of Michigan, Ann Arbor, Michigan 48109, USA

35Michigan State University, East Lansing, Michigan 48824, USA

36University of New Mexico, Albuquerque, New Mexico 87131, USA

37Northwestern University, Evanston, Illinois 60208, USA

38The Ohio State University, Columbus, Ohio 43210, USA

39Okayama University, Okayama 700-8530, Japan

40Osaka City University, Osaka 588, Japan

41University of Oxford, Oxford OX1 3RH, United Kingdom

42Istituto Nazionale di Fisica Nucleare, University of Padova, Sezione di Padova-Trento, I-35131 Padova, Italy

43LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France

44University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

45Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena, and Scuola Normale Superiore, I-56127 Pisa, Italy

46University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

47Purdue University, West Lafayette, Indiana 47907, USA

48University of Rochester, Rochester, New York 14627, USA

49The Rockefeller University, New York, New York 10021, USA

50Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, University of Rome ‘‘La Sapienza,’’ I-00185 Roma, Italy

51Rutgers University, Piscataway, New Jersey 08855, USA

52Texas A&M University, College Station, Texas 77843, USA

53Istituto Nazionale di Fisica Nucleare, University of Trieste/Udine, Italy

54University of Tsukuba, Tsukuba, Ibaraki 305, Japan

55Tufts University, Medford, Massachusetts 02155, USA

56Waseda University, Tokyo 169, Japan

57Wayne State University, Detroit, Michigan 48201, USA

58University of Wisconsin, Madison, Wisconsin 53706, USA

59Yale University, New Haven, Connecticut 06520, USA (Received 25 July 2007; published 16 January 2008)

We report the observation of the exclusive decayB0s !DsDs at the 7.5 standard deviation level using 355 pb1 of data collected by the CDF II detector inpp collisions atps

1:96 TeVat the Fermilab Tevatron. We measure the relative branching ratioBB0s !DsDs=BB0!DDs 1:440:480:44. Using the world average value forBB0!DDs, we findBB0s !DsDs 9:44:44:2 103. This provides a lower boundCPs =s2BB0s!DsDs>1:2102at 95% C.L.

DOI:10.1103/PhysRevLett.100.021803 PACS numbers: 13.25.Hw, 14.40.Nd

TheB0sB0s system exhibits mixing, with two distinct mass eigenstates BH and BL having a mass difference msmHs mLs, which has recently been measured [1].

In the standard model, these two states have decay widths Ls andHs, with differencesLs Hs and average s Ls Hs=2. To good approximation, the two mass eigenstates are expected to be eigenstates ofCP:Bevens and Bodds , so that sCPs , where CPs Bevens

Bodds . The Standard Model predictss=s0:147 0:060[2] with a reasonably small uncertainty. A measure- ment of this quantity can therefore provide a sensitive test and in case of a discrepancy it would be a good indicator for new physics. Measuring the B0s decay rate to Ds Ds , where Ds stands for either Ds or Ds , determines CPs =s, assuming the b!ccs transitions are dominated by these decays, and neglecting small

(5)

CP-odd components [3]:

CPs

s 2BB0s !Ds Ds : (1) The inclusive measurement of the B0s !Ds Ds

decay rate has been reported previously [4] using B0s ! X correlations. In this Letter we present the first ob- servation of the exclusive decayB0s !DsDs [5], measure the ratio of its branching fraction with respect to that for B0 !DDs, and set a lower bound onCPs =s. We use CDF II detector data corresponding to355 pb1 of inte- grated luminosity ofppcollisions at

ps

1:96 TeVat the Fermilab Tevatron [6].

This analysis depends primarily on the charged particle tracking systems. Charged particle tracks are reconstructed using the hits in the silicon microstrip detector system and the central outer tracker (COT) in the pseudorapidity range jj 1:0, where is defined as ln tan=2 and represents the angle between the particle and the proton beam direction [7]. Both detectors are inside a 1.4 T uni- form magnetic field. The silicon detector is composed of L00 (single layer of silicon microstrip sensors close to the beam pipe), the silicon vertex detector (SVX II) (five cylindrical layers of double-sided sensors), and intermedi- ate silicon layers, providing up to 8 coordinate measure- ments in the r- view [8]. Surrounding the SVX is the COT, a cylindrical drift chamber with 96 layers of sense wires [9].

A sample rich in charm and beauty hadrons is selected by a three-level displaced track trigger. At level 1, tracks are reconstructed in the COT by the track trigger processor (Extremely Fast Tracker, XFT) [10]. The trigger requires two tracks with transverse momenta pT>2 GeV=c and the scalar sum pT1pT2>4:0 GeV=c. The level 2 sili- con vertex trigger [11] associates SVX II r- position measurements with Extremely Fast Tracker tracks and provides a precise measurement of the track impact pa- rameter (d0), the distance of closest approach of the track helix to the beam axis in the transverse plane. Decays of heavy flavor particles are identified by requiring two tracks with0:12 mmd0 1 mmand an opening angle in the transverse plane2 jj 90. A requirementLxy>

0:2 mmis also applied, whereLxyis defined as the distance in the transverse plane from the beam line to the two-track vertex projected onto the two-track momentum vector. The level 3 trigger applies the level 1 and level 2 selection requirements after a full event reconstruction.

We measure the branching fraction ratio BB0s ! DsDs=BB0 !DDs in which the Ds meson decay rates and part of the systematic uncertainties cancel. In searching for B0s!DsDs we require the decay Ds ! . To enhance the search sensitivity we reconstructDs meson candidates in the,K0K, ordecay channels for both the B0 and B0s signals. The ratio is measured independently for three Ds decay modes and is calculated using

BB0s!DsDs BB0!DDs NB0s

NB0 B0 B0s

fd fs

BD!K BDs ! ;

(2) whereNB0s andNB0are the measured signal yields,B0=B0s is the ratio of reconstruction and trigger efficiencies ex- tracted from Monte Carlo simulation,fs=fdis the ratio ofb quark fragmentation fractions intoB0sandB0mesons, and BD !K=BDs ! is the ratio of branching fractions determined by other experiments.

All tracks used in reconstruction must have pT>

350 MeV=cand are assumed to be either pions or kaons depending on the specific reconstruction hypothesis. The reconstruction of B0 !DKDs, for ex- ample, begins by searching for Ds ! candidates.

We require two oppositely charged tracks to form ! KKand then add a third track to formDs !. The reconstruction of D mesons uses the D!K mode. We reconstruct B0 !DDs candidates by apply- ing a fit to six tracks with constraints on a primaryBmeson decay vertex, two secondaryDmeson decay vertices, and the masses of theDmesons.

Monte Carlo simulations are used to optimize the selec- tion requirements, to derive fitting functions for signal and background, and to determine the trigger and reconstruc- tion efficiencies. Single B hadrons are generated without fragmentation products of underlying event particles, and their decays are simulated usingEVTGEN[12]. The detector response, including the trigger, is modeled using the CDF simulation package [13]. The selection requirements are optimized by maximizing the significance of the Monte Carlo simulated signal, scaled to the expected yield, relative to the combinatorial background using a method valid for low statistics [14]. Combinatorial background is fitted in the interval 5:4;6:0GeV=c2 and extrapolated into a60 MeV=c2 wide signal region centered around the appropriate B meson mass. Selection requirements are made on the minimum pT of the tracks, the impact pa- rameter of theBmeson, and the 2 masses ofandK0 candidates. We also make requirements on the significance of theLxy measurement,Lxy=Lxy, whereLxyis the Lxy uncertainty, of B and D meson vertices, and of the displacement of the D meson vertices with respect to the Bmeson vertex. For decays involving resonant states, we require 1010 MeV=c2< mKK<1029 MeV=c2 for candidates and 840 MeV=c2< mK<

940 MeV=c2 for K0 candidates. The background from B0!DKDs is removed from the B0s!DsDsK0K signal by reconstructing Ds !K0K as D!K and removing events with theDcandidate mass in the range1845 MeV=c2<

mK<1893 MeV=c2.

Figure1shows the reconstructed mass spectra forB0s! DsDs and B0!DDs decays. The signal yields NB0s andNB0are extracted from a binned likelihood fit of these 021803-4

(6)

spectra. The fitting functions for all the modes have terms describing the signal, combinatorial background, partially reconstructedBhadrons, and contributions fromBdecays to different Ds decay modes. The combinatorial back- ground is represented by the sum of a constant plus an exponential. The signal and partially reconstructed modes are fitted with templates that have fixed shapes derived from simulation and floating normalizations. Each signal template is parametrized by two Gaussians with different widths and a common mean.

In fitting B0s!DsDs distributions, we fix the signal masses to Particle Data Group values [15], and we fix the Gaussian signal widths, dominated by detector resolution, to the values obtained from Monte Carlo simulation. We also limit the mass range in the fit to value above 5:3 GeV=c2 avoiding a detailed description of the well separated physics background.

We treat the background from the decay mode B0 ! D to the signal for B0!DK

DsK0K and B0 !DKDs modes by introducing templates normalized to the B0 yield. Similarly, we introduce the template normalized to the B0s yield to model B0s!Ds back- ground under the signal for B0s!Ds Ds mode. These corrections lead to a less than 2% change in the signal.

Monte Carlo studies show that aBmeson signal, recon- structed in a specific Ds decay mode, have contributions from misreconstructed B meson candidates decaying through otherDs channels. The decayB0 !DDs, fol- lowed by Ds !f0980KK, contributes to the reconstructed B0 !DKDs. Similarly, B meson decays followed by a nonresonant Ds ! KK contribute to theBmeson signal reconstructed with Ds !K0K. The Ds !KK decay model takes into account the measured branching fractions of its resonant substructure [16]. The aforementioned effects are taken into account by introducing correction templates

2 Entries per 5.0 MeV/c 0

10 20 30 40 50

60 B0 D- ( K+π-π- ) D+s ( φπ+ ) Total Fit Combinatorial

(*)+

Ds

D(*)-

B0

-)X π π-

(K+

D-

B0

+) π (f0 +

)Ds

π-

π-

(K+

D-

B0 2 Entries per 5.0 MeV/c 0

10 20 30 40 50 60

0 10 20 30 40 50

60 B0 D- ( K+π-π- ) D+s ( K*0 K+ ) Total Fit Combinatorial

(*)+

Ds

D(*)-

B0

)X π-

π-

(K+

D-

B0

+) π K+

(K- +

)Ds

π-

π-

(K+

D-

B0

0 10 20 30 40 50 60

2] Mass [GeV/c

5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7

0 10 20 30 40 50

60 B0 D-(K+π-π-) D+s (π+π+π-) Total Fit Combinatorial

(*)+

Ds

D(*)-

B0

-)X π π-

(K+

D-

B0

π-

π+

π+ -) π π-

(K+

D-

B0

2] Mass [GeV/c

5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7

0 10 20 30 40 50 60

2 Entries per 5.0 MeV/c0

1 2 3 4 5 6

7 B0s D-s ( φπ- ) D+s ( φπ+ )

Total Fit

+) π K-

(K+ +

)Ds

π-

φ

-( Ds

0

Bs 2 Entries per 5.0 MeV/c0

1 2 3 4 5 6 7

0 1 2 3 4 5 6

7 B0s D-s ( φπ- ) D+s ( K*0 K+ )

Total Fit

+) π φ

+( Ds -

D(s)

B0

0 1 2 3 4 5 6 7

2] Mass [GeV/c

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8

0 1 2 3 4 5 6

7 B0s D-s ( φπ- ) D+s ( π+π+π- )

Total Fit

-) X π φ

-( Ds

0

Bs

2] Mass [GeV/c

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8

0 1 2 3 4 5 6 7

FIG. 1 (color online). Mass spectra for B0!DDs (left) and B0s !DsDs (right) where Ds ! (top), Ds !K0K (middle),Ds !(bottom). The decomposition of the background into combinatorial background and several backgrounds fromB hadron decays is shown. ForB0 decays data are represented with dots and error bars, while for the small event yieldB0s channels a histogram is shown.

TABLE I. Summary of event yields, efficiencies, measured ratios of branching fractions, and corresponding uncertainties for three Ds decay modes.

K0K

NB0!DDs 183 15 128 13 84 13

NB0s!DsDs 9:23:52:9 6:03:42:7 8:33:52:8 B0s !DsDs=B0!DDs 0:88 0:03 0:53 0:02 0:63 0:02 BB0s !DsDs =BB0!DDs 0:980:380:32 1:510:870:70 2:671:200:99

systematic uncertainty 0:06=0:08 0:15=0:25 0:27=0:29

(fs=fd) uncertainty 0:14 0:22 0:39

BDs !=BD!Kuncertainty 0:13 0:20 0:36

(7)

with relative normalizations derived from Monte Carlo simulations and result in a 4% correction to the signal yield. Other b hadron backgrounds are described with templates derived from semigeneric simulations (B! DsX), where one of theDs mesons is forced to decay in the signal channel and the rest of the decay chain (X) follows the best available measurement of branching fractions.

Yields and ratios of reconstruction efficiencies extracted from signal simulations are summarized in TableI. Using Eq. (2) and the latest PDG [15] valuesfs=fd0:259 0:038, andBDs ! B!KK 2:16 0:28 102, we calculate the ratio of branching fractions BB0s !DsDs=BB0 !DDs for the three Ds modes shown in TableIalong with corresponding statisti- cal uncertainties, systematic uncertainties discussed below, and the uncertainties from the measurements offs=fdand BDs !=BD!K.

The systematic uncertainties, summarized in Table II, are evaluated from the change in the ratio of the branching fractions BB0s!DsDs=BB0!DDs for each ef- fect under consideration. Fit systematic uncertainties are estimated by varying the fit window, binning, and template parameters. The normalizations of background templates underneath the signal peaks are varied using the measured branching fractions [15] within their uncertainties and the effect is included in the fit systematics in Table II. The uncertainty due to theB mesonpT spectrum is evaluated by comparing the efficiency determined from simulation based on next-to-leading-order calculations [17] and on the measured B hadron spectrum [18]. The effect of meson lifetimes is studied by varying the world averageB0sandB0 lifetimes within their uncertainties in the simulations.

Trigger-related systematic uncertainties are estimated from simulations. The effects due to the limited knowledge of theDs ! composition are studied by vary- ing the relative branching fractions of the components of the decay within their PDG [15] uncertainties. Finally, using the combinatorial background from data to optimize the selection introduces a bias. This effect has been esti-

mated using simulation based on the expected combinato- rial background distribution.

The significance of theB0s !DsDs signal is given by the ratio of likelihoods of the mass fits, where we use the one of full fit model divided by the one of the same model but excluding the signal component. The individual sig- nificances of the signal reconstructed with B0s! DsDs, B0s !DsDsK0K, and B0s!DsDs decay modes are 5:8, 3:4, and 4:4, respectively. From the product of three likelihoods we find the combined result consistent with an observation ofB0s!DsDs at a7:5significance.

When combining the three results, the fit systematic uncertainties are weighed by the measured yields. The rest of the systematic uncertainties, except for the Ds ! composition uncertainty, are considered com- mon for all three modes. We find

BB0s!DsDs

BB0!DDs 1:440:380:31stat0:080:12syst 0:21fs=fd

0:20

BD!K

BDs !

; (3) which we combine withBB0 !DDs 6:5 2:1 103 [15] and determine

BB0s !DsDs 9:44:44:2 103; (4) from which we derive a lower limit onCPs =:

CPs

s 2BB0s !Ds Ds 2BB0s !DsDs

1:2102 at 95% C:L: (5) In the derivation of the lower limit we take into account the Poisson statistical fluctuations of the signal yields and the Gaussian distribution for systematics uncertainties.

We have presented the first observation of the decay B0s!DsDs and have measured its branching fraction with respect to B0 !DDs. We set a lower bound on CPs =s, which at the 95% confidence level requires a nonzero decay rate difference and agrees with theoretical predictions [2] and other experimental data: 0:06<

s=s<0:28at the 95% confidence level [15].

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions.

This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foun- dation; the A. P. Sloan Foundation; the Bundes- TABLE II. Systematic uncertainties in [%] for the B0s=B0

relative branching fraction measurements for three Ds decay modes.

K0K B0!DDs fit 2:3 4:2 8:4 B0s !DsDs fit 4:4 8:2 4:6

BmesonpT spectrum 3:0 3:0 3:0

B0s lifetime 2:0 2:0 2:0

trigger 1:0 1:0 1:0

Ds !composition - - 3:0

optimization bias 5:0 13:0 4:0

Total 6:28:0 16:49:9 10:311:0

021803-6

Références

Documents relatifs

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

We also require that both muon tracks have associated measurements in at least three of the six layers of the silicon detector within 10 cm of the beam line, and a two-track

The promptly-produced combi- natorial background is suppressed by rejecting candidates with low proper decay time, t fðBÞMðBÞ=ðcp T ðBÞÞ, where MðBÞ is the measured mass, p T

The selection criteria for the hadronic and the inclusive semileptonic decay modes are kept as similar as possible, which reduces systematic uncertainties on the relative

55a Istituto Nazionale di Fisica Nucleare Trieste/Udine, University of Trieste/Udine, Italy.. 55b University of

Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan;

Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan;