• Aucun résultat trouvé

Surface active phenomenaby humic substances of aquatic origin

N/A
N/A
Protected

Academic year: 2022

Partager "Surface active phenomenaby humic substances of aquatic origin"

Copied!
12
0
0

Texte intégral

(1)

Revue trancaisc dcs SGIEIGES llE L'EAU, | (19821 285 - 296

Surface active phenomena

by humic substances of aquatic origin

P h 6 n o m d n e s d e te n s i o n s u p e r f i c i e l l e

p a r l e s s u b s t a n c e s h u m i q u e s d ' o r i g i n e a q u a t i q u e

S . A . V l S S E R

R 6 s u m 6

L a t e n s i o n s u p e r f i c i e L L e d e s o t u t i o n s d ' a c i d e s f u t v i q u e s e t h u m i q u e s d ' o r i g i n e a q u a t i q u e o u o b t e n u s d e s u b s t r a t s m i c r o b i e n s a 6 t 6 6 t u d i 6 e d a n s t e b u t d r 6 t a b L i r d e q u e [ [ e f a g o n [ a v a t e u r d e c e L l . e - c i d 6 p e n d d e [ ' o l i g i n e , d u p o i d s m o I e c u I a i r e , d e s g r o u p e m e n t s f o n c t i o n n e I s e t d e [ ' e t a t d r h u m i f i c a t i o n d u m a t 6 r i e [ - L a f o r m e m o t e c u I a i r e d e s s u b s - t a n c e s h u m i q u e s a a u s s i 6 t 6 6 t u d i e e i p a r t i r d e L a t e n s i o n s u p e r f i - c i e [ [ e . L o r s q u e p o s s i b I e , l e s r 6 s u L t a t s o b t e n u s s u r L ' h u m u s a q u a t i - q u e o n t 6 t 6 c o m p a 1 6 s a v e c c e u x p n o v e n a n t d e s s u b s t a n c e s h u m i q u e s d ' o r i g i n e t e r r e s t r e .

I L a p p a r a i t q u e , n o r m a l e m e n t , t e s p r o d u i t s h u m i q u e s d ' o r i g i n e a q u a - t i q u e s o n t p L u s t e n s i o - a c t ' i f s q u e I e s s u b s t a n c e s h u m j q u e s o b t e n u e s d u m i L i e u t e r r e s t r e . A d e s c o n c e n t r a t i o n s t e t L e s q u e c e t t e s r e n c o n - t r 6 e s d a n s [ e m i L i e u n a t u r e L , I e s a c i d e s h u m i q u e s ( h u m a t e s ) a q u a t i - q u e s b a i s s e n t [ a t e n s i o n s u p e r f i c i e [ [ e d e s e a u x d a v a n t a g e q u e L e s a c i d e s f u I v i q u e s ( f u t v a t e s ) . 0 n a d e m o n t 1 6 g u e I a t e n s i o - a c t i v i t e d e t r h u m u s a u g m e n t e a v e c s o n p o i d s m o t e c u t a i r e e t q u ' e t t e a t e n d a n - c e d d i m i n u e r l o r s d u p r o c e s s u s d , h u m i f i c a t i o n d u m a t 6 r i e t -

S u m m a n y

T h e s u r f a c e a c t i v i t y o f f u l v i c a n d h u m i c m a t t e r o f a q u a t i c o r i g i n a n d f r o m m i c r o b i a I s u b s t r a t e s w a s s t u d i e d i n o r d e r t o e s t a b l i s h h o h , ' i t c o u L d c h a n g e w i t h o r i g i n , m o t e c u t a r w e i g h t / f u n c t i o n a I g r o u p c o n t e n t a n d s t a t e o f h u m i f i c a t i o n o f t h e h u m i c m a t e r i a t . I t w a s a L s o u s e d t o o b t a i n i n f o r m a t i o n o n t h e m o t e c u [ a r s i z e a n d s h a p e o f t h e s u b s t a n c e s i n v e s t i g a t e d . l l h e r e v e r p o s s i b t e , t h e r e s u t t s w e r e c o m p a - r e d w i t h t h o s e o b t a i n e d o n h u m i c s u b s t a n c e s f r o m t e r r e s t r i a L e n v i - r o n m e n t s .

D e p a r t m e n t o f S o i l S c i e n c e , L a v a l l J n i v e r s i t y , C i t 6 U n i v e r s i t a i r e , Q u e b e c , C a n a d a G t K 7 P 4

(2)

2 8 6 S c i e n c e s d e L ' e a u 7 , n o s

I t v J a s s h o w n t h a t t h e a q u a t i c f u L v i c a n d h u m i c a c i d s w e r e g e n e r a L t y m o r e s u r f a c e a c t i v e t h a n h u m i c m a t t e r f r o m s o i L s . T h e s u r f a c e a c t i - v i t y i n c r e a s e d w i t h r i s i n g m o L e c u L a r v i e i g h t a n d n o r m a I t y d e c r e a s e d w i t h p r o g r e s s i v e h u m i f i c a t i o n o f t h e m a t e r i a t - A t n a t u r a I c o n c e n t r a - t i o n s a q u a t i c h u m i c a c i d s w e r e n o r m a t [ y m o r e s u r f a c e a c t i v e t h a n f u t v i c a c i d s .

I rurRopucr r oru

The phenonenon of surface

metrical- amphophilic organic

( T S C H A P E K e t a L . , 1 9 7 8 ) . T h e h u m a t e s s u g g e s t s , t h e r e f o r e , n o n - p o l a r p a r t s .

a c t i v i t y i s , i n g e n e r a l , i n h e r e n t t o a s y m - m o l e c u l e s o f m e d i u m m o l e c u l a r w e i g h t e x i s t e n c e o f s u r f a c e a c t i v i t y b y a l k a l i t h a t t h e m o l e c u l e s c o n t a i n p o l a r a s w e l l - a s

S u r f a c e a c t i v e s u b s t a n c e s c a n p l a y a n i m p o r t a n t r o l e i n b i o l o g i c a l

phenomena in the aquatic environment by affeeting : the permeability and

s t r u c t u r e o f c e l f u l a r m e m b r a n e s ( a n d t h e r e f o r e t h e u p t a k e a n d r e l e a s e o f c e r t a i n m e t a b o l i t e s ) ; t h e s t r u c t u r e o f s o n r e m a c r o r n o l e c u l e s s u c h a s p r o - t e i n s ( a f f e c t i n g i n t h i s w a y f o r i n s t a n c e t h e a c t i v i t y o f e n z y m e s ) r the p r o c e s s o f r e s p i r a t i o n ; t h e s o l u b i l i s a t i o n o f n u t r i e n t s o r t o x i n s i n t h e e n v i r o n m e n t ( r e s u l t i n q i n t h e s t i n u l a t i o n o r i n h i b i t i o n o f v i t a f p r o c e s s e s ) .

T h e s u r f a c e t e n s i o n o f s o i f f u l v i c a c i d ( F A ) and humic acid ( H A ) so-

lutions has been reported to be pH dependent (CHEN and SCHNITZER, 797e) ,

w h i c h w o u l d b e t h e r e s u l t o f t h e i o n i z a t i o n o f a c i d i c f u n c t i o n a l g r o u p s

such as COOH and phenolic OH. At high pH values these groups will form

hydrophilic sites thus increasing the amphophilic character and there-

f o r e a L s o t h e s u r f a c e a c i t i v i t v o f t h e h u m i c s o l - u t e s .

I n t h e p r e s e n t i n v e s t i g a t i o n t h e s u r f a c e a c t i v i t y o f f u l v i c a n d h u m i c r n a t t e r m o l e c u l a r w e i g h t ( m w ) fractions o f v a r i o u s a q u a t i c o r i g i n s w a s

i n v e s t i g a t e d . I n o r d e r t o e x a m i n e t h e e f f e c t o f h u m i f i c a t i o n o n t h e s u r - f a c e a c t i v e p r o p e r t i e s o f h u m u s , a l s o f u l v i c a n d h u m i c a c i d s o b t a i n e d f r o m m i c r o b i a l s u b s t r a t e s a n d s u b j e c t e d t o d i f f e r e n t i n c u b a t i o n p e r i o d s w e r e s t u d i e d . W i t h t h e o b t a i n e d r e s u l - t s s e v e r a L o t h e r p h y s i c o - c h e m i c a l - c h a r a c t e r i s t i c s o f h u m i c m o l e c u f e s c o u l d f u r t h e r b e i n v e s t i q a t e d .

ExprR t I\TENTAL

O r i g i n o f m a t e r i a l

A q u a t i c h l r m i c m a t t e r o f n a t u r a l o r i g i n w a s s a m p l e s c o l l - e c t e d d u r i n g S e p t e m b e r 1 9 7 4 f r o m a

o b t a i n e d f r o m 1 5 0 f . v / a t e r r i v e r ( C h i c o u t i m i R i v e r )

(3)

Surface actittities of aquatie humic substances 2 8 7

and a swamp, situated in the Laurentide Park in the precambrian Shield

r e g i o n o f t h e p r o v i n c e o f Quebec, Canada.

H u m i c m a t e r i a l o f m i c r o b i a l o r i g i n w a s o b t a i n e d f r o m a g l u c o s e - ] ' e a s t e x t r a c t n e d i u m ( g l u c o s e : o . 1 t ; Difco yeast extract : 0 . 1 % ) i n o c u -

lated with an actinomycete obtained from a Quebec forest soil, and incur

b a t e d u n d e r c o n s t a n t c o n d i t i o n s o f a e r a t i o n , t e m p e r a t u r e ( 2 5 o C ) and pH ( 7 . 0 ) . S a m p l e s $ r e r e c o l - l - e c t e d f o r r e c o v e r y o f F A , s a n d H A ' s a f t e r 1 4 , 6 0 a n d 1 8 0 d a y s o f i n c u b a t i o n .

F o r s a m p l e s o f b o t h n a t u r a l a n d m i c r o b i a l o r i g i n s , f r a c t i o n a t i o n p r o - c e d . u r e s w e r e s t a r t e d w i t h i n o n e d a v o f c o l l e c t i - o n .

b . F r a c t i o n a t i o n p r o c e d u r e

A f t e r t h e a d j u s t m e n t o f t h e s a m p l e s t o 8 . 4 , t h e y w e r e c e n t r i f u g e d a t 2 8 . 0 0 0 g i n a S o r v a l u l t r a c e n t r i f u g e f i t t e d w i t h a c o n t i n u o u s - f l o w

head in order to remove any particulate organj_c and inorganic matter.

T h e s u p e r n a t a n t w a s n e x t f i l t e r e d c o n s e c u t i v e l y o v e r D i a p o r * f i l t e r s n o . D P O 6 , D P O 4 5 a n d D P O 2 b r i t h respective p o r e s i z e s o f 0 . 6 , 0 . 4 5 a n d 0 . 2 }tn.

Very Large volumes, such as was the case of samples coll_ected from

n a t u r a f e n v i r o n m e n t s ( 1 5 0 r.) w e r e r e d u c e d b y c o n c e n t r a t i n g t h e o r g a n i c m a t t e r b y m e a n s o f a D i a f i b e r * m e m b r a n e c a r t r i d g e f i r t e r n o . H l o p l o u n t i l the el-uate became coloured.

T h e H A f r a c t i o n w a s p r e c i p i t a t e d b y a c l j u s t i n g t h e p H t o 1 . 5 a f t e r

which the above-mentioned centrifugation and Diafiber filtration proce-

d . u r e s w e r e r e p e a t e d . T h e f i n a L s o r u t j - o n ( c o n t a i n i n g t h e f u l v i c f r a c t i o n )

was then reduced in volume by ultrafiltration using a Diafl-o* uMo5 ultra-

f i l t e r .

T h e H A r s w e r e p u r i f i e d b y r e p e a t i n g a c y c l e o f p r e c i p i t a t i o n a t p H 1 . 5 f o l l - o w e d b y d i s s o l u t i o n a t p H 8 . 0 u n t i l t h e s u p e r n a t a n t a t p H 1 . 5 r e m a i n e d v i r t u a l l v c o l _ o u r l e s s .

I n t h e c a s e o f t h e F A ' s , t h e c o n c e n t r a t e , a f t e r a d j u s t m e n t t o p H 1 . 5 , w a s p a s s e d o v e r A m b e r l i t e r e s i n + X A D - 2 , p r e v i o u s l y p u r i f i e d a n d a c t i v a -

ted by refluxing it in a Soxhlet apparutus with methanol for a period of

t w o d a y s . T h e a b s o r b e d f u l v i c m a t t e r w a s p a r t i a l l y e l u t e d ( u p to 90 ?) u s j - n g a T R I S b u f f e r ( p H 8 . 4 , I = 0 . 1 5 ) , a f t e r w h i c h t h e e ] u a t e w a s c o n c e n t r a t e d o v e r a D i a f l o U M O 5 u l t r a - f i l t r a t i o n m e m b r a n e _

Sqne residual brown-coloured materi_al obtained from the XAD-2 resin

by washing it subsequently with methanol appeared to contain a high per-

c e n t a g e o f l y p o p h i l i c m a t e r i a l , T h i s f r a c t i o n w h i c h a m o u n t e d t o a p p r o x . 1 0 I o f t h e t o t a l F A c o n t e n t o f t h e o r i g i n a l s a m p l e , w a s n o t f u r t h e r

investigated in this study.

Both fulvic and humic acids were next suspended in a TRIS buffer

( p H 8 - 4 , I = 0 . 1 5 ) , a n d b y u s i n g D i a f l o u l t r a f i l t r a t i o n m e m b r a n e s , f i t t e d i n t o c o n t i n u o u s l y - s t i r r e d u l t r a f i - t - t r a t i o n c e 1 I s , w e r e f r a c t i o n a t e d i n t o f o u r f r a c t i o n s w i t h a v e r a g e m w o f r e s p e c t i v e l y 7 5 0 , 5 5 0 0 , 2 5 0 0 0 a n d 2 0 0 0 0 0 d a l t o n s . B y a p p l y i n g t h e p r e s c r i b e d p r e s s u r e d u r i n g t h e u l t r a f i l -

x A m i c o n C o r p o r a t i o n , L e x i n g t o n , l v l A . U . S , 4 .

* B D H C h e m i c a l s , T o r o n t o , C a n a d a

(4)

2 8 8

S c i e n c e s d e L ' e a u 1 , n o 3

tration procedure and by maj.ntaining the pH and ionic strength of the

s o l u t i o n s a t t h e i n d i c a t e d l e v e f s , t h e a v e r a g e p a r t i c l e s i z e o f t h e h u m i c m a t t e r f r a c t i - o n s i n t h e u l t r a f i l t r a t e s w a s f o u n d t o m a t c h r e a s o n - a b l y w e l l w i t h t h e a v e r a g e m o l e c u l a r s i z e s o f t h e h u m i c c o m p o u n d s a s i n d i c a t e d b y u l t r a c e n t r i f u g a t i o r r .

After fractionation the concentrates were thoroughly washed with TRIS

b u f f e r u n t i l t h e u l t r a f i l t r a t e r e m a i n e d c o n p l e t e l y c o l o u r l e s s . T h e b u f - f e r u n t i l w a s f i n a l f y r e m o v e d b y w a s h i n g t h e h u n i c f r a c t i o n s ( p r e s e n t i n t h e f o r m o f t h e i r K s a l t s ) w i t h d i s t i l l e d w a t e r u n t i l t h e f i f t r a t e h a d a p H o f 7 . 0 a n d w a s c o m p l e t e l y c h l o r i d e f r e e . T h e c o n c e n t r a t i o n o f t h e h u m i c f r a c t i o n s v / a s t h e n a d j u s t e d t o 0 . 5 t , a f t e r w h i c h t h e d r y m a t e r i a l w a s o b t a i n e d b y f r e e z e - d r y i n g .

c . M e a s u r e m e n t o f s u r f a c e a c t i v i t y

T h e s u r f a c e t e n s i o n m e a s u r e m e n t s h r e r e c a r r i e d o u t a t 2 5 o C a n d p H 7 . 0 b y t h e d u N o u y m e t h o d ( C e n c o s u r f a c e t e n s i o m e t e r n o . 7 0 5 3 5 , C e n t r a l S c i e n t i f i c C o m p a n y , C h i c a g o ) . T h e c o n c e n t r a t i o n r a n g e o f t h e p o t a s s i u m f u l v a t e s a n d h u m a t e s i n v e s t i g a t e d w a s b e t w e e n 1 0 a n C 1 0 " U9 1-'and t h e a c c u r a c y o f t h e m e a s u r e m e n t s w a s O . 0 5 d y n e c m - ' .

T h e o b t a i n e d s u r f a c e t e n s i o n s Y w e r e p l o t t e d v e r s u s t h e l o g v a l u e s o f t h e c o n c e n t r a t i o n s o f t h e h u m i c m a t e r i a l a n d f r o m t h e s t e e p e s t s l o p e

of the curves,(dy,/dlogC)p3xr the maximum surface adsorptj-on f *.* was

c a l c u l a t e d a c c o r d i n g t o c i b b s ' e q u a t i o n ( T S C H A P E K and VIASOWSKI, 1916) :

f = - I d Y , - 2

, R E ' ( d r " c ) T m o l e c m o r f = - r . ? ' 1 5 x t o - "

E * ;

"

m o l e c m - 2 ,

i n w h i c h Y represents t h e s u r f a c e t e n s i o n i n d y n e s c m - r , a n d C t h e c o n c e n t r a t i o n o f s o l u t e i n p e r c e n t .

According to the results obtained by TSCHAPEK et aL. (1980) use of

t h e a b o v e e q u a t i o n w a s j u s t i f i e d a s t h e c o n c e n t r a t i o n s o f t h e h u m i c m a t t e r u s e d f o r t h e d e t l r r n i n a t i o n

" t ( - * \ " n a ) o . * r . t " r e x c e e d e d 3 x l O - a U S 1 - : a n d w e r e t h e r e f o r e w e l l b e l - o w t h e t h r e s h o f d v a l u e o f 6 x 1 O - " U S l - ' .

From the | .r" value the rninimum cross-sectional area Amin per mole-

cule waq calcul-ated using the foltowing equation (TSCHAPEK and WASOWSKI,

79'76) :

m 1 n

in which N represents m o l e - l ) , h e n c - e ,

l a - r l l a -

. ^ - 8

A l . b b X ] U p t l

mrn = -_;-- A- molecure- -

t 1

| . N

max

t h e n u m b e r o f A v o g a d r o ( 6 . 0 2 x 1023 mol-ecules

(5)

Surface actit;ities of aquatlc humic substances 2 8 9

R E s r i l t s A N D D r s c u s s r o N

T h e s u r f a c e t e n s i o n v e r s u s c o n c e n t r a t i o n p l o t s ( f j - g u r e 1 ) s h o w t h e c h a r a c t e r i s t i c s h a p e s o f a d s o r p t i o n c u r v e s . C H E N a n d S C E N I T Z E R ( 1 9 ? g ) r e p o r t e d t h a t f o r F A ' s t h e s e p l o t s h a d a h y p e r b o l i c s h a p e , w h e r e a s f o r E A r s t h e y w e r e l i n e a r . T h i s c o u l d n o t b e c o n f i r m e d f o r F A ' s a n d H A ' s o f

aquatic origin or from microbial- cultures for which only sigmoid-shaped

c u r v e s w e r e o b t a i n e d .

H i g h e s t s u r f a c e t e n s i o n d e p r e s s i o n s ( 7 2 - y ) w e r e o b s e r v e d f o r F A ' s o f t h e a q u a t i c e n v i r o n m e n t s a n d t h e m a x i m u m d e p r e s s i o n o b t a i n e d ( 3 5 . 1 r 0 . 7 d y n e c m - I ) w a s f o r t h e F A ' s f r o m t h e s w a m p . H A ' s o f a q u a t i c o r i g i n a n d m i c r o b i a l F A ' s a n d H A ' s g a v e v e r y s i m i f a r m a x i m u m - d e p r e s s i o n s o f r e s p . 2 8 . O r 2 . 4 ; 2 6 . 6 * 6 . 2 a n d 2 7 . 4 * , 3 . 6 d y n e c r n - ' . C t t E N a n d S C H N I T Z E R ( 1 9 7 8 ) r e p o i t e d f o r 0 . 6 % F A a n d H A s o l u t i o n s ( p H 7), prepared f r o m m a t e r i a l s o f w i d e l y d i f f e r e n t o r i g i n , s u r f a c e t e n s i o n d e p r e s s i o n s r a n g ' i n g f r o m 2 . 8 t o 2 7 . O d y n e c m - ' . T h e h i g h e s t d e p r e s s i o n m e a s u r e C b y

us and obtained on an aguatic FA was approximately 8 units larger than

t h e h i g h e s t d e p r e s s i o n o b t a i n e d b y C H E N a n d S C H N I T Z E R ( 1 9 7 8 ) , w h i c h w a s o n a F A f r o m a p o d s o l . F o r t h e a q u a t i c H A ' s t h e a v e r a g e d e p r e s s i o n o b t a i - n e d b y u s ( 2 8 . 0 d y n e c m - ' ) w a s a p p r o x i m a t e l y 5 u n i t s l a r g e r t h a n t h e a v e r a g e m a x i m u m d e p r e s s i o n r e p o r t e d s o f a r f o r H A ' s o f t e r r e s t r i a l o r i g i n

( C H E N and SCHNTTZER, 1978, TSCHAPEK, e t a L . , l 9 8 O ) .

Although maximum depressions in surface activity, are often higher

f o r F A ' s t h a n H A ' s , f o r t h e l a t t e r t h e y a r e g e n e r a l l y o b s e r v e d a t l _ o w e r c o n c e n t r a t i o n s ( f i g u r e 1 ) . I t a p p e a r s , t h e r e f o r e , t h a t a t a l o w c o n c e n - t r a t i o n r a n g e ( 1 - 5 mgl-1) HA's often s h o w a h i - g h e r s u r f a c e a c t i v i t y l h a n F A ' s . T h e l a t t e r , t h o u g h , a r e n o r m a ] I y t h e m o r e p o w e r f u l s u r f a c e t e n s i o n d e p r e s s o r s a t h i g h e r c o n c e n t r a t i o n s r a n g e s ( > 25 mgl-,) A s , h o w e v e r ,

the average fulvic and humic acid concentration in the natural waters

i n v e s t i g a t e d w a s r e s p . 1 . 8 a n d 0 . 3 m g I - l ( V I S S E R , u n p u b l i s h e d r e s u l t s ) , i t c a n b e a s s u m e d t h a t i n t h e s e w a t e r s H A ' s w e r e t h e m o r e i m p o r t a n t s u r - f a c e a c t i v e s u b s t a n c e s .

The average value of the maximum slope of the y versus 1og C plot

( t a b l e 1 ) w a s h i g h e r f o r a q u a t i c F A ' s a n d H A r s t h a n f o r m a t e r i a l f r o r n t h e m i c r o b i a l c u l t u r e s o r f o r t h e s o i l h u m i c p r o d u c t s ( F A : -9.70, H A : - 23.14) as investigated b y C H E N a n d S C H N I T Z E R ( 1 9 7 8 ) . T h i s w o u l d i m p l y t h a t a m o n g s t t h e d i f f e r e n t t y p e s o f h u r n i c m a t t e r i n v e s t i g a t e d , m a t e r i a l

of aquatic origin normally has the highest maximum surface adsorption

f *.* and, as shown in table 2, the lowest minimum cross-sectional a r e a

per molecule. Humic molecules of aquatic origin wouLd therefore appear

t o b e l e s s c o n d e n s e d t h a n t h o s e g f o t h e r o r i g i n s . A s i m i l l _ a r c o n c l u s i o n

was reached from a study of the-$ ratio of different types of humic

m a t t e r ( V I S S E R , unpublished r e s u l t s ) . T h e h i g h e r m i n i m a l - c r o s s - s e c t i o n a l a r e a s o f t h e F A ' s a s c o m p a r e d t o H A ' s w o u l d a l s o indicate t h a t H A ' s p o s - s e s s a m o r e c o n d e n s e d s t r u c t u r e t h a n F A ' s .

With respect to the effect of environmental origin of humic compounds

on their surface active properties, table 3 shows that huric matter from

the swarnp environment gave higher surface tension depressions than mate-

rial from the river water. Humic substances from the swamp had also

lower minimum average cross-sectional areas per molecule than humic pro-

ducts obtained from the river water.

(6)

so

IJ ai

\) \

AJ q

q) t)

^a^6-,.6 t^ ^.'A '(noa

wo++oil sp?oe c?umll pup o?a?'n!

suoVqoo,{ ]o

q4bVan .rp7noa7ow ,tot

saa,tnc uo?+Da+uacuoc se uo'Lsua+

aoD!,tns

L aar$?,d

1Ol 1Ol

o8 t oo oo ? og E otft oooo l r o3oa I

ot l ot ' l

,,o,t$r,"

.*

YN

ro l

.rvar OOOoOE t .f,Yrr ooogl rr .iv oo I et otll .{vn3 .

.t)^r. oooooE r ooofE rr^|r :! of!, rr^rr rr^rt oocs

xt ot lo

YL af

C D

zI

ot t

t.

.wvai OOOOOI -{ r vn .w oo o9

l fl 00 3 vr .r I otl asvnt .

rr^rr OOOOOI

? E O9 OO r ^r rt

rr^rr oots r rr^rr ogz

ta to tt

al o

Y!

c

zg

o2

t.

o8 t oo oo I! ol t t og oo@s l l o8o8 I l os l o8 I

()9 ()0()009 ! o0 () 00 9t 0()9s ()9

I l os 09

, oo oo P og E gf og oooo t t

I l o9 t

to,lllfir.r' t*

Y /

(Fraal xotrvuxttraot

\t

C

z

:

oa

,t

(7)

Surface actioities of aquatic humic substanees

9 4 1

Table L

Values of the mar. slopes in surface tension os Log conc. cut'ttes of hunrLc matter fz,aetions fz,om different sources

f r a c t i o n o r i g i n hurnification a v e r a g e m w o f f r a c t i o n ( d a l t o n s ) period

or source

'150 5 5 0 0 2 5 0 0 0 2 0 0 0 0 0

r A microbial

aquatic

microbial aquatic

4 days 60 days 180 days river swanp 180 days river swamP

- 1 5 . 4 7

- L J - Z Z

- 1 5 . 2 2 - L 6 . 6 7 - 2 3 . 8 8 - 2 9 . 5 8

- z z - t o

- 2 9 . 1 0

- 1 7 . 9 2 - t 7 . 2 A - 1 5 .6 4 - L 6 . 1 6 - 2 4 . 2 7

- 2 4 . 4 7 - 2 9 . t o

- 1 3 . 4 3 - L o . 5 2 - 7 3 . 5 2 - 1 5 . 6 9 - 2 L . 7 0 - 1 8 . 8 8 - 1 8 . 6 5 - 2 5 . 6 9

- 1 0 . 4 3 - 1 2 . 9 6

- L Z . L >

- 1 5 . 3 2 - L 6 . 7 9

- t o . r 9 - J J . f , 5 HA

Tahle 2

Minirnan cross-seetioltaL a?eas per moLecule (A-",-) for hrnnic matter of

di f ferent Zrisin 1 a' mot. edi)tlJ- t-)

orrgln f r a c t i o n

F A H A

rnicrobi.al 5 8 . 0 i . 1 2 . 3 4 2 . 1 * , 4 . 2

aquatic terrestrial

5 0 . ? i 1 0 . 7 9 6 . 5 ( a t P I t 2 ) r ) 3 8 . 0 i 8 . 8 4 0 . 4 t , 3 9 2

1 ) C H E N a n d S C H N I T Z E R ( 1 9 7 8 I . 2 l T S C H A P E K e t e l . ( 1 9 8 0 1 .

TabLe 3 Atserage nnn. surface tensLon depression

ev,oss-sect. axea pe? mol. (A^4n)

(72 -"y) ,o, and min for aEtat. HM

s o u r c e I ' F

(dyne crn-r)

r r t

(A2 molecule-r)

HA HA FA

FA

sv/amP

3 1 . 9 - 1 . 9 3 5 . 1 - 0 . ?

2 6 . 4 - 2 . 3 2 9 . 6 - L . 2

5 s . 7 - 2 . 1 4 2 . 4 - 9 . 6

4 3 . 8 - 8 . 9 3 2 . 2 - 3 . 5

* I : m a x . I I : m i n .

s u r f a c e t e n s i o n d e p r e s s i o n ,

c r o s s - s e c t i o n a l a r e a l m o l .

(8)

292 Scienees de Lteatt 1, no7

] n t h e l o w e r m w r a n g e ( ( 5 500 daltons), m i c r o b i a l l y - p r o d u c e d F A ' s

are highly surface active substances which gradually lose part of their

s u r f a c e a c t i v i t y w i t h p r o g r e s s i n g h u m i f i c a t i o n ( f i g u r e 2 ) H i g h e r m w

FA's () 25 O0O claltons) are shown to give l-ower surface tension depres-

sions, but their surface active properties increase slightly as humifi-

c a t i . o n p r o c e e d s . A s V I S S E R ( u n p u b l i s h e d r e s u f t s ) c a l c u l a t e d t h a t t h e s e

FArs maintained an alrnost constant average mw of 2 657 t 165 daltons

during the humification period under investigation, it can be assumed

that the average surface activity decreased as the material beca-

m e m o r e h u m i f i e d . F o r H A ' s e x t r a c t e d f r o m a t r o p i c a l s w a m P V I S S E R ( 1 9 6 4 ) a l s o n o t i c e d a n o v e r a l l d e c r e a s e i n s u r f a c e a c t i v i t y w i t h p r o g r e s s i v e h u m i f i c a t i o n .

E

t

! oB

.;

o 40

!

.E 6

a

U

. :

l E

change,s in suz,face tension O"Or"*#i"rlr, ,oononssing hunification by molecular ueight fz,actions of microbially produeed- fulonb acid.s.

A s t a b l e 4 ( c o l u m n 1 ) i n d i c a t e s , s i g n i f i c a n t n e g a t i v e c o r r e l a t i o n s

existed betvreen the mw of humic substances of aquatic and microbial ori-

gin and the maximum obtainable surface tension depressions in their

soLutions. Lower mw fractions of these humic materials cause therefore

h i g h e r s u r f a c e t e n s i o n d e p r e s s i o n s t h a n l a r g e r m w f r a c t i o n s . G i v e n t h e

positive correlation between the maximum surface tension depression and

t h e t o t a l a c i d i t y o f h u m i c m a t t e r ( T a b l e 4 , column 3), it is likely t h a t

(9)

Surface actit;i,ties of aqttatic hwnic substances

, o ?

the reason why lower molecular weight fractions show a higher maximum

s u r f a c e t e n s i o n d e p r e s s i o n t h a n f r a c t i o n s w i t h a l a r g e r m o l e c u l a r w e i g h t

is the higher cooH and phenolic oH functional group content of the former

( V I S S E R , 1 9 8 2 ) . I n T a b l e 4 ( c o l u m n 5 ) i t i s s h o w n t h a t t h e m a x i m u m s u r -

face tension depression is more significantly correlated with the cooH

content for humic compounds from microbial cultures than for those from

t h e n a t u r a l w a t e r s . I t i s p o s s i b l e t h a t i n a q u a t i c h u m i c m a t t e r o t h e r

groups besides cooH play an important role in surface active phenomena.

Tahle 4

Relations bek'teen the moLecular ueight and uarious forms of aciditg of

dLfferent tgpes of htanLc nateriaLs and the marLtm,m surfaee tension

depz,ession of theiz, solutions

correlation cef f icients

fraction or-i gin w/ (72-.(\ N,/tot. (12-"{\ /tot. ('12-\) /OH

r ),/cooH

( a l

r

J ) ( 2 )

t x

FA nicrobial

aquatic river

swmp microbial

aquatic river

swmP

- o . 8 1 * + * - 0 . 6 5 + - 0 . 9 3 * * - 0 . 9 1 * * - 0 . 8 2 i - o . 7 9 - 0 . 8 6 * - O . 8 2 * - O . 9 5 * * - 0 . 8 3 * _ 0 . 9 8 * * * _ 0 . 7 5

0 . 6 5 x 0 . 9 1 * * o . 7 9 o . 8 2 * 0 . 8 3 * 0 . 7 5

- o . 1 2 0 . 8 5 r * + 0 . 9 6 * * 0 . 9 5 * *

d a q d r i q

O . 9 7 * * 1 . O O * * * 0 . 8 8 * 0 . 8 4 r o . 9 o * 0 . 8 8 *

I n m a n y i n s t a n c e s a v e r y s i g n i f i c a n t n e g a t i v e c o r r e l a t i o n w a s d e t e c -

ted between the minimurn cross-sectional- area per molecule and the maxi-

m u m s u r f a c e t e n s i o n d e p r e s s i o n , i n p a r t i c u l a r i n t h e c a s e o f t h e F A r s ( r = 0 . 7 4 , p 1 0 . 0 0 1 ) , w h i c h i s i n s u p p o r t o f o u r f i n d i n g s t h a t m o l e -

cul-es in the lower molecular weight range are the most surface active

( p . 2 8 9 ) . T h e n o r m a l - l y h i g h e r A m i n v a l - u e s f o r F A r s t h a n f o r H A r s o f t h e

sErme mw could be the result of the presence in the former of more ioni-

zed functional groups such as COOI{ and phenolic OH. This is also

s u g g e s t e d b y t h e s i g n i f i c a n t n e g a t i v e c o r r e l a t i o n c o e f f i c i e n t s w h i c h

were found to exist for FA's with respect to 4nin versus COOH or total

a c i d i t y ( r e s p . r = - 0 . 6 3 w i t h p < 0 . 0 1 a n d r = - 0 . 6 2 w i t h p ( 0 . 0 1 ) .

Comparison between the data of Table 4 (cofumn 3-5) and those pres-

e n t e d b y C H E N a n d S C H N I T Z E R ( 1 9 7 8 ) , w h o f o u n d i n t h e c a s e o f F A ' s f r o m a p o d s o l t h " t t y T a o a a l

a c i d i t y = - 0 . 6 1 2 ( p < 0.01), a n d a h " a t y , r " o o n

= - 0 . 3 5 6 , w o u l d i n d i c a t e t h a t t h e s u r f a c e a c t i v i t y o f F A r s o f a q u a t i c

origin and from microbial cuftures depends more on the presence of acidic

groups than do the surface active properties of soil humic matter. In

t h i s c o n t e x t . i t i s i n t e r e s t i n g t o n o t e i n T a b l e 4 ( c o l u m n 3 - 5 ) f o r F A r s

from the swamp, environment resembling closest that of a soil, the absen-

ce of any significant correl-ation between acidic groups and maximum sur-

f a c e d e p r e s s i o n -

(10)

2 9 4 Sc'Lences de Lteau L, no7

The mi-nimum cross-sectionaL areas of the FA and HA molecules can be

used to calcufate their minimum moiecular weight :

*r.i., = surface

"...*ir x height x density x N (Avogadro).

Assuming for the molecules a height of approximately 2 x their diameter

( T S C H A P E K et aL., 1 9 8 0 ) . t h e f o r m u l a c a n b e r e w r i t t e n a s : m w = A x 1 0 - 1 6 x 2

ml_n mln x 1 . 4 x 6 x 7 0 2 3 ,

o r : m w . = 1 . 8 9 6 x A x

mrn ml_n

The according to this formula carcuLated minimum'molecular weight varues

of the FA and HA fractions of aquatic origin and from microbial cultures

are shown in Table 5 - It is evident that for the lohrer mw samples

( m ^ r - 7 5 0 daltons) t h e m w , a s o b t a i n e d b y u l t r a f i l t r a t i o n , i s o f t h e s a m e

order of magnitude as that caLculated from surface activitv data.

TabLe 5

Calculated minirnnn moLeculaz, ueighi; oalues fz,om surface actiuity measzuements on fuLuic and Vrunic aeid solutions

' 4 x A

x 1 0 - 1 6

; mrn

v n. mrn

f r a c t i o n o r i q i n source

average mw based on AMICoN

u l t r a f j - L t r a t i o n ( d a l t o n s )

? q n

5 5 0 0 2 5 0 0 0 2 0 0 0 0 0

F A m i c r o b i a l

aquatic r].ver

swamp

9 7 4

+ o f ,

337 5 0 0

J q o

6 1 6 O J f ,

3 6 1 470 346

L O92

6 t 5 a 5 t

6 6 2

o I 4

4t7

1 . 2 7 5 9 0 5

I 6 Y

o z J

7 0 2 280

H A m i c r o b i a l

aquatic river

swamP

The discrepancy between the sets of data for the higher mw fractions can

be correctect by apptying a different height/diameter factor. By assuming

t h e m w o f t h e f r a c t i o n s o b t a i n e d b y t h e u l t r a f i l t r a t i o n t e c h n i q u e ( p . 2 8 8 ) t o b e c o r r e c t , t h i s f a c t o r w a s c a l c u l a t e d u s i n g t h e f o l l o w i n g f o r m u l a :

mw

h _

n

h

d

O . 9 7 5 x A ^ E - -

mJ-n v -hin

(11)

Surface actittities of aquatic humic subatances

9 0 E

T h e r e s u l t i n g d a t a , e n l i s t e d i n T a b l e 6 , w o u l d s u g g e s t t h a t i n s o l u t i o n t h e h u m i c m o l e c u l e s o f l o w m w ( - 7 5 0 d a l t o n s ) a r e m o s t l i k e l y e l l i p t i c a l

in shape (the FA and HA molecules having at the air,/water interface ave-

r a g e h e i g h t , / d i a m e t e r r a t i o s o f b e t w e e n 1 . 6 a n d 4 . 4 ) , w h e r e a s t h e h i g h e r

mw molecules would possess a more threadlike shape. Although the above

figures should be used with great caution as they are derived from values

which express only a lower limit of the surface of the molecules at the

interface area, they nevertheless all indicate an asymmetrical shape for

t h e h u r n i c m o l e c u l e s , i n p a r t i c u l a r f o r t h e H A r s . E l o n g a t e d e l l i p s o i d a l s h a p e s h a v e a l s o b e e n r e p o r t e d f o r h u m i c c o m p o u n d s . b y P I R E T e t a L . ( 1 9 6 0 ) , w h o f o r p e a t H A f o u n d a n a x i a l r a t i o o f a r o u n d l I , b y O P S J O V e t a L . ( 7 9 7 1 ) ,

who for soif HArs arrived at ratios from 6-12. and by CHEN and SCHNITZER

( t 9 7 6 ) , w h o c a l c u l a t e d f o r s o i l F A ' s a n d H A ' s a x i a l r a t i o s o f b e t w e e n r e s p e c t i v e l y 8 . 8 - 1 1 . 9 a n d 1 3 - 1 6 .

TabLe 6 Calculated nattrntn

"atios

of height/dLameter of fuluic and hwnic ac'Ld

moleeuLes p?esent qt the aLr/uater interfaee

average mw (daltons)

f r a c t i o n origin

source

T ) U 5 5 0 0 2 5 0 0 0

FA

H A

microbial aquatic

microbial aquatic

swamp

rl-ver swamp

L Z . ) U I J . I O

3 0 .3 0

2 3 - 2 6

3 1 .2 5

5 Z - Z O

4 5 . 4 2 5 7 .2 ' 7

Y J . I f ,

5 7 .6 0 7 4 . 2 3 1 2 0 . 0 0

1 . 6 4

1 . 8 8 3 . 2 3 4 . 4 4

? n ?

4 . 3 5

Cottclus t ot't

B Of the humic matter of different origins investigated, that frqn natu-

ral waters appeared to possess the least condensed structure.

tr Ihe surface activity of aquatic humus increases l^tith rising mw of the

m a t e r i a l .

tr Whereas at low concentrations (( 5 mg 1-I) aquatic HArs nonnal-ly were

more surface active than the FA's, the latter generally showeil a higher

surface activity than the ltrArs when present at higher concentrations

( ) 2 5 m s 1 - ' ) .

o Aquatic fulvic and humic acids were normally found to be more surface

active than their terrestrial counterparts.

a Acidic groups appeared to play a more important role in the surface

activity of FA's of aquatic origin than in that of their terrestrial

counterparts.

(12)

2 9 6 S c i e n c e s d e L ' e a u 7 , n o 7

tr For microbially-formed humus it was noticed that with progressive humi-

fication the surface activity of the low mw I'A fraction diminished,

whereas that of the hiqh mv, fraction increased.

o Aquatj-c FA molecules would appear to have a more open structure and

to be more voh:rninous than HArs of similar origin and rnolecular weight.

D Indications were obtained that, whereas low mw aquatic compounils would

have an elliptical form when in solution, higher mw fractions are pro-

bahly more threadlike in shape.

R e r e R e r u c e s

CHBiI Y., SCHNITZER M., Viscosity measu-

rements on soil hwic substa ces . Soi.L S c i . S o c . A t n . J . , 1 9 7 6 , 4 0 , e 6 6 - 8 7 2 . CHEN Y., SCHNI?ZER M., Ttle surface ten- sion of aqueous solutions of soil hwic s u b s t i l c e s . S o i L S c i . , L 9 ' 7 e , n 5 , 7 - 1 5 . O L M R B . c . , W S S ' E R S . A . , C h l o r o f o m

production frm the clorination of aqua-

tic hmic material : the effect of mole- cular peight , enviroment ad season.

W a t e ! R e s , , 1 9 8 0 , L A t L 1 3 7 - 7 L 4 1 .

O R L O V D . S . , A M M O S O V A Y a . M . , G L E B O V A G . I . , G O R S H K O V A Y e . 1 . . r l r l n N . P . , K O L E S N I K O V M . P . , M o l e c u l a r w e i g h t s , s i z e s a d c o n - figuration of hmic acid particles. Sots.

Soi.L Sci. (EngL. h'ansL. Pochuouedenie), L97t , 3, 673-687 .

P I R E T 8 . L . , V T H I T E R . c . , W A L T E R H . C . ,

MADDEN A.J., Sme physico-chmical pro-

perties of peat huic acids. Sci, Proc.

R . D u b l i n S o c . S e r ' . 4 . , 1 9 6 0 , 6 9 - ? 9 ,

TSCHAPEK M., WASOVISKI C., The surface actj.vity of hmic acid. Geochin. Cosrc- c h i m . A c t a , t 9 i 6 , 4 0 , 1 3 4 3 - 1 3 4 5 . T S C H A P E K M . , S C O P P A C . O . , ! { A S O W S K I C . , On the surface activity of hmic acid.

Z. Pflanzenernaehr. Bodenkde, L9'1a, f4f, 2 0 3 - 2 0 1 .

T S C H A P E K M . , W A S O W S K T C . , S C O p p A C . O . , TORRES SANCHEZ R.ln., On the surface acti-

vity of hmic acid. Agrochimtca, 1980,

u , 3 O - 3 A .

VISSER S.A., Oxidation-reduction poten-

tials ad capillary activitj,es of hmic acids. triafi;ne (tond), 1964, 2O4. 581 V I S S E R s . A . , A c i d i c f u n c t i o n a l g r o u p content of aquatic hwic matter : its

dependence upon origin, moleculd weight

and ilegree of hwification of the mate- r i a l . J . E n u . S c . H e a L t h , 1 9 8 2 , ( i n p r e s s ) .

Références

Documents relatifs

The basic idea of the MSLR' is to re-schedule the QC jobs to (z,t) coordinates with small A, values without compromising the vessel makespan. Although the MSLR'

En utilisant l’idée de Selberg pour estimer π k (x), l’étude directe de la série génératrice adéquate nous permet aussi de démontrer le théorème suivant, qui localise le

Additional residues from a flexible region of SspB adaptor protein were inserted just before the ClpX pore- binding tag.B.Rates of MuSspB monomer variant degradation relative

Since it is assumed that the beam can resist only vertical loads and horizontal shear forces, the final line loads applied at the longitudinal edge must be equal

Les règles issues de CHANT ont donc également été implémentées dans OM-Chant : les fonction autoamp, autobw, autotex per- mettent de calculer les amplitudes, largeurs de bandes

L’un des processus majeur d’épuration des pesticides sous forme particulaire est la sédimentation, mise en évidence dans notre étude à l’aide de pièges

#32 is a strongly schistosed pelitic metavolcanoclastic rock with Grt-Gln/Brs-Qz- Ctd-Rt±Ttn±Chl assemblage (Figure 56c, 60b, 66) and clear top to N shear sense

Cette modélisation peut également servir à séparer les différents besoins fonctionnels et les préoccupations extra-fonctionnelles (telles que fiabilité, performance, etc.) Dans