• Aucun résultat trouvé

Observation of the Heavy Baryons Σ<sub>b</sub> and Σ<sub>b</sub><sup>*</sup>

N/A
N/A
Protected

Academic year: 2022

Partager "Observation of the Heavy Baryons Σ<sub>b</sub> and Σ<sub>b</sub><sup>*</sup>"

Copied!
8
0
0

Texte intégral

(1)

Article

Reference

Observation of the Heavy Baryons Σ

b

and Σ

b*

CDF Collaboration

CAMPANELLI, Mario (Collab.), et al.

Abstract

We report an observation of new bottom baryons produced in pp collisions at the Tevatron.

Using 1.1  fb−1 of data collected by the CDF II detector, we observe four Λ0bπ± resonances in the fully reconstructed decay mode Λ0b→Λ+cπ−, where Λ+c→pK−π+. We interpret these states as the Σ(*)±b baryons and measure the following masses:

mΣ+b=5807.8+2.0−2.2(stat.)±1.7(syst.)  MeV/c2, mΣ−b=5815.2±1.0(stat.)±1.7(syst.)  MeV/c2, and m(Σ∗b)−m(Σb)=21.2+2.0−1.9(stat.)+0.4−0.3(syst.)  MeV/c2.

CDF Collaboration, CAMPANELLI, Mario (Collab.), et al . Observation of the Heavy Baryons Σ

b

and Σ

b*

. Physical Review Letters , 2007, vol. 99, no. 20, p. 202001

DOI : 10.1103/PhysRevLett.99.202001

Available at:

http://archive-ouverte.unige.ch/unige:38432

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Observation of the Heavy Baryons

b

and

b

T. Aaltonen,23A. Abulencia,24J. Adelman,13T. Affolder,10T. Akimoto,55M. G. Albrow,17S. Amerio,43D. Amidei,35 A. Anastassov,52K. Anikeev,17A. Annovi,19J. Antos,14M. Aoki,55G. Apollinari,17T. Arisawa,57A. Artikov,15 W. Ashmanskas,17A. Attal,3A. Aurisano,53F. Azfar,42P. Azzi-Bacchetta,43P. Azzurri,46N. Bacchetta,43W. Badgett,17

A. Barbaro-Galtieri,29V. E. Barnes,48B. A. Barnett,25S. Baroiant,7V. Bartsch,31G. Bauer,33P.-H. Beauchemin,34 F. Bedeschi,46S. Behari,25G. Bellettini,46J. Bellinger,59A. Belloni,33D. Benjamin,16A. Beretvas,17J. Beringer,29 T. Berry,30A. Bhatti,50M. Binkley,17D. Bisello,43I. Bizjak,31R. E. Blair,2C. Blocker,6B. Blumenfeld,25A. Bocci,16

A. Bodek,49V. Boisvert,49G. Bolla,48A. Bolshov,33D. Bortoletto,48J. Boudreau,47A. Boveia,10B. Brau,10 L. Brigliadori,5C. Bromberg,36E. Brubaker,13J. Budagov,15H. S. Budd,49S. Budd,24K. Burkett,17G. Busetto,43 P. Bussey,21A. Buzatu,34K. L. Byrum,2S. Cabrera,16,qM. Campanelli,20M. Campbell,35F. Canelli,17A. Canepa,45 S. Carillo,18,iD. Carlsmith,59R. Carosi,46S. Carron,34B. Casal,11M. Casarsa,54A. Castro,5P. Catastini,46D. Cauz,54 M. Cavalli-Sforza,3A. Cerri,29L. Cerrito,31,mS. H. Chang,28Y. C. Chen,1M. Chertok,7G. Chiarelli,46G. Chlachidze,17

F. Chlebana,17I. Cho,28K. Cho,28D. Chokheli,15J. P. Chou,22G. Choudalakis,33S. H. Chuang,52K. Chung,12 W. H. Chung,59Y. S. Chung,49M. Cilijak,46C. I. Ciobanu,24M. A. Ciocci,46A. Clark,20D. Clark,6M. Coca,16 G. Compostella,43M. E. Convery,50J. Conway,7B. Cooper,31K. Copic,35M. Cordelli,19G. Cortiana,43F. Crescioli,46 C. Cuenca Almenar,7,qJ. Cuevas,11,lR. Culbertson,17J. C. Cully,35S. DaRonco,43M. Datta,17S. D’Auria,21T. Davies,21

D. Dagenhart,17P. de Barbaro,49S. De Cecco,51A. Deisher,29G. De Lentdecker,49,cG. De Lorenzo,3M. Dell’Orso,46 F. Delli Paoli,43L. Demortier,50J. Deng,16M. Deninno,5D. De Pedis,51P. F. Derwent,17G. P. Di Giovanni,44C. Dionisi,51

B. Di Ruzza,54J. R. Dittmann,4M. D’Onofrio,3C. Do¨rr,26S. Donati,46P. Dong,8J. Donini,43T. Dorigo,43S. Dube,52 J. Efron,39R. Erbacher,7D. Errede,24S. Errede,24R. Eusebi,17H. C. Fang,29S. Farrington,30I. Fedorko,46W. T. Fedorko,13

R. G. Feild,60M. Feindt,26J. P. Fernandez,32R. Field,18G. Flanagan,48R. Forrest,7S. Forrester,7M. Franklin,22 J. C. Freeman,29I. Furic,13M. Gallinaro,50J. Galyardt,12J. E. Garcia,46F. Garberson,10A. F. Garfinkel,48C. Gay,60 H. Gerberich,24D. Gerdes,35S. Giagu,51P. Giannetti,46K. Gibson,47J. L. Gimmell,49C. Ginsburg,17N. Giokaris,15,a M. Giordani,54P. Giromini,19M. Giunta,46G. Giurgiu,25V. Glagolev,15D. Glenzinski,17M. Gold,37N. Goldschmidt,18

J. Goldstein,42,bA. Golossanov,17G. Gomez,11G. Gomez-Ceballos,33M. Goncharov,53O. Gonza´lez,32I. Gorelov,37 A. T. Goshaw,16K. Goulianos,50A. Gresele,43S. Grinstein,22C. Grosso-Pilcher,13R. C. Group,17U. Grundler,24 J. Guimaraes da Costa,22Z. Gunay-Unalan,36C. Haber,29K. Hahn,33S. R. Hahn,17E. Halkiadakis,52A. Hamilton,20

B.-Y. Han,49J. Y. Han,49R. Handler,59F. Happacher,19K. Hara,55D. Hare,52M. Hare,56S. Harper,42R. F. Harr,58 R. M. Harris,17M. Hartz,47K. Hatakeyama,50J. Hauser,8C. Hays,42M. Heck,26A. Heijboer,45B. Heinemann,29 J. Heinrich,45C. Henderson,33M. Herndon,59J. Heuser,26D. Hidas,16C. S. Hill,10,bD. Hirschbuehl,26A. Hocker,17

A. Holloway,22S. Hou,1M. Houlden,30S.-C. Hsu,9B. T. Huffman,42R. E. Hughes,39U. Husemann,60J. Huston,36 J. Incandela,10G. Introzzi,46M. Iori,51A. Ivanov,7B. Iyutin,33E. James,17D. Jang,52B. Jayatilaka,16D. Jeans,51 E. J. Jeon,28S. Jindariani,18W. Johnson,7M. Jones,48K. K. Joo,28S. Y. Jun,12J. E. Jung,28T. R. Junk,24T. Kamon,53

P. E. Karchin,58Y. Kato,41Y. Kemp,26R. Kephart,17U. Kerzel,26V. Khotilovich,53B. Kilminster,39D. H. Kim,28 H. S. Kim,28J. E. Kim,28M. J. Kim,17S. B. Kim,28S. H. Kim,55Y. K. Kim,13N. Kimura,55L. Kirsch,6S. Klimenko,18

M. Klute,33B. Knuteson,33B. R. Ko,16K. Kondo,57D. J. Kong,28J. Konigsberg,18A. Korytov,18A. V. Kotwal,16 A. C. Kraan,45J. Kraus,24M. Kreps,26J. Kroll,45N. Krumnack,4M. Kruse,16V. Krutelyov,10T. Kubo,55S. E. Kuhlmann,2

T. Kuhr,26N. P. Kulkarni,58Y. Kusakabe,57S. Kwang,13A. T. Laasanen,48S. Lai,34S. Lami,46S. Lammel,17 M. Lancaster,31R. L. Lander,7K. Lannon,39A. Lath,52G. Latino,46I. Lazzizzera,43T. LeCompte,2J. Lee,49J. Lee,28

Y. J. Lee,28S. W. Lee,53,oR. Lefe`vre,20N. Leonardo,33S. Leone,46S. Levy,13J. D. Lewis,17C. Lin,60C. S. Lin,17 M. Lindgren,17E. Lipeles,9A. Lister,7D. O. Litvintsev,17T. Liu,17N. S. Lockyer,45A. Loginov,60M. Loreti,43R.-S. Lu,1

D. Lucchesi,43P. Lujan,29P. Lukens,17G. Lungu,18L. Lyons,42J. Lys,29R. Lysak,14E. Lytken,48P. Mack,26 D. MacQueen,34R. Madrak,17K. Maeshima,17K. Makhoul,33T. Maki,23P. Maksimovic,25S. Malde,42S. Malik,31 G. Manca,30A. Manousakis,15,aF. Margaroli,5R. Marginean,17C. Marino,26C. P. Marino,24A. Martin,60M. Martin,25 V. Martin,21,gM. Martı´nez,3R. Martı´nez-Balları´n,32T. Maruyama,55P. Mastrandrea,51T. Masubuchi,55H. Matsunaga,55 M. E. Mattson,58R. Mazini,34P. Mazzanti,5K. S. McFarland,49P. McIntyre,53R. McNulty,30,fA. Mehta,30P. Mehtala,23 S. Menzemer,11,hA. Menzione,46P. Merkel,48C. Mesropian,50A. Messina,36T. Miao,17N. Miladinovic,6J. Miles,33 R. Miller,36C. Mills,10M. Milnik,26A. Mitra,1G. Mitselmakher,18A. Miyamoto,27S. Moed,20N. Moggi,5B. Mohr,8

C. S. Moon,28R. Moore,17M. Morello,46P. Movilla Fernandez,29J. Mu¨lmensta¨dt,29A. Mukherjee,17Th. Muller,26

(3)

R. Mumford,25P. Murat,17M. Mussini,5J. Nachtman,17A. Nagano,55J. Naganoma,57K. Nakamura,55I. Nakano,40 A. Napier,56V. Necula,16C. Neu,45M. S. Neubauer,9J. Nielsen,29,nL. Nodulman,2O. Norniella,3E. Nurse,31S. H. Oh,16

Y. D. Oh,28I. Oksuzian,18T. Okusawa,41R. Oldeman,30R. Orava,23K. Osterberg,23C. Pagliarone,46E. Palencia,11 V. Papadimitriou,17A. Papaikonomou,26A. A. Paramonov,13B. Parks,39S. Pashapour,34J. Patrick,17G. Pauletta,54 M. Paulini,12C. Paus,33D. E. Pellett,7A. Penzo,54T. J. Phillips,16G. Piacentino,46J. Piedra,44L. Pinera,18K. Pitts,24

C. Plager,8L. Pondrom,59X. Portell,3O. Poukhov,15N. Pounder,42F. Prakoshyn,15A. Pronko,17J. Proudfoot,2 F. Ptohos,19,eG. Punzi,46J. Pursley,25J. Rademacker,42,bA. Rahaman,47V. Ramakrishnan,59N. Ranjan,48I. Redondo,32 B. Reisert,17V. Rekovic,37P. Renton,42M. Rescigno,51S. Richter,26F. Rimondi,5L. Ristori,46A. Robson,21T. Rodrigo,11 E. Rogers,24S. Rolli,56R. Roser,17M. Rossi,54R. Rossin,10P. Roy,34A. Ruiz,11J. Russ,12V. Rusu,13H. Saarikko,23 A. Safonov,53W. K. Sakumoto,49G. Salamanna,51O. Salto´,3L. Santi,54S. Sarkar,51L. Sartori,46K. Sato,17P. Savard,34

A. Savoy-Navarro,44T. Scheidle,26P. Schlabach,17E. E. Schmidt,17M. A. Schmidt,13M. P. Schmidt,60M. Schmitt,38 T. Schwarz,7L. Scodellaro,11A. L. Scott,10A. Scribano,46F. Scuri,46A. Sedov,48S. Seidel,37Y. Seiya,41A. Semenov,15

L. Sexton-Kennedy,17A. Sfyrla,20S. Z. Shalhout,58M. D. Shapiro,29T. Shears,30P. F. Shepard,47D. Sherman,22 M. Shimojima,55,kM. Shochet,13Y. Shon,59I. Shreyber,20A. Sidoti,46P. Sinervo,34A. Sisakyan,15A. J. Slaughter,17 J. Slaunwhite,39K. Sliwa,56J. R. Smith,7F. D. Snider,17R. Snihur,34M. Soderberg,35A. Soha,7S. Somalwar,52V. Sorin,36

J. Spalding,17F. Spinella,46T. Spreitzer,34P. Squillacioti,46M. Stanitzki,60A. Staveris-Polykalas,46R. St. Denis,21 B. Stelzer,8O. Stelzer-Chilton,42D. Stentz,38J. Strologas,37D. Stuart,10J. S. Suh,28A. Sukhanov,18H. Sun,56I. Suslov,15

T. Suzuki,55A. Taffard,24,pR. Takashima,40Y. Takeuchi,55R. Tanaka,40M. Tecchio,35P. K. Teng,1K. Terashi,50 R. J. Tesarek,17J. Thom,17,dA. S. Thompson,21E. Thomson,45P. Tipton,60V. Tiwari,12S. Tkaczyk,17D. Toback,53 S. Tokar,14K. Tollefson,36T. Tomura,55D. Tonelli,46S. Torre,19D. Torretta,17S. Tourneur,44W. Trischuk,34S. Tsuno,40

Y. Tu,45N. Turini,46F. Ukegawa,55S. Uozumi,55S. Vallecorsa,20N. van Remortel,23A. Varganov,35E. Vataga,37 F. Vazquez,18,iG. Velev,17C. Vellidis,46,aG. Veramendi,24V. Veszpremi,48M. Vidal,32R. Vidal,17I. Vila,11R. Vilar,11

T. Vine,31M. Vogel,37I. Vollrath,34I. Volobouev,29,oG. Volpi,46F. Wu¨rthwein,9P. Wagner,53R. G. Wagner,2 R. L. Wagner,17J. Wagner,26W. Wagner,26R. Wallny,8S. M. Wang,1A. Warburton,34D. Waters,31M. Weinberger,53 W. C. Wester III,17B. Whitehouse,56D. Whiteson,45A. B. Wicklund,2E. Wicklund,17G. Williams,34H. H. Williams,45

P. Wilson,17B. L. Winer,39P. Wittich,17,dS. Wolbers,17C. Wolfe,13T. Wright,35X. Wu,20S. M. Wynne,30A. Yagil,9 K. Yamamoto,41J. Yamaoka,52T. Yamashita,40C. Yang,60U. K. Yang,13,jY. C. Yang,28W. M. Yao,29G. P. Yeh,17J. Yoh,17

K. Yorita,13T. Yoshida,41G. B. Yu,49I. Yu,28S. S. Yu,17J. C. Yun,17L. Zanello,51A. Zanetti,54I. Zaw,22X. Zhang,24 J. Zhou,52and S. Zucchelli5

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

2Argonne National Laboratory, Argonne, Illinois 60439, USA

3Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain

4Baylor University, Waco, Texas 76798, USA

5Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy

6Brandeis University, Waltham, Massachusetts 02254, USA

7University of California, Davis, Davis, California 95616, USA

8University of California, Los Angeles, Los Angeles, California 90024, USA

9University of California, San Diego, La Jolla, California 92093, USA

10University of California, Santa Barbara, Santa Barbara, California 93106, USA

11Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

12Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

13Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

14Comenius University, 842 48 Bratislava, Slovakia;

Institute of Experimental Physics, 040 01 Kosice, Slovakia

15Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

16Duke University, Durham, North Carolina 27708, USA

17Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

18University of Florida, Gainesville, Florida 32611, USA

19Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

20University of Geneva, CH-1211 Geneva 4, Switzerland

21Glasgow University, Glasgow G12 8QQ, United Kingdom

22Harvard University, Cambridge, Massachusetts 02138, USA

202001-2

(4)

23Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

24University of Illinois, Urbana, Illinois 61801, USA

25The Johns Hopkins University, Baltimore, Maryland 21218, USA

26Institut fu¨r Experimentelle Kernphysik, Universita¨t Karlsruhe, 76128 Karlsruhe, Germany

27High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan

28Center for High Energy Physics: Kyungpook National University, Taegu 702-701, Korea;

Seoul National University, Seoul 151-742, Korea;

SungKyunKwan University, Suwon 440-746, Korea

29Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

30University of Liverpool, Liverpool L69 7ZE, United Kingdom

31University College London, London WC1E 6BT, United Kingdom

32Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, E-28040 Madrid, Spain

33Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

34Institute of Particle Physics: McGill University, Montre´al, Canada H3A 2T8;

and University of Toronto, Toronto, Canada M5S 1A7

35University of Michigan, Ann Arbor, Michigan 48109, USA

36Michigan State University, East Lansing, Michigan 48824, USA

37University of New Mexico, Albuquerque, New Mexico 87131, USA

38Northwestern University, Evanston, Illinois 60208, USA

39The Ohio State University, Columbus, Ohio 43210, USA

40Okayama University, Okayama 700-8530, Japan

41Osaka City University, Osaka 588, Japan

42University of Oxford, Oxford OX1 3RH, United Kingdom

43University of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy

44LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France

45University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

46Istituto Nazionale di Fisica Nucleare Pisa, Universities of Pisa, Siena and Scuola Normale Superiore, I-56127 Pisa, Italy

47University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

48Purdue University, West Lafayette, Indiana 47907, USA

49University of Rochester, Rochester, New York 14627, USA

50The Rockefeller University, New York, New York 10021, USA

51Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, University of Rome ‘‘La Sapienza,’’ I-00185 Roma, Italy

52Rutgers University, Piscataway, New Jersey 08855, USA

53Texas A&M University, College Station, Texas 77843, USA

54Istituto Nazionale di Fisica Nucleare, University of Trieste/Udine, Italy

55University of Tsukuba, Tsukuba, Ibaraki 305, Japan

56Tufts University, Medford, Massachusetts 02155, USA

57Waseda University, Tokyo 169, Japan

58Wayne State University, Detroit, Michigan 48201, USA

59University of Wisconsin, Madison, Wisconsin 53706, USA

60Yale University, New Haven, Connecticut 06520, USA (Received 26 June 2007; published 12 November 2007)

We report an observation of new bottom baryons produced in pp collisions at the Tevatron. Using 1:1 fb1 of data collected by the CDF II detector, we observe four 0b resonances in the fully reconstructed decay mode0b!c, wherec !pK. We interpret these states as theb baryons and measure the following masses: m

b 5807:82:02:2stat: 1:7syst:MeV=c2, m

b

5815:21:0stat: 1:7syst:MeV=c2, andmb mb 21:22:01:9stat:0:40:3syst:MeV=c2.

DOI:10.1103/PhysRevLett.99.202001 PACS numbers: 14.20.Mr, 13.30.Eg

Recently the CDF II detector at the Fermilab Tevatron has accumulated the world’s largest sample of fully recon- structed 0b baryons, which consist of the u, d, and b quarks, with 318060 (stat.) 0b!c candidates.

This is made possible by the large bb production cross section inpp collisions at

ps

1:96 TeVand the ability of the CDF II experiment to select fully hadronic decays of bhadrons with a specialized trigger system. In this Letter, we present an observation of four0bresonances, where

0b!c andc !pK, using1:1 fb1of data.

The0bstates are interpreted as the lowest-lying charged bbaryons and will be labeledb . The symbolbrefers tob, whilebrefers tob . Any reference to a specific charge state implies the antiparticle state as well.

The b baryons contain one b and two u quarks, while the b baryons contain oneband twodquarks;

these states are expected to exist but have not been ob-

(5)

served. Baryons containing one bottom quark and two light quarks can be described by heavy quark effective theory (HQET) [1]. In HQET, a bottom baryon consists of a b quark acting as a static source of the color field surrounded by a diquark system comprised of the two light quarks. In the lowest-lyingb states, the diquark system has strong isospin I1 and JP1, which couple to the heavy quark spin and result in a doublet of baryons withJP12 (b) and JP32 (b). This doublet is degenerate for infinitebquark mass. As thebquark mass is finite, there is a hyperfine mass splitting between the32and12states.

There is also an isospin mass splitting between theb andb states.

Predictions for the b masses come from nonrela- tivistic and relativistic potential quark models [2], 1=Nc expansion [3], quark models in the HQET approxima- tion [4], sum rules [5], and lattice quantum chromodynam- ics calculations [6]. On the basis of [2–6], we expect mb m0b 180–210 MeV=c2, mb mb 10–40 MeV=c2, and mb mb 5–7 MeV=c2. The difference between the isospin mass splittings of the b and b multiplets is predicted to be mb mb mb mb 0:400:07 MeV=c2 [7].

The natural width ofb baryons is expected to be domi- nated by the P-wave one pion transition b !0b, whose partial width depends on the available phase space and the pion coupling to a constituent quark. Using an HQET prediction [8], the natural widths for the expected b masses are b 7 MeV=c2 and b 13 MeV=c2.

The CDF II detector is described in detail elsewhere [9].

Its components and capabilities most relevant to this analy- sis are the tracking system [10] and a displaced track trigger which is employed to select bottom and charmed hadrons [11].

In reconstructing the decays 0b!c and c ! pK, the proton from thec decay and the from the 0b decay both must have pT>2 GeV=c[12], while theKandcandidates havepT>0:5 GeV=c. We also require pTp> pT to suppress c combinatorial background. No particle identification is used in this analy- sis. All particle hypotheses consistent with the candidate decay structure are considered. In a 3-D kinematic fit, the c daughter tracks are constrained to originate from a single point. Thec candidate is constrained to the known c mass, and thec momentum vector is extrapolated to intersect themomentum vector to form the0bvertex.

The probability of the 3-D 0b kinematic vertex fit must exceed 0.1%, and thec and0bmust havepTgreater than 4.5 and 6:0 GeV=c, respectively. To suppress prompt backgrounds from the primary interaction, we make the following decay time requirements: ct0b>250m and its significancect0b=ct>10. We definect0b

Lxy0bm0

bc=pT0b as the 0b proper time, where Lxy0b is defined as the projection, ontopT0b, of the vector connecting the primary vertex to the0bvertex in the transverse plane. We use a primary vertex determined event-by-event when computing this vertex displacement.

To reduce combinatorial backgrounds and partially recon- structed decays, we also requirejd00bj<80m, where d00bis the impact parameter of the momentum vector of the 0b candidate with respect to the primary vertex. To suppress the contributions from B0 !D decays, where D !K, we require mpK to be within 16 MeV=c2 of the known c mass [13], and ctc 2 70; 200m. We define ctc Lxycm

cc=pTc as the c proper time, where Lxyc is defined analogously toLxy0bbut computed with respect to the0bvertex.

The invariant mass distribution ofc candidates is shown in Fig. 1 overlaid with a binned maximum like- lihood fit. A clear 0b!c signal is observed at the expected 0b mass. The invariant mass distribution is de- scribed by several components: the0b!csignal, a combinatorial background, partially and fully recon- structedBmesons which pass thecselection criteria, partially reconstructed0bdecays, and fully reconstructed 0b decays other than c (e.g., 0b!cK). The combinatorial background is modeled with an exponen- tially decreasing function. All other components are rep- resented in the fit by fixed shapes derived from Monte Carlo (MC) simulations [14,15]. The normaliza- tions are constrained by Gaussian terms to branching ratios that are either measured (forBmeson decays) or theoreti- cal predictions (for0b decays). In the fit, the0b compo- nents are normalized relative to the 0b!c signal.

To normalize the B meson components, we explicitly reconstruct a B0! K signal in the c

) GeV/c2 π- + Λc m(

5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2

2Candidates per 20 MeV/c

0 200 400 600 800 1000 1200 1400

Total Fit Λb Partially-reconstructed Fully-reconstructed B Partially-reconstructed B Combinatorial Data

5.2 5.3 5.4 5.5

FIG. 1 (color online). Fit to the invariant mass of0b!c candidates. Curves for fully reconstructed 0b decays such as 0b !c and0b !cKare not indicated on the figure.

The0bsignal region,mc 2 5:565;5:670GeV=c2, con- sists primarily of0bbaryons, with some contamination fromB mesons and combinatorial events. The discrepancies between the fit and data below the 0b signal region are due to incomplete knowledge of the branching ratios of the decays in this region and are included in theb background model systematics.

202001-4

(6)

sample by replacing the proton mass hypothesis with the pion mass hypothesis. The fit to the invariantcmass distribution results in 318060 (stat.) 0b!c candidates.

The reconstruction of b proceeds by combining 0b candidates in the 0b signal region, mc 2 5:565;5:670 GeV=c2, with all remaining high quality tracks. A pion mass hypothesis is used when computing the invariant mass of the b candidate. We search for narrow resonances in the mass difference distribution of Qm0b m0b m, wherem0b is the recon- structedcmass. Theb candidates are divided into two subsamples using the charge of the pion from b decay, denoted byb: in the0b subsample, theb has the same charge as the pion from0bwhile in the0b subsample, the b has the opposite charge as the pion from0b.

The b signal region, defined as Q2 30; 100 MeV=c2, is motivated by the predictions in [2–6]. The signal is modeled by the PYTHIA [16] event generator where only the decays b !0b, 0b ! c, and c !pK are allowed. We optimize the b selection criteria by maximizing SMC=

B p ,

whereSMCis the efficiency of theb signal measured in the MC simulation andBis the number of background events in the signal region estimated from the upper and lower sideband regions ofQ2 0;30 MeV=c2 andQ2 100; 500MeV=c2. These sideband regions are parame- terized by a power law multiplied by an exponential. We combine the0band0bsubsamples to optimize cuts on the pT of the b candidate, the impact parameter significance jd0=d0j of the b track, and the cos of theb track, whereis defined as the angle between the momentum of the b in the b rest frame and the direction of the total b momentum in the lab frame.

The maximum of SMC= pB

is realized for pTb>

9:5 GeV=c,jd0=d0j<3:0, andcos>0:35.

In theb search, the dominant background is from the combination of prompt0b baryons with extra tracks pro- duced in the hadronization of thebquark. The remaining backgrounds are from the combination of hadronization tracks with B mesons reconstructed as 0b baryons, and from combinatorial background events. The percentage of each background component in the0bsignal region, com- puted from the0bmass fit, is89:51:7% 0b baryons, 7:20:6% B mesons, and 3:30:1% combinatorial events. Other backgrounds such as 5-track decays ofB mesons are negligible, as confirmed in inclusive singleb hadron simulations [14,15]. The high mass region above the0b!csignal in Fig.1determines the combina- torial background shape. ReconstructingB0 !Ddata as 0b!c gives the B hadronization background

shape. The0bhadronization background shape is obtained from a0b !cPYTHIAsimulation. The events in this simulation are reweighted so that the pT0b distribution agrees with data. As the simulation has fewer low momen- tum tracks around the0bthan found in data, the simulated events are further reweighted until the pT spectrum of tracks around the 0b is consistent with data. The back- ground shapes are parameterized by a power law multi- plied by an exponential, and the normalizations are fixed from the percentage of that background component in the 0b signal region. The total background shown in Fig. 2 (inset) is compatible with theQsidebands, and the back- ground shape and normalization are fixed components of theb fit.

In the Qsignal region, we observe an excess of events over the total background as shown in Fig.2. The excess in the0bsubsample is 118 over 288 expected background candidates. In the0bsubsample, the excess is 91 over 313 expected background candidates.

We perform a simultaneous unbinned maximum like- lihood fit to the0b and0bsubsamples for a signal from each expectedb state plus the background, referred to as the ‘‘four signal hypothesis.’’ Each signal consists of a nonrelativistic Breit-Wigner distribution convoluted with two Gaussian distributions describing the detector resolu- tion, with a dominant narrow core of an1:2 MeV=c2width and a small broad component of a3 MeV=c2width for the tails. The natural width of each Breit-Wigner distribution is computed from the central Q value [8]. The expected difference of the isospin mass splittings within the b

2 Candidates per 5 MeV/c

0 20 40 60 80

Data Total Fit Background

Σb

* Σb +

Σb 0 100 200 300 400 500

)2Candidates / (10 MeV/c 0

20 40 60 80

2) (MeV/c ) - mπ

0

Λb

) - m(

π

0

Λb

Q = m(

0 50 100 150 200

0 20 40 60 80

-

Σb 0 100 200 300 400 500

)2

0 20 40 60 80

Candidates / (10 MeV/c

FIG. 2 (color online). The b fit to the 0b and 0b subsamples. The top plot shows the 0b subsample, which containsb , while the bottom plot shows the0bsubsam- ple, which contains b . The insets show the expected back- ground plotted on the data forQ2 0; 500MeV=c2, while the signal fit is shown on a reduced range ofQ2 0; 200MeV=c2.

(7)

andbmultiplets is below our sensitivity with this sample of data. Consequently, we constrain mb mb mb mb

b. The four b signal fit to data, which has a fit probability of 76% in the range Q2 0; 200 MeV=c2, is shown in Fig.2.

Systematic uncertainties on the mass difference and yield measurements fall into three categories: mass scale, b background model, andb signal parameterization.

The systematic uncertainty on the mass scale is determined by the discrepancies of the CDF II measuredQvalues of the D, c, and c hadrons from the world average Q values [13]. The Q value dependence of this systematic uncertainty is modeled with a linear function, which is used to extrapolate the mass scale uncertainty for each b Q value. This is the largest systematic uncertainty for the mass difference measurements, ranging from 0.1 to0:3 MeV=c2. The systematic effects related to assump- tions made on theb background model are: the sample composition of the0bsignal region, the normalization and functional form of the0bhadronization background taken from aPYTHIA simulation, and our limited knowledge of the shape of the0bhadronization background (the largest systematic uncertainty on the yield measurements, ranging from 2 to 15 events). The systematic effects related to assumptions made on the b signal parameterization are: underestimation of the detector resolution, the uncer- tainty in the natural width prediction from [8], and the constraint thatmb mb mb mb.

The significance of the signal is evaluated using the likelihood ratio, LRL=Lalt, where L is the likelihood of the four signal hypothesis andLaltis the likelihood of an alternative hypothesis [17]. We study the alternate hypoth- eses of no signal, two b states (one per 0b charge combination), and three b states, performed by elimi- nating one of the states in the four signal hypothesis.

Systematic variations are included in the fit as nuisance parameters over which the likelihood is integrated. The resulting likelihood ratios are given in Table I. To assess the significance of the signal, we repeat the four signal

hypothesis fit on samples randomly generated from alter- nate signal hypotheses. In12106 background samples, none had aLRequivalent or greater than the one found in data. We evaluate the probability for background only to produce four signals of this or greater significance to be less than 8:3108, corresponding to a significance of greater than 5:2. The probabilities for each of the alter- nate hypotheses to produce the observed signal structure is also given in TableI. The final results for thebmeasure- ment are quoted in TableII. Using the CDF II measurement of m0

b 5619:71:2stat: 1:2syst:MeV=c2 [18], we find the absolute masses of the b states given in TableII. The systematic uncertainties on the absoluteb mass values are dominated by the total 0b mass uncertainty.

In summary, using a sample of318060(stat.)0b! c candidates reconstructed in 1:1 fb1 of CDF II data, we search for resonant 0b states. We observe a signal of four states whose masses and widths are consis- tent with those expected for the lowest-lying chargedb baryons. This result represents the first observation of the b baryons.

We thank T. Becher, A. Falk, D. Pirjol, J. Rosner, and D.

Ebert for useful discussions. We also thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation;

the Bundesministerium fu¨r Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisio´n Interministerial de Ciencia y Tecnologı´a, Spain; the TABLE I. Likelihood ratios (LR) in favor of the four signal

hypothesis over alternative hypotheses. Also shown is the proba- bility for each hypothesis to produce the observed data (p-value), calculated using theLRas a test statistic on randomly generated samples. The final column gives the equivalent stan- dard deviations from the normal distribution.

Hypothesis LR p-value Significance ()

No Signal 2:61018 <8:3108 >5:2 Twob States 4:4106 9:2105 3.7 Nob Signal 1:2105 3:2104 3.4

Nob Signal 49 9:0103 2.4

Nob Signal 4:9104 6:4104 3.2 Nob Signal 8:1104 6:0104 3.2

TABLE II. Final results for the b measurement. The first uncertainty is statistical, and the second is systematic. The absolutebmass values are calculated using a CDF II measure- ment of the0b mass [18], which contributes to the systematic uncertainty.

State Yield

Qor (MeV=c2b)

Mass (MeV=c2) b 32135123 Q

b 48:52:00:22:20:3 5807:82:02:21:7 b 59159144 Q

b 55:91:00:2 5815:21:01:7 b 771710166

b21:22:00:41:90:3 5829:01:61:71:81:8 b 691816175 5836:42:01:81:7

202001-6

(8)

European Community’s Human Potential Programme under Contract No. HPRN-CT-2002-00292; and the Academy of Finland.

aUniversity of Athens, 15784 Athens, Greece.

bUniversity of Bristol, Bristol BS8 1TL, United Kingdom.

cUniversity Libre de Bruxelles, B-1050 Brussels, Belgium.

dCornell University, Ithaca, NY 14853, USA.

eUniversity of Cyprus, Nicosia CY-1678, Cyprus.

fUniversity College Dublin, Dublin 4, Ireland.

gUniversity of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.

hUniversity of Heidelberg, D-69120 Heidelberg, Germany.

iUniversidad Iberoamericana, Mexico D.F., Mexico.

jUniversity of Manchester, Manchester M13 9PL, England.

kNagasaki Institute of Applied Science, Nagasaki, Japan.

lUniversity de Oviedo, E-33007 Oviedo, Spain.

mUniversity of London, Queen Mary College, London, E1 4NS, England.

nUniversity of CA Santa Cruz, Santa Cruz, CA 95064, USA.

oTX Tech University, Lubbock, TX 79409, USA.

pUniversity of CA, Irvine, Irvine, CA 92697, USA.

qIFIC(CSIC-Universitat de Valencia), 46071 Valencia, Spain.

[1] For a review see A. V. Manohar and M. B. Wise, Cambridge Monogr. Part. Phys., Nucl. Phys., Cosmol.

10, 1 (2000), and references therein.

[2] D. P. Stanley and D. Robson, Phys. Rev. Lett. 45, 235 (1980); and Phys. Rev. D 21, 3180 (1980); D. Izatt, C. DeTar, and M. Stephenson, Nucl. Phys. B 199, 269 (1982); J. M. Richard and P. Taxil, Phys. Lett. B128, 453 (1983); J. L. Basdevant and S. Boukraa, Z. Phys. C30, 103 (1986); W. Y. P. Hwang and D. B. Lichtenberg, Phys.

Rev. D 35, 3526 (1987); A. Martin and J. M. Richard, Phys. Lett. B 185, 426 (1987); D. B. Lichtenberg, R.

Roncaglia, J. G. Wills, and E. Predazzi, Z. Phys. C 47, 83 (1990).

[3] E. Jenkins, Phys. Rev. D 54, 4515 (1996); 55, R10 (1997).

[4] C. Albertus, J. E. Amaro, E. Hernandez, and J. Nieves, Nucl. Phys. A740, 333 (2004); D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 72, 034026 (2005);

S. Capstick,ibid.36, 2800 (1987).

[5] R. Roncaglia, D. B. Lichtenberg, and E. Predazzi, Phys.

Rev. D 52, 1722 (1995); M. Karliner and H. J. Lipkin, arXiv:hep-ph/0307243; condensed version in Phys. Lett. B 575, 249 (2003).

[6] K. C. Bowleret al.(UKQCD Collaboration), Phys. Rev. D 54, 3619 (1996); N. Mathur, R. Lewis, and R. M.

Woloshyn,ibid.66, 014502 (2002).

[7] J. L. Rosner, Phys. Rev. D57, 4310 (1998); J. L. Rosner, Phys. Rev. D75, 013009 (2007).

[8] J. G. Ko¨rner, M. Kra¨mer, and D. Pirjol, Prog. Part. Nucl.

Phys.33, 787 (1994).

[9] D. Acosta et al.(CDF Collaboration), Phys. Rev. D71, 032001 (2005).

[10] A. Sillet al., Nucl. Instrum. Methods Phys. Res., Sect. A 447, 1 (2000); A. Affolder et al. (CDF Collaboration), ibid.526, 249 (2004).

[11] A. Abulenciaet al.(CDF Collaboration), Phys. Rev. Lett.

98, 122002 (2007).

[12] The transverse plane (x,y) is perpendicular to the direc- tion of the proton beam. The azimuthal angleis mea- sured from thex-axis. The transverse momentumpTis the magnitude of the projection of the momentum in the transverse plane.

[13] W. M. Yaoet al.(Particle Data Group), J. Phys. G33, 1 (2006).

[14] We use a variety of singlebhadron simulations, all using thepTBandyBdistributions obtained fromBdecays in data [D. Acosta et al. (CDF Collaboration), Phys.

Rev. D71, 032001 (2005)]. The simulatedpT0bdistri- bution is reweighted to match the sideband-subtracted data.

[15] The b hadrons are decayed using the EVTGEN package [D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001)].

[16] T. Sjo¨strand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbin, Comput. Phys. Commun.135, 238 (2001).

[17] R. Royall, J. Am. Stat. Assoc.95, 760 (2000).

[18] D. Acostaet al.(CDF Collaboration), Phys. Rev. Lett.96, 202001 (2006).

Références

Documents relatifs

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 6 Brandeis University, Waltham, Massachusetts

We also require that both muon tracks have associated measurements in at least three of the six layers of the silicon detector within 10 cm of the beam line, and a two-track

4 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy.. 5 Brandeis University, Waltham, Massachusetts

Using a data sample of 1  fb−1 of pp collisions at s√=1.96   TeV collected with the CDF II detector at the Fermilab Tevatron, we find signals of 5600 fully reconstructed

5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy!. 6 Brandeis University, Waltham, Massachusetts