• Aucun résultat trouvé

Study of the influence of the initial pH on the aqueous corrosion of an Al-Mg-Si alloy at 70°C

N/A
N/A
Protected

Academic year: 2021

Partager "Study of the influence of the initial pH on the aqueous corrosion of an Al-Mg-Si alloy at 70°C"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: cea-02338588

https://hal-cea.archives-ouvertes.fr/cea-02338588 Submitted on 21 Feb 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Study of the influence of the initial pH on the aqueous corrosion of an Al-Mg-Si alloy at 70°C

S. l’Haridon-Quaireau, K. Colas, B. Kapusta, D. Gosset, S. Delpech

To cite this version:

S. l’Haridon-Quaireau, K. Colas, B. Kapusta, D. Gosset, S. Delpech. Study of the influence of the initial pH on the aqueous corrosion of an Al-Mg-Si alloy at 70°C. ICAA16 - 16th International Congres of Aluminium Alloys, Jun 2018, Montreal, Canada. �cea-02338588�

(2)

Study of the influence of initial

pH on the aqueous corrosion

of an Al-Mg-Si alloy at 70°C

16th International Conference on Aluminium Alloys, 17- 22th June 2018 , Montreal, Canada

S. L’HARIDON-QUAIREAU, K. COLAS, B. KAPUSTA, D. GOSSET

Département des Matériaux pour le Nucléaire, CEA Saclay, Université Paris Saclay

91 191 Gif sur Yvette Cedex - France

S. DELPECH

Institut de Physique Nucléaire d’Orsay,

(3)

BACKGROUND

Goal of PhD project : understand and predict corrosion of an Al-Mg-Si alloy

used in nuclear research reactors

Example of environmental conditions in core :

• Temperature : 70°C • Pressure : 12 bar • pH : between 5 and 7 • Water flow rate : 8 m/s

 Harsh environmental conditions = formation of hydroxide layer at surface of aluminium alloy

Factors impacting aluminium alloys corrosion :

• Temperature • Water chemistry • Water flow rate • Pressure

Hydroxide layer at surface of a Al-Mg-Si alloy

Al

Hydroxide

 Study of these impacts in order to minimize aluminium alloys corrosion Effect of the pH ?

(4)

BACKGROUND

6061-T6 aluminium alloy studied :

• Chemical composition (wt. %) :

Element Si Fe Cu Mn Mg Cr Al

Min 0,4 - 0,15 - 0,8 0,04 Balance

Max 0,8 0,7 0,4 0,15 1,2 0,35

• Two micrometric precipitate families : • Mg2Si particles

• Iron-rich precipitates

Why study the effect of pH ?

 Influence [Al] in solution

 Effect on growth of aluminium hydroxide [1]  Optimisation of pH in order to limit corrosion

of aluminium alloy

Cross section of 𝑀𝑔2𝑆𝑖 (SEM) Cross section of IRP (SEM)

10 µm 10 µm pH S o lu b ility o f Al (OH )3 (l o g ([A l]) m g /L ) 75°C 50°C

(5)

EXPERIMENTAL METHODS

Limit : released Al in solution : Corrosion in autoclaves :

• 316L steel autoclaves, 0,16L, coated in Teflon

• 70°C, 0,5 bar, 33 days

• Three corrosive solutions : • pH = 5 • pH = 6 • Deionised water 𝐴𝑙 + 3𝐻+ ↔ 3 2 𝐻2 + 𝐴𝑙 3+  pH increases

 But : 65mL of solution = > saturation of 𝐴𝑙3+

 Equal final pH (6,7)

Nitric acid + deionised water

(6)

M a ss g a in p e r su rf a ce u n it (m g /d m ²)

OUTLINE OF STUDY

Confirmation of initial pH effect on mass gain of samples :

Uniform corrosion ?

Corrosion of Mg2Si particles ?

Corrosion due to iron-rich precipitates (IRP) ? Initial pH 5,0 6,1 Deionised water Al content (mg/L) 0,2 ±0,04 0,12 ±0,04 0,2 ±0,04 Released Al (mg/dm²) 0,09 ±0,02 0,06 ±0,02 0,09 ±0,02

Effect on released Al in solution ?

Anodic behaviour of 𝑀𝑔2𝑆𝑖 [2]

Cathodic behaviour of IRP [2] Uniform corrosion

Al

Hydroxide

Precipitate

Initial pH

On what is the effect of initial pH ?

 Insignificant effect 1 2 3 4 Deionised water 5,0 6,1

(7)

1. UNIFORM CORROSION (1/2)

Characterizations :

• Grazing incidence X-ray diffraction

Corrosion product at 70°C = two layers

of different aluminium hydroxide [1] : • Bayerite (α − Al OH 3)

• Pseudo-boehmite (AlOOH)

Cross section of aluminium hydroxide (SEM)

5 µm

Aluminium hydroxide at surface of sample (SEM)

5 µm

(8)

1. UNIFORM CORROSION (2/2)

| PAGE 7

Characterisations :

• Measurement of O/Al ratio depending on depth of hydroxide (by EDS-SEM)

 No effect of the initial pH on : • Cristal size

• O/Al ratio

• Hydroxide thickness

• Measurement of hydroxide thickness (with SEM)

0 1 2 3 4 5 6 1 2 3

O/Al (at. %/at. %)

µm Bayerite (α − Al OH 3) Pseudo-boehmite (AlOOH) Al

O/Al ratio depending on depth of hydroxide

Hy d rox ide th ickne ss o f u n if o rm co rr o sion (µm ) Pseudo-boehmite Bayerite Initial pH Deionised water 5,0 6,1 Deionised water Initial pH : 5,0 Initial pH : 6,1

(9)

2. CORROSION OF

MG

2

SI PRECIPITATES

Equation associated to corrosion of Mg2Si [2] :

𝑀𝑔2𝑆𝑖 + 2𝐻2𝑂 → 2𝑀𝑔2+ + 𝑆𝑖𝑂2 + 4𝐻+ + 8𝑒−

Characterizations :

• Maps of chemical elements O, Mg and Si (with EDS-SEM) :

 No effect of the initial pH on 𝑴𝒈𝟐+ content in solution

Initial pH 5,0 6,1 Deionized water

Mg2+ content (mg/L) 0,52 ± 0,02 0,53 ± 0,02 0,52 ± 0,02

Cross section of 𝑀𝑔2𝑆𝑖 (SEM) Map of oxygen Map of magnesium

• Measurement of the Mg2+ content in solution (by ICP-AES) :

10 µm 10 µm 10 µm

Mg2Si

10 µm

(10)

3. CORROSION DUE TO IRON-RICH PRECIPITATES

(1/3)

Iron-rich precipitates (IRP) = local cathodes (hydrogen and oxygen reduction)

 IRP accelerate Al oxidation  Formation of hydroxide pits

Characterizations : measurement of :

• Surface occupied by pits • Surface density of pits

 Effect of initial pH on surface density

But similar occupied surface (14%) Cross section of a pit (SEM)

IRP Hydroxide

40 µm

Pits at surface of sample (SEM)

100 µm S u rf a ce d e n sity o f p its (pit/ m m ²) Pit Initial pH Deionised water 5,0 6,1

(11)

3. CORROSION DUE TO IRON-RICH PRECIPITATES

(2/3)

Initial pH=6,1 : less pits per surface unit

 Measurement of width and depth of pit

IRP Hydroxide Width Depth 20 µm pH = 6,1 pH = 5,0 Deionised water Depth of pit (µm) W id th o f p it (µm )

 Initial pH=6,1 : widest and deepest pits

(12)

3. CORROSION DU TO IRON-RICH PRECIPITATES

(IRP) (3/3)

A v e rag e d d e p th o f p its (µm ) Initial pH A v e rag e d w idt h o f p its (µ m ) Initial pH Deionised water 5,0 6,1 Deionised water 5,0 6,1

 Effect of initial pH on pit :

Most oxidised Al at initial pH=6,1

Initial pH=6,1 : less pits per surface unit

 Measurement of width and depth of pit

(13)

CONCLUSIONS

Corrosion tests with three initial pH on 6061-T6 aluminium alloy :

• 5,0 • 6,1

• Deionised water

 Limit : equal final pH (6,7)

Nitric acid + deionised water

No effect of initial pH on :

• Uniform corrosion

• Corrosion of Mg2Si precipitates

Cross section of 𝑀𝑔2𝑆𝑖 (SEM)

10 µm

Cross section of aluminium hydroxide of uniform corrosion (SEM)

5 µm

Effect of initial pH on galvanic corrosion between iron-rich precipitates (IRP) and Al :

=> At initial pH =6,1, most oxidised Al, widest and deepest pits of hydroxide

Cross section of pit (SEM)

40 µm

Further studies : study of the beginning of the

galvanic corrosion IRP/Al

(14)

Direction Département Service Commissariat à l’énergie atomique et aux énergies alternatives

Centre de Saclay| 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial |RCS Paris B 775 685 019

| PAGE 13

ICAA 16th | 17-21 June 2018

Thank you for your attention

[1] M. Wintergerst, ‘Etude des mécanismes et des cinétiques de corrosion aqueuse de l’alliage d’aluminium AlFeNi utilisé comme gainage du combustible

nucléaire de réacteurs expérimentaux.’, Thèse de doctorat, Université Paris XI, U.F.R Scientifique d’orsay, Saclay, 2010.

[2] M. A. Pech-Canul, R. Giridharagopal, M. I. Pech-Canul, and E. E. Coral-Escobar, ‘Corrosion Characteristics of an Al-1.78%Si-13.29%Mg Alloy in Chloride Solutions’, presented at the ICAA13: 13th International Conference on Aluminum Alloys (eds H. Weiland, A. D. Rollett and W. A. Cassada), 2012.

(15)

3. CORROSION DUE TO IRON-RICH PRECIPITATES

(2/4)

| PAGE 14 ICAA 16th | 17-21 June 2018

• Mass gain of samples ∆𝑚𝑠

 Initial pH=6,1 : most mass gain by pit  Most oxidised Al at initial pH=6,1

Mass g a in p e r su rf a ce u n it (m g /d m ²) M ass g ain pe r surf ace un it for o n e p it (µ g /d m ²) Initial pH Initial pH Su rf ace de nsity of pits (pits/ m m ²) Initial pH Effect of initial pH on :

• Surface density of pits Npits

∆𝑚𝑝𝑖𝑡𝑠=

𝑓(𝑁𝑝𝑖𝑡𝑠, ∆𝑚𝑠)

=> Mass gain per surface unit for

one pit : ∆𝑚𝑝𝑖𝑡𝑠 = 1 𝑁𝑝𝑖𝑡𝑠𝑆𝑝𝑖𝑡𝑠 ቈ∆𝑚𝑠− 𝐸𝐴𝑙 𝑂𝐻 3𝑑𝐴𝑙 𝑂𝐻 3 𝑀3𝑂𝐻 𝑀𝐴𝑙 𝑂𝐻 3 + 𝐸𝐴𝑙𝑂𝑂𝐻𝑑𝐴𝑙𝑂𝑂𝐻 𝑀𝑂𝑂𝐻 𝑀𝐴𝑙𝑂𝑂𝐻 ∗ 1 − 𝑥 | PAGE 14 Deionised water 5,0 6,1 Deionised water 5,0 6,1 Deionised water 5,0 6,1

Références

Documents relatifs

D’un autre côté, nous avons présenté quelques recherches dans le domaine des systèmes intelligents qui avaient pour objectif de créer des systèmes computationnels permettant

En développant, dans cet article, un cadre global permettant d'appréhender l'utilisation de l'hypertexte comme un travail collaboratif où interviennent le système, la tâche et

decisions made during the design process... While the overall structure is fairly self-explanatory, the individual classes have various interesting features which

A further insight into the dominance of the baroclinic processes can be gained by considering the growth rates of uncertain available and kinetic energies averaged

Les performances de ASICS ont été comparées à celles des approches concurrentes sur un mélange complexe synthétique de 21 métabolites [ 3 ] ainsi que sur des données réelles

enregistrement avec celui du carottage de plancher Vil-car-1 permettent de confirmer nos observations sur une concrétion différente d’une stalagmite et de voir 1) que les variations

Based on the survey data (composed of 75 decisions for each of the 70 survey participants, totaling 5250 data points), we computed the proportion of “Yes /No/Uncertain” decisions

Les enjeux de cette prise en charge sont multiples : la stabilisation de la consommation, la prévention des complications fœtales et obstétricales, la mise en place