• Aucun résultat trouvé

Modélisation polycristalline du comportement élasto-viscoplastique des aciers inoxydables austénitiques 316L(N) sur une large gamme de chargements : application à l'étude du comportement cyclique à température élevée

N/A
N/A
Protected

Academic year: 2021

Partager "Modélisation polycristalline du comportement élasto-viscoplastique des aciers inoxydables austénitiques 316L(N) sur une large gamme de chargements : application à l'étude du comportement cyclique à température élevée"

Copied!
243
0
0

Texte intégral

(1)

HAL Id: tel-02325387

https://tel.archives-ouvertes.fr/tel-02325387

Submitted on 22 Oct 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Modélisation polycristalline du comportement

élasto-viscoplastique des aciers inoxydables austénitiques

316L(N) sur une large gamme de chargements :

application à l’étude du comportement cyclique à

température élevée

Diogo Goncalves

To cite this version:

Diogo Goncalves. Modélisation polycristalline du comportement élasto-viscoplastique des aciers

in-oxydables austénitiques 316L(N) sur une large gamme de chargements : application à l’étude du

comportement cyclique à température élevée. Mécanique des solides [physics.class-ph]. Sorbonne

Université, 2018. Français. �NNT : 2018SORUS089�. �tel-02325387�

(2)
(3)
(4)
(5)
(6)
(7)
(8)

𝑑𝐺𝐵

𝑑𝐵𝐺

(9)

𝒂

𝜸

𝜸

𝑺𝑭𝑬

𝒃

𝝓

𝑲

𝑯𝑷

𝜿

𝒃

𝒗

𝑫

𝑹

𝑻

𝑸

𝑽

𝒕

𝒕

𝒉

𝒕

𝒄𝒍

𝒕

𝒘

𝒕

𝒂

𝜹

𝟎

𝒂

𝐂

𝟏𝟏

, 𝐂

𝟏𝟐

, 𝐂

𝟒𝟒

𝚼

𝝁

𝝂

𝒇

𝜶

𝒍

𝜶

𝒏

𝐦

𝒊

𝑖

𝐧

𝒊

𝑖

𝝈

𝚺

𝝈

𝒅

𝚺

𝐝

(10)

𝚺

𝐞𝐪

𝜮

𝒎

𝜮

𝒂

𝜮

𝒎𝒂𝒙

𝜮

𝒎𝒊𝒏

𝜮

𝒓𝒆𝒍𝒂𝒙

𝚺

𝒚

𝚺

𝟎

𝚺

𝒇

𝝐

𝑬, 𝑬

𝒕𝒐𝒕

𝑬

𝟎

𝑬

𝒂

𝝐

𝒑

, 𝝐

𝒗𝒑

𝑬

𝒑

, 𝑬

𝒗𝒑

𝑬

𝒂

𝒑

, 𝑬

𝒂

𝒗𝒑

𝑬

𝒓

𝝐

𝒆𝒒

𝒗𝒑

𝑬

𝒆𝒒

𝒗𝒑

𝑬

𝒄𝒖𝒎

𝒗𝒑

𝜼

𝑵

𝜸

𝜸

𝒊

𝒑

, 𝜸

𝒊

𝒗𝒑

i

𝑖

𝜸

𝒊,𝒆

𝒗𝒑

, 𝜸

𝒊,𝒔

𝒗𝒑

𝑒

𝑠

𝑒

𝑠

𝝉

𝒊

𝑖

𝑖

(11)

𝝉

𝒆𝒇𝒇

𝑹

𝑹

𝒄𝒓𝒊𝒕

𝝉

𝟎

𝝉

𝒄

𝝉

𝝉

𝒑𝒓𝒊𝒎𝒂𝒓𝒚

𝝉

𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚

𝝉

𝒑

𝝉

𝒄𝒍

𝝉

𝒏𝒐𝒓𝒎

𝝉

𝒆𝒍𝒂𝒔

𝒙

𝑿

𝑸

𝑽

𝑨

𝜶, 𝑪

𝑴

̅

𝝆, 𝝆

𝒕

𝝆

𝒐

𝝆

𝒆

𝝆

𝒔

𝝆

𝒅

𝝆

𝑷𝑳

𝝆

𝒎

(12)

𝝆

𝒄

𝝆

𝒘

𝜶

̅

𝒎𝒐𝒏

𝜶

̅

𝒄𝒚𝒄

𝒉

𝒊𝒋

𝒉

𝒐

𝒉

𝟏

, 𝒉

𝒄𝒐𝒍𝒍

𝒉

𝟐

, 𝒉

𝑯𝒊𝒓𝒕𝒉

𝒉

𝟑

, 𝒉

𝒄𝒐𝒑𝒍𝒂

𝒉

𝟒

, 𝒉

𝑮𝒍𝒊𝒔𝒔

𝒉

𝟓

, 𝒉

𝑳𝒐𝒎𝒆𝒓

𝒒

𝑳

𝒚

𝒆

, 𝒚

𝒔

(𝑒)

(𝑠)

(𝑒)

(𝑠)

𝒉

𝒎𝒂𝒙

𝒉

𝜿

𝒔𝒊𝒏𝒈𝒍𝒆

𝜿

𝒎𝒖𝒍𝒕𝒊

𝜿

𝒔𝒆𝒍𝒇

𝜿

𝒄𝒐𝒑𝒍𝒂

𝜿

𝒋𝒐𝒏𝒄𝒕𝒊𝒐𝒏

𝑬

𝒗𝒂𝒄

𝝉

𝑰𝑰𝑰

, 𝝉

𝒊𝒏𝒕

𝑨

𝟏

, 𝑨

𝟐

, 𝜶

𝟏

, 𝜶

𝟐

𝒅

𝟎

𝜽

𝑳

𝟏

, 𝑳

𝟐

(13)

𝒆

𝑩𝑮

𝒇

𝑩𝑮

𝒅

𝑩𝑮

𝜸

𝑩𝑮,𝒄𝒓𝒊𝒕

𝒑

𝑪

𝒔𝒐𝒍

𝑪

𝒔𝒂𝒕

𝑪

𝟎

𝑼

𝒄𝒓

𝑫

𝑪𝒓

𝑫

𝒐

𝑪𝒓

𝑸

𝜸

𝑪𝒓

𝒗

̅

𝒗

𝒄𝒍

𝛌

̅

𝒇

𝑫𝑺𝑨

𝝐

𝒂

𝑲

𝒔𝒊𝒎

𝒅

𝒄𝒆𝒍𝒍

𝒄

𝒋

𝑫

𝒔𝒅

𝑫

𝟎

𝒔𝒅

𝐐

𝐬𝐝

(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

𝑎

𝛾

= 0,3595 𝑛𝑚

𝑎

𝛾

= 0,3595 𝑛𝑚

53 𝜇𝑚

50 𝜇𝑚

𝜌

𝑜

~ 10

10

𝑚

−2

𝜌

𝑜

= 3,4 . 10

12

𝑚

−2

𝑖

|𝜏

𝑖

|,

𝜏

0

𝜏

𝑖

= 𝜎. 𝑓

𝑖

𝑓

𝑖

= 𝑐𝑜𝑠 𝛼

𝑛

. 𝑐𝑜𝑠 𝛼

𝑙

𝛼

𝑙

𝛼

𝑛

𝑙⃗

𝑛⃗⃗

𝑓

𝑖

𝑖

𝑖

𝜏

0

(25)

𝛾

𝑆𝐹𝐸

𝛾

𝑆𝐹𝐸

𝜇

𝑏

𝛾

𝑆𝐹𝐸

𝛾

𝑆𝐹𝐸

𝛾

𝑆𝐹𝐸

= 25,7 + 2 ∙ %𝑁𝑖 + 410 ∙ %𝐶 − 0,9 ∙ %𝐶𝑟 − 77 ∙ %𝑁 − 13 ∙ %𝑆𝑖

− 1,2 ∙ %𝑀𝑛

(26)

𝜸

𝑺𝑭𝑬

(𝒎𝑱/𝒎²)

𝜸

𝑺𝑭𝑬

/𝝁𝒃 (𝟏𝟎

−𝟑

)

𝛾

𝑆𝐹𝐸

/𝜇𝑏

𝛾

𝑆𝐹𝐸

/𝜇𝑏

(27)

𝛾

𝑆𝐹𝐸

𝜌

𝜏 = 𝛼̅𝜇𝑏 √𝜌

𝛼̅

𝛼̅ = 0.35 ±

0.15

𝑖

𝑗

Système

Ab

Ac

Af

Bb

Bd

Be

Ca

Cc

Ce

Da

Dd

Df

Plan

Direction

(28)

𝑜

3

= ℎ

𝑐𝑜𝑝𝑙𝑎

2

= ℎ

𝐻𝑖𝑟𝑡ℎ

4

= ℎ

𝑔𝑙𝑖𝑠

5

= ℎ

𝐿𝑜𝑚𝑒𝑟

1

= ℎ

𝑐𝑜𝑙𝑙

Ab Ac

Af

Bb Bd Be Ca

Cc

Ce

Da Dd Df

Ab

Ac

Af

Bb

Bd

Be

Ca

Cc

Ce

Da

Dd

Df

(29)
(30)

𝐸̇

𝐸̇

vp

= 𝐸̇

0

𝑒𝑥𝑝 (_𝑄 𝑅𝑇

)

𝑄

𝑅

𝑇

𝑄

Q

BT

= 133 kJ.mol

-1

Q

γ

C

= 138 kJ.mol

-1

Q

HT

= 278 kJ.mol

-1

Q

γ

Cr

=243 kJ.mol

-1

𝐸

𝑎

= ±0,6%

(31)

𝐶

𝜎

𝑖𝑗

= 𝐶

𝑖𝑗𝑘𝑙

∙ 𝜀

𝑘𝑙

𝐶

𝑖𝑗𝑘𝑙

(32)

𝑎 =

2 C

44

C

11

− C

12

𝑎 = 1

𝑎 = 3,3

𝐶

11

= 197,5 𝐺𝑃𝑎 𝐶

12

= 125 𝐺𝑃𝑎

𝐶

44

= 122 𝐺𝑃𝑎

𝑎

Υ

𝜈

𝛶

𝛶

~𝜇/2000

100

120

140

160

180

200

220

0

200

400

600

800

1000

1200

316LN [RCC-MR 2002]

316LN - SQ [Gaudin, 2002]

316LN - AVESTA [Gentet, 2010]

316L [Alain, 1997]

316 [ASM Hanbook, 1994]

316 [Barnby, 1965]

316 [Letbetter, 1981]

Température,

M

o

d

u

le

d'

Yo

u

n

g,

(33)
(34)

𝛾

𝑆𝐹𝐸

/𝜇𝑏

𝐸

𝑝

> 15%

[Single glide] 0 100 200 300 400 500 600 700 800 0 0.2 0.4 0.6 Cristal [100] Cristal [111] Cristal [123] Monocristaux 316L SS Essai de traction -T=293K Déformation, C on trai nte, Stade I

(35)

𝐸

𝑝

= 3%

𝐸

𝑝

= 1 𝑒𝑡 3%

𝐸

𝑝

= 1 𝑎𝑛𝑑 3%

[100] [110]

[111]

Single-slip (tensile loading, Ep=1.0%, 𝐸̇=3.10-4 s-1) Main dislocation patterns (tensile loading, Ep=3.0%,𝐸̇=3.10-4 s-1) 316L(N) SS Dipole walls Polarized dislocations

(36)
(37)

𝑥

|𝜏 − 𝑥| = 𝜏

𝑒𝑓𝑓

𝑥 ≠

0,

𝛾

𝑆𝐹𝐸

/𝜇𝑏

𝜏

𝑝

𝑥

(38)

𝜏

0

, 𝑥

𝜏

𝑜

≈ 𝑥

𝜏

𝜏

𝑜

(39)

𝐸̇ = = 4.10

−3

𝑠

−1

(40)
(41)

𝐸

𝑎

𝑝

= ±0.1%

𝐸

𝑎

𝑃

> ±0.5%

= ±0.1%

= ±0.5%

= ±0.1%

= ±0.5%

T=293K

(42)

= ±0.2%

= ±0.2%

= ±0,5%

=

±0,5%

T=873K

(43)

𝛴

𝑚

(44)

𝑑𝐸

𝑟

/𝑑𝑁

𝛴

𝑚

~ 50𝑀𝑃𝑎

𝛴

𝑚

= 50 𝑀𝑃𝑎

(45)

𝑑𝐸

𝑟

/𝑑𝑁

𝑑𝐸

𝑟

/𝑑𝑡

𝛴

𝑚𝑎𝑥

𝛴

𝑚

= 50𝑀𝑃𝑎

𝑑𝐸

𝑟

/𝑑𝑁

𝛴

𝑚

𝑑𝐸

𝑟

/𝑑𝑡

𝛴

𝑚𝑎𝑥

𝛴

𝑚

= 50𝑀𝑃𝑎

𝑚

= 50 𝑀𝑃𝑎

𝛾

𝑆𝐹𝐸

/𝜇𝑏

𝛾

𝑆𝐹𝐸

/𝜇𝑏

𝛾

𝑆𝐹𝐸

/𝜇𝑏

𝚺𝒎𝒂𝒙 𝒅𝑬 𝒓 / 𝒅𝑵

(46)

𝛴 = 420 𝑀𝑃𝑎

𝛴 = −280 𝑀𝑃𝑎

𝛴 = 70 ± 350 𝑀𝑃𝑎

𝛴 = 420 𝑀𝑃𝑎

𝛴 = −280 𝑀𝑃𝑎

𝛴 = 70 ± 350 𝑀𝑃𝑎

(47)

𝛴 = 150 ± 150 𝑀𝑃𝑎

𝛴̇

𝛴 = 150 ± 150 𝑀𝑃𝑎

𝛴̇

𝑬(%)

𝑬

(%

)

(48)

Σ

a

𝐸

𝑎

= ±0.3%

A

m

p

li

tu

d

e

d

e

c

o

n

tr

a

in

te

,

)

Nombre de cycles

823K

(49)

Σ

𝑚𝑎𝑥,𝑡ℎ

𝑚𝑎𝑥,0

Σ

𝑚𝑎𝑥,𝑡ℎ

𝑚𝑎𝑥,0

> 1

Σ

𝑚𝑎𝑥,𝑡ℎ

𝑚𝑎𝑥,0

< 1

𝛴

𝑚𝑎𝑥,𝑡ℎ

𝛴

𝑚𝑎𝑥,0

𝛴

𝑚𝑎𝑥,𝑡ℎ

𝛴

𝑚𝑎𝑥,0 R a p p o rt d e la c o n tr a in te e n t ra c ti o n , Temps de maintien (𝒕𝒕𝒉) 823K 873K Temps de maintien ( ) Rapp ort de la con traint e en tractio n,

(50)

𝑡

𝑡ℎ

= 1 𝑚𝑖𝑛

𝑡

𝑡ℎ

= 13.3 𝑚𝑖𝑛

𝑡

𝑡ℎ

= 30 𝑚𝑖𝑛

̇

̇

(51)

𝛾

𝑆𝐹𝐸

/𝜇𝑏

(52)

𝛾

𝑆𝐹𝐸

/𝜇𝑏

(53)
(54)
(55)
(56)

𝚼

𝑣

𝜎̇ = Σ̇ + 2𝜇(1 − 𝛽) (𝐸̇

𝑣𝑝

− 𝜖̇

𝑣𝑝

) + 2𝜇(1 − 𝛽) 𝜂

−1

d

− 𝜎

𝑑

)

𝛽 =

2(4−5𝜈)

15(1−𝜈)

𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 ⟹ 𝜂 =

Σ̇

11

𝐸̈

11

𝑣𝑝

𝑠𝑒𝑐𝑎𝑛𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 ⟹ 𝜂 =

Σ

11

𝐸̇

11

𝑣𝑝

𝜎̇

𝜖̇

𝑣𝑝

Σ̇

𝐸̇

𝑣𝑝

𝜎

𝑑

Σ

d

𝜇

(57)

𝜂

−1

= 0

𝜂

−1

≠ 0

𝜏

𝑖

𝜎,

𝑖 = 1,12

𝜏

𝑖

= 𝜎: (m

𝑖

⨂ n

𝑖

)

m

𝑖

n

𝑖

𝑖

𝑖

𝜏

𝑖

𝑇

𝑉

𝑄

κ

𝐴

𝛾̇

𝑖

𝑣𝑝

= 𝐴 ∙ 𝑒𝑥𝑝 (−

𝑄

𝜅

𝑏

𝑇

) ∙ 𝑠𝑖𝑛ℎ (

𝑉𝜏

𝑖

𝜅

𝑏

𝑇

)

(58)

𝜏

𝑖

= |𝜏

𝑖

| − 𝜏

0

≥ 0

𝜏

𝑖

= |𝜏

𝑖

− 𝑥

𝑖

| − 𝜏

𝑐,𝑖

− 𝜏

0

≥ 0

𝑥

𝑖

𝑥̇

𝑖

= 𝛼𝐶𝛾̇

𝑖

𝑝

− 𝛼𝑥

𝑖

|𝛾̇

𝑖

𝑣𝑝

|

(𝜏

𝑐,𝑖

)

𝜏̇

𝑐,𝑖

= ℎ

0

∑ 𝑎

𝑖,𝑗

|𝛾̇

𝑗

𝑣𝑝

|

12

𝑗=1

, 𝑤𝑖𝑡ℎ {

𝑎

𝑎

𝑖,𝑗

= 𝑞

𝑖,𝑖

= 1

0

𝜏

0

𝑞

𝐶

𝛼

(59)

0 0.2 0.4 0.6 0.8 1 0.0 0.5 1.0 1.5 C umulat iv e prob ab il it y

Normalized equivalent plastic strain

Kroner-Secant (500 grains) Kroner-Secant (300 grains) Kroner-Secant (100 grains) Kroner-Secant (50 grains) Evp≈ 1 -2 Kröner-Secant 0 200 400 600 800 1,000 1,200 1,400 0.00 0.02 0.04 Kroner-Secant - 500 grains Kroner-Secant - 300 grains Kroner-Secant - 100 grains Kroner-Secant - 50 grains Kröner-Secant S tress, Strain,

(60)

0 0.2 0.4 0.6 0.8 1 0.0 0.5 1.0 1.5 2.0 C umulat iv e prob ab il it y

Normalized equivalent plastic strain

FE Computations - 343 grains and 343 FE/grain FE Computations - 125 grains and 343 FE/grain FE Computations - 125 grains and 125 FE/grain Evp≈ 1 -2 FE Computations 0 200 400 600 800 1,000 1,200 1,400 0.00 0.01 0.02 0.03 0.04 0.05

FE Computations - 343 grains and 343 FE/grain FE Computations - 343 grains and 125 FE/grain FE Computations - 125 grains and 729 FE/grain FE Computations - 125 grains and 343 FE/grain FE Computations - 125 grains and 125 FE/grain

FE Computations

S

tres

s,

(61)

Υ

𝑣

𝜏

0

𝑉

𝑄

𝐴

𝐴

𝑄

𝐴 = 𝜌𝜈

𝐷

𝑏²

𝜌~10

13

𝑚

−2

𝚼

𝒗

𝝉

𝟎

𝑨

𝑸

𝑽

𝒃

𝒃 = 𝟐. 𝟓𝟔 Å

(62)

𝐸 = 5%

𝐸̇ = (10

−3

, 10

−5

, 10

−7

) 𝑠

−1

𝐸 = 5%

𝐸̇ = 10

−3

𝑠

−1

𝛴 = (200 − 600) 𝑀𝑃𝑎

Σ̇ = 100 𝑀𝑃𝑎. 𝑠

−1

𝐸 = 5%

𝐸̇ = (10

−3

, 10

−5

, 10

−7

) 𝑠

−1

𝐸 = 5%

𝐸̇ = 10

−3

𝑠

−1

𝛴 = (100 − 250)

Σ̇ = 100 𝑀𝑃𝑎. 𝑠

−1

𝐸 = 5%

𝐸̇ = (10

−3

, 10

−5

, 10

−7

) 𝑠

−1

𝐸 = 5%

𝐸̇ = 10

−3

𝑠

−1

𝛴 = (80 − 120) 𝑀𝑃𝑎

Σ̇ = 100 𝑀𝑃𝑎. 𝑠

−1

𝑉 = 15000𝑏³

𝐸̇ = 10

−7

𝑠

−1

𝑉 = 20000𝑏³)

𝐸̇ = 10

−9

𝑠

−1

𝜏

𝑜

𝑀

̅

𝑀

̅

𝑀

̅

𝑀

̅

(63)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 5.0 10.0 15.0 FE Computations (2.65±0.05) Kroner (3.04±0.12) Kroner-Tangent (2.03±0.08) Kroner-Secant (2.88±0.10) Berveiller-Zaoui (*) Hill-Hutchinson (*)

Rate-insensitivity limit

Tay lor upper bound = 3.06

Reuss lower bound = 2.01

Ta

yl

o

r

Fa

ct

o

r,

𝑴̅

=

𝚺

/𝝉

𝟎

𝑬

. /𝟐𝝉

𝟎

(64)

𝑉 = 30𝑏³

𝑉 = 100𝑏³

𝑉 = 300𝑏³

𝑽 = 𝟑𝟎𝒃³

𝑽 = 𝟏𝟎𝟎𝒃³

𝑽 = 𝟑𝟎𝟎𝒃³

𝑬 ̇(𝒔

−𝟏

)

10

−3

10

−5

10

−7

10

−3

10

−5

10

−7

10

−3

10

−5

10

−7 0 200 400 600 800 1000 1200 1400 1600 0 0.01 0.02 0.03 0.04 0.05 FE Computations Kroner Kroner-Tangent Kroner-Secant

Str

e

s

s

, 𝚺

(M

Pa

)

Strain,

𝑬

= 30 ³, 𝐸̇ = 10

−3

𝑠

−1 0 100 200 300 400 500 600 0 0.01 0.02 0.03 0.04 0.05 FE Computations Kroner Kroner-Tangent Kroner-Secant

Str

e

s

s

, 𝚺

(M

Pa

)

Strain,

𝑬

= 100 ³, 𝐸̇ = 10

−3

𝑠

−1 0 50 100 150 200 250 0 0.01 0.02 0.03 0.04 0.05 FE Computations Kroner Kroner-Tangent Kroner-Secant

Str

e

s

s

, 𝚺

(M

Pa

)

Strain,

𝑬

= 300 ³, 𝐸̇ = 10

−3

𝑠

−1

(65)

𝐸̇

𝑣𝑝

=

Σ̇

𝐴

+ 𝜂

−1

d

)

A = 2𝜇(1 − 𝛽)

𝜂 =

Σ̇

11

𝐸̈

11𝑣𝑝

𝜂 =

Σ

11

𝐸̇

11𝑣𝑝

𝑉 = 300𝑏³

𝑉 = 30𝑏³

10

−3

𝑠

−1

.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1E-6 1E-5 1E-4 1E-3 1E-2

Kroner-Secant Kroner-Tangent Viscoplastic strain V=300b³, dE/dt=10-3s-1 C o n tr ib u ti o n to th e v is c o p la s ti c s tr a in r a te Viscoplastic contribution Thermo-elastic contribution Tangent moduli Evp=5.2x10-5 Secant moduli Evp=1.5x10-4 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1E-5 1E-4 1E-3 1E-2

Kroner-Secant Kroner-Tangent C o n tr ib u ti o n to th e v is c o p la s ti c s tr a in Viscoplastic strain V=30b³, dE/dt=10-3s-1 Viscoplastic contribution Thermo-elastic contribution Secant moduli Evp=1.2x10-3 Tangent moduli Evp=2.0x10-4

(66)

〈𝝐

𝒆𝒒 𝒗𝒑

𝒈𝒓

〈𝝈〉

𝒈𝒓

𝐸

𝑒𝑞

𝑣𝑝

= [〈

𝝐

𝒗𝒑

〉𝒑𝒐𝒍𝒚]

𝒆𝒒

Σ = 〈

𝝈

〉𝒑𝒐𝒍𝒚

.

𝐸

𝑣𝑝

≈ 10

−4

𝐸

𝑣𝑝

≈ 10

−3

𝐸

𝑣𝑝

≈ 10

−2

10

−3

𝑠

−1

𝑉 = 30𝑏³

𝑉 =

300𝑏³

(67)

𝐸

𝑣𝑝

≈ 10

−4

0 0.2 0.4 0.6 0.8 1 0.0 1.0 2.0 3.0 C u m u la ti v e p ro b a b il it y

Normalized equivalent viscoplastic strain

FE Computations Kroner Kroner-Tangent Kroner-Secant

V=30b³, dE/dt=10

-3

s

-1

E

vp

≈ 1

-4 0 0.2 0.4 0.6 0.8 1 0.0 1.0 2.0 3.0 C u m u la ti v e p ro b a b il it y

Normalized equivalent viscoplastic strain

FE Computations Kroner Kroner-Tangent Kroner-Secant

V=30b³, dE/dt=10

-3

s

-1

E

vp

≈ 1

-2 0 0.2 0.4 0.6 0.8 1 0.0 1.0 2.0 3.0 C u m u la ti v e p ro b a b il it y

Normalized equivalent viscoplastic strain

FE Computations Kroner Kroner-Tangent Kroner-Secant

V=300b³, dE/dt=10

-3

s

-1

E

vp

≈ 1

-4 0 0.2 0.4 0.6 0.8 1 0.0 1.0 2.0 3.0 C u m u la ti v e p ro b a b il it y

Normalized equivalent viscoplastic strain

FE Computations Kroner Kroner-Tangent Kroner-Secant

V=300b³, dE/dt=10

-3

s

-1

E

vp

≈ 1

-2 0 0.2 0.4 0.6 0.8 1 0.0 1.0 2.0 3.0 C u m u la ti v e p ro b a b il it y

Normalized equivalent viscoplastic strain

FE Computations Kroner Kroner-Tangent Kroner-Secant

V=30b³, dE/dt=10

-3

s

-1

E

vp

≈ 1

-3 0 0.2 0.4 0.6 0.8 1 0.0 1.0 2.0 3.0 C u m u la ti v e p ro b a b il it y

Normalized equivalent viscoplastic strain

FE Computations Kroner Kroner-Tangent Kroner-Secant

V=300b³, dE/dt=10

-3

s

-1

E

vp

≈ 1

-3

(68)

10

−3

𝑉 = 300𝑏³,

𝐸

𝑣𝑝

≈ 10

−2

𝑉 = 30𝑏³

𝑉 = 300𝑏³

10

−3

𝑠

−1

𝑉 =

300𝑏³

(69)

0 0.2 0.4 0.6 0.8 1 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 C u m u la ti v e p ro b a b il it y Normalized stress FE Computations Kroner Kroner-Tangent Kroner-Secant Ev p≈ 1 -2 V=300b³, dE/dt=10-3s-1 0 0.2 0.4 0.6 0.8 1 0.0 0.5 1.0 1.5 2.0 2.5 C u m u la ti v e p ro b a b il it y Normalized stress FE Computations Kroner Kroner-Tangent Kroner-Secant Ev p≈ 1 -3 V=300b³, dE/dt=10-3s-1 0 0.2 0.4 0.6 0.8 1 0.0 0.5 1.0 1.5 2.0 2.5 C u m u la ti v e p ro b a b il it y Normalized stress FE Computations Kroner Kroner-Tangent Kroner-Secant Ev p≈ 1 -4 V=30b³, dE/dt=10-3s-1 0 0.2 0.4 0.6 0.8 1 0.0 0.5 1.0 1.5 2.0 2.5 C u m u la ti v e p ro b a b il it y Normalized stress FE Computations Kroner Kroner-Tangent Kroner-Secant Ev p≈ 1 -3 V=30b³, dE/dt=10-3s-1 0 0.2 0.4 0.6 0.8 1 0.0 0.5 1.0 1.5 2.0 2.5 C u m u la ti v e p ro b a b il it y Normalized stress FE Computations Kroner Kroner-Tangent Kroner-Secant Ev p≈ 1 -2 V=30b³, dE/dt=10-3s-1 0 0.2 0.4 0.6 0.8 1 0.0 0.5 1.0 1.5 2.0 2.5 C u m u la ti v e p ro b a b il it y Normalized stress FE Computations Kroner Kroner-Tangent Kroner-Secant Ev p≈ 1 -4 V=300b³, dE/dt=10-3s-1

(70)

Σ

𝑟𝑒𝑙𝑎𝑥

𝑡

10

−3

𝑠

−1

𝐸 = 5%

𝑡

Σ

th

Σ

o

Σ

𝑟𝑒𝑙𝑎𝑥

= Σ

th

− Σ

o

.

𝑉 = 30𝑏³

𝑉 = 100𝑏³

𝑉 = 300𝑏³

-1400 -1200 -1000 -800 -600 -400 -200 0 0.0 2.0 4.0 6.0 8.0 FE Computations Kroner Kroner-Tangent Kroner-Secant S tr e s s r e la x a ti o n , 𝚺 𝐞 (M P a ) Holding time, ( ),(𝒔) = 30 ³, 𝐸̇ = 10−3 𝑠−1 -450 -400 -350 -300 -250 -200 -150 -100 -50 0 0.0 2.0 4.0 6.0 8.0 FE Computations Kroner Kroner-Tangent Kroner-Secant = 100 ³, 𝐸̇ = 10−3 𝑠−1 S tr e s s r e la x a ti o n , 𝚺𝐞 (M P a ) Holding time, ( ),(𝒔) -160 -140 -120 -100 -80 -60 -40 -20 0 0.0 2.0 4.0 6.0 8.0 FE Computations Kroner Kroner-Tangent Kroner-Secant = 300 ³, 𝐸̇ = 10−3 𝑠−1 S tr e s s r e la x a ti o n , 𝚺𝐞 (M P a ) Holding time, ( ),(𝒔)

(71)

𝑉 = 100𝑏³ 𝐸̇ = 10

−3

𝑠

−1

𝐸 = 5%

-600 -500 -400 -300 -200 -100 0

0.0E+0 1.0E+7 2.0E+7 3.0E+7

Holding time, 𝒕𝒉(𝒔) S tre s s re la x a ti o n , 𝝈 𝐞 ( ) FE Computations = 100 ³, 𝐸̇ = 10−3 𝑠−1 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0

0.0E+0 1.0E+7 2.0E+7 3.0E+7

Holding time, 𝒕𝒉(𝒔) Kröner = 100 ³, 𝐸̇ = 10−3 𝑠−1 S tr e ss r e la x a ti on , 𝝈 𝐞 ( ) -350 -300 -250 -200 -150 -100 -50 0

0.0E+0 1.0E+7 2.0E+7 3.0E+7

Holding time, 𝒕𝒉(𝒔) Kröner-Tangent = 100 ³, 𝐸̇ = 10−3 𝑠−1 R e la x e d s tr e s s , 𝝈 𝐞 ( ) -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0

0.0E+0 1.0E+7 2.0E+7 3.0E+7

Holding time, 𝒕𝒉(𝒔) Kröner-Secant = 100 ³, 𝐸̇ = 10−3 𝑠−1 S tr e ss r e la x a ti on , 𝝈 𝐞 ( )

(72)

𝑉 = 100𝑏³ 𝐸̇ =

10

−3

𝑠

−1

𝐸 = 5%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.0E+0 1.0E+7 2.0E+7 3.0E+7

Holding time, FE Computations V isc o p las tic strai n , 0 0.01 0.02 0.03 0.04 0.05 0.06

0.0E+0 1.0E+7 2.0E+7 3.0E+7

Holding time, Kröner V isc o p las tic strai n , 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.0E+0 1.0E+7 2.0E+7 3.0E+7

Holding time, 𝒕𝒉(𝒔) Kröner-Tangent = 100 ³, 𝐸̇ = 10−3 𝑠−1 V is c o p la s ti c s tra in , 𝝐 0 0.01 0.02 0.03 0.04 0.05 0.06

0.0E+0 1.0E+7 2.0E+7 3.0E+7

Holding time, V isc o p las tic strai n , Kröner-Secant

(73)

𝑉 = 30𝑏³

𝛴 = 400 𝑀𝑃𝑎

𝑉 = 100𝑏³

𝛴 = 150 𝑀𝑃𝑎

𝑉 = 300𝑏³

𝛴 = 100 𝑀𝑃𝑎

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.0E+0 5.0E+6 1.0E+7

FE Computations Kroner Kroner-Tangent Kroner-Secant Holding time, (𝒔) = 30 ³, Σ = 400 𝑀𝑃𝑎 V is c o p la s ti c s tr a in , 𝑬 𝒗𝒑 0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02

0.0E+0 5.0E+6 1.0E+7

FE Computations Kroner Kroner-Tangent Kroner-Secant Holding time, (𝒔) = 100 ³, Σ = 150 𝑀𝑃𝑎 V is c o p la s ti c s tr a in , 𝑬 𝒗𝒑 0.000 0.002 0.004 0.006 0.008 0.010

0.0E+0 5.0E+6 1.0E+7

FE Computations Kroner Kroner-Tangent Kroner-Secant Holding time, (𝒔) V is c o p la s ti c s tr a in , 𝑬 𝒗𝒑 = 300 ³, Σ = 100 𝑀𝑃𝑎

(74)

𝑉 = 30𝑏³

𝑉 = 100𝑏³

𝑉 = 300𝑏³

𝑉 = 100 − 200𝑏³

𝑄 = 1.5 − 2.0 𝑒𝑉

1.0E-11 1.0E-10 1.0E-9 1.0E-8 1.0E-7 1.0E-6 1.0E-5 1.0E-4 1.0E-3 0 500 1000 FE Computations Kroner Kroner-Tangent Kroner-Secant Stress, 𝚺 (MPa) V is c o p la s ti c s tr a in r a te , 𝑬 ̇ 𝒗𝒑 𝒔 − 𝟏

= 30 ³

1.0E-11 1.0E-10 1.0E-9 1.0E-8 1.0E-7 1.0E-6 1.0E-5 1.0E-4 1.0E-3 0 100 200 300 400 FE Computations Kroner Kroner-Tangent Kroner-Secant Stress, 𝚺 (MPa) V is c o p la s ti c s tr a in r a te , 𝑬̇ 𝒗𝒑 𝒔 − 𝟏

= 100 ³

1.0E-12 1.0E-11 1.0E-10 1.0E-9 1.0E-8 1.0E-7 1.0E-6 1.0E-5 1.0E-4 1.0E-3 1.0E-2 0 50 100 150 200 FE Computations Kroner Kroner-Tangent Kroner-Secant Stress, 𝚺 (MPa) V is c o p la s ti c s tr a in r a te , 𝑬 ̇ 𝒗𝒑 𝒔 − 𝟏 = 300 ³

(75)

𝚼

𝒗

𝜿

𝒃

𝑨

𝑸

𝑽

𝜏

0

𝐻

0

𝐻

0

= 1 𝑀𝑃𝑎

𝑎

𝑖,𝑗

= 𝑞 = 1.4 (𝑖 ≠ 𝑗

𝑎

𝑖,𝑖

= 1

𝝉

𝟎

𝑯

𝟎

𝒒

𝜶

𝑪

𝐸 = ± 0.15%

𝐸 = ± 1.3%

(76)

𝐸 = 0.5 ± 0.5%

𝐸 = 0.15 − 1.3%

𝛴 = 50 ± 250 𝑀𝑃𝑎

𝛴 = 50 ± 270 𝑀𝑃𝑎

𝛴 = 50 ± 290 𝑀𝑃𝑎

𝛴 = 70 ± 250 𝑀𝑃𝑎

𝛴 = 30 ± 290 𝑀𝑃𝑎

𝛴 = 125 ± 275 𝑀𝑃𝑎

𝑬̇

𝜮̇

𝐸 = 0.5 ± 0.5%

𝑅

𝑋

𝐸

𝑣𝑝

= 10

−4

Σ

𝑦

-400 -300 -200 -100 0 100 200 300 400 500 0 0.005 0.01 FE Computations Kröner Kröner-Secant Str e s s , 𝚺 (M Pa ) Strain, 𝑬 Bauschinger Effect 𝑉 = 150𝑏³, 𝐸̇ = 10−3 𝑠−1 , 𝐸 = 0.5 ± 0.5% N=0.25 N=1.25 N=0.75

(77)

𝐸

𝑣𝑝

= 10

−4

𝛴

𝑦

Σ

𝑦+0

Σ

𝑚𝑎𝑥+0

Σ

𝑦−0

R

−0

= |

Σ

𝑚𝑎𝑥+0

− Σ

𝑦−0

2

|

𝑋

−0

= Σ

𝑦 −0

+ R

−0

Σ

𝑚𝑖𝑛−0

Σ

𝑦+1

Σ

𝑚𝑎𝑥+1

R

+1

= |

Σ

𝑚𝑖𝑛−0

− Σ

𝑦+1

2

|

𝑋

+1

= Σ

𝑦 +1

+ R

+1

+0

−0

𝚺

𝒚−0

R

−0

𝚺

𝒚−0

𝑋

−0

Σ

𝑚𝑖𝑛−0

R

+1

(78)

𝑋

+1

𝐸 = ±0.5%

𝐸 = ±1.3%

-500 -400 -300 -200 -100 0 100 200 300 400 500 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 FE Computations Kroner Kroner-Secant Str e s s , 𝚺 (M Pa ) Strain, 𝑬

Stress-strain hysteresis loop

𝑉 = 150𝑏3,𝐸̇ = 10−3 𝑠−1, 𝐸 = ±0.5% -800 -600 -400 -200 0 200 400 600 800 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 FE Computations Kroner Kroner-Secant Str e s s , 𝚺 (M Pa ) Strain, 𝑬

Stress-strain hysteresis loop

𝑉 = 150𝑏3,𝐸̇ = 10−3 𝑠−1, 𝐸 = ±1.1% 200 250 300 350 400 450 500 550 600 650

0.0E+0 2.5E-3 5.0E-3 7.5E-3 1.0E-2

FE Computations Kroner Kroner-Secant S tress ampli tud e, (M P a)

Viscoplastic strain amplitude,

Cyclic stress-strain curve

(79)

𝐸

𝑎

𝑣𝑝

< 2.10

−3

𝐸

𝑎

𝑣𝑝

> 5.10

−3

𝐸

𝑎

𝑣𝑝

= 10

−2

𝐸

𝑟

𝐸

𝑟

=

𝐸

𝑚𝑎𝑥

𝑣𝑝

+ 𝐸

𝑚𝑖𝑛

𝑣𝑝

2

𝐸

𝑚𝑎𝑥

𝑣𝑝

𝐸

𝑚𝑖𝑛

𝑣𝑝

Σ

𝑚𝑎𝑥

Σ

𝑚

(80)

𝛴

𝑚𝑎𝑥

𝛴

𝑚𝑎𝑥

𝛴

𝑚𝑎𝑥

𝛴

𝑚

𝛴

𝑚 0.0E+0 5.0E-4 1.0E-3 1.5E-3 2.0E-3 2.5E-3 3.0E-3 3.5E-3 4.0E-3 0 25 50 FE Computations Kröner Kröner-Secant N (Cycles) R atch eti n g strain, Ratcheting 0.0E+0 1.0E-3 2.0E-3 3.0E-3 4.0E-3 5.0E-3 6.0E-3 7.0E-3 8.0E-3 9.0E-3 0 25 50 FE Computations Kröner Kröner-Secant N (Cycles) R atch eti n g strain Ratcheting 0.0E+0 2.0E-3 4.0E-3 6.0E-3 8.0E-3 1.0E-2 1.2E-2 1.4E-2 1.6E-2 1.8E-2 0 25 50 FE Computations Kröner Kröner-Secant N (Cycles) Ra tche ti ng str ain, Ratcheting 0.0E+0 2.0E-3 4.0E-3 6.0E-3 8.0E-3 1.0E-2 1.2E-2 0 25 50 FE Computations Kröner Kröner-Secant N (Cycles) R atche ti ng str ain,

Ratcheting

0.0E+0 1.0E-3 2.0E-3 3.0E-3 4.0E-3 5.0E-3 6.0E-3 0 25 50 FE Computations Kröner Kröner-Secant N (Cycles) R atche ti ng str ain,

Ratcheting

(81)

𝐸

𝑎

𝑣𝑝

𝑑𝐸

𝑟

/𝑑𝑁

𝐸

𝑎

𝑣𝑝

𝐸

𝑎

𝑣𝑝

𝐸

𝑎

𝑣𝑝

𝛴 = 50 ± 250

1.0E-5 2.0E-5 3.0E-5 4.0E-5 5.0E-5 6.0E-5 7.0E-5 8.0E-5 9.0E-5 1.0E-4 0 25 50 FE Computations Kröner Kröner-Secant N (cycles) V isc op las ti c str ain ampli tud e ,

Ratcheting

1.0E-6 1.0E-5 1.0E-4 1.0E-3 0 25 50 FE Computations Kröner Kröner-Secant N (cycles) R atche ti ng str ain rat e,

Ratcheting

(82)

𝛴 = 125 ± 275𝑀𝑃𝑎

0.E+0 1.E-3 2.E-3 3.E-3 4.E-3 5.E-3 6.E-3 7.E-3 8.E-3 0 5 10 15 20 FE Computations Kroner Kroner-Secant R a c th e ti n g s tr a in , 𝑬𝒓 N (cycle) Ratcheting Σ = 125 ± 275𝑀𝑃𝑎, Σ̇ = 50𝑀𝑃𝑎. 𝑠−1 0.0E+0 5.0E-3 1.0E-2 1.5E-2 2.0E-2 2.5E-2 0 20 40 60 80 100

FE Computation (linear extrapolation) FE Computations Kroner Kroner-Secant 𝑬 𝒓 N (cyles) Ratcheting 𝑉 = 150𝑏3,Σ = 125 ± 275𝑀𝑃𝑎, 𝐸̇ = 50𝑀𝑃𝑎. 𝑠−1

(83)

Υ

inc

= 350𝐺𝑃𝑎

ν

inc

=

0.287

Υ

mat

= 150𝐺𝑃𝑎

ν

mat

= 0.3

𝐸̇

𝑒𝑞

= 𝐶. 𝛴

𝑒𝑞𝑛

(84)

Σ

yy

= 220 𝑀𝑃𝑎

𝚺

(85)

30 𝑀𝑃𝑎 < Σ

𝑚

< 70 𝑀𝑃𝑎

β

β

0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 FE Computations Kroner Kroner-Secant s tr e s s ,𝝈 (M Pa ) temps (s) 0 100 200 300 400 500 600 700 800 0 200 400 600 800 1000 FE Computations Kroner Kroner-Secant s tr e s s ,𝝈 (M Pa ) temps (s)

(86)

E

a

vp

> 5.10

−3

Σ

𝑚

>

125 𝑀𝑃𝑎)

(87)
(88)
(89)
(90)

β

β

β

𝜇

𝜈

𝜂

𝜂

𝑡𝑎𝑛

= Σ̇

11

/𝐸̈

11

𝑣𝑝

𝜂

𝑠𝑒𝑐

= Σ

11

/𝐸̇

11

𝑣𝑝

Σ

𝑚𝑖𝑛

< −150 𝑀𝑃𝑎

(91)
(92)

𝐸

𝑎

𝑣𝑝

> 0.5%

(93)

𝜏

𝑖

𝜎,

𝑖

𝑡ℎ

𝜏

𝑖

= 𝜎: (m

𝑖

⨂ n

𝑖

)

m

𝑖

n

𝑖

𝜏

𝑖

𝜏

𝑐,𝑖

𝜏

𝑖

𝜏

𝑖

= |𝜏

𝑖

| − 𝜏

𝑐,𝑖

≥ 0

𝜏

𝑐,𝑖

𝜏

𝑐,𝑖

= 𝜏

0

+ 𝜇𝑏√∑ ℎ

𝑖𝑗

𝜌

𝑗

12

𝑗=1

𝜏

0

𝜇

𝑖𝑗

𝛾̇

𝑖

𝑝

𝜅

𝑏

𝑣

𝐷

(94)

𝜌

𝑒

𝑖

𝜌

𝑠

𝑖

𝛾̇

𝑖,𝑒

𝑝

= 2𝑣

𝐷

𝑏

2

𝜌

𝑒

𝑖

∙ 𝑒𝑥𝑝 (−

𝑄

𝜅

𝑏

𝑇

) ∙ 𝑠𝑖𝑛ℎ (

𝑉𝜏

𝑖

𝜅

𝑏

𝑇

)

𝛾̇

𝑖,𝑠

𝑝

= 2𝑣

𝐷

𝑏

2

𝜌

𝑠

𝑖

∙ 𝑒𝑥𝑝 (−

𝑄

𝜅

𝑏

𝑇

) ∙ 𝑠𝑖𝑛ℎ (

𝑉𝜏

𝑖

𝜅

𝑏

𝑇

)

𝜏

0

𝜏

0

≈ 𝑄/𝑉

𝜌̇

𝑑

𝜌̇

𝑒

𝑖

=

2

𝑏𝐿

∙ 𝛾̇

𝑠

𝑖

∙ 𝑠𝑖𝑔𝑛 (

𝛾̇

𝑠

𝑖

𝛾

𝑠

𝑖

) −

2

𝑒

𝑏

∙ 𝜌

𝑒

𝑖

∙ |𝛾̇

𝑒

𝑖

| − 𝜌̇

𝑑

𝑖

𝜌̇

𝑠

𝑖

=

2

𝑏𝐿

∙ 𝛾̇

𝑒

𝑖

∙ 𝑠𝑖𝑔𝑛 (

𝛾̇

𝑒

𝑖

𝛾

𝑒

𝑖

) −

2

𝑠

𝑏

∙ 𝜌

𝑠

𝑖

∙ |𝛾̇

𝑠

𝑖

|

𝜌̇

𝑑

𝑖

= 2𝜌

𝑒

𝑖

𝑚𝑎𝑥

𝑒

𝑏

∙ |𝛾̇

𝑒

𝑖

| −

2

𝑒

𝑏

∙ 𝜌

𝑑

𝑖

∙ |𝛾̇

𝑒

𝑖

|

𝑒

𝑠

𝑚𝑎𝑥

(95)
(96)

𝛾

𝑆𝐹𝐸

15 𝑚𝐽. 𝑚

−2

30 𝑚𝐽. 𝑚

−2

𝐿

𝐿 =

1

𝜙

+

𝜅

√𝜌

𝑡

𝜌

𝑡

𝜙

𝐿 = min (𝜙,

𝜅

√𝜌

𝑡

)

𝜅

𝜅

𝜅

𝑠𝑖𝑛𝑔𝑙𝑒

= 300)

𝜅

𝑚𝑢𝑙𝑡𝑖

= 30)

𝜅

𝑠𝑖𝑛𝑔𝑙𝑒

𝜅

𝑚𝑢𝑙𝑡𝑖

(97)

𝑒

𝑠

(

𝑒

𝑒𝑥𝑝

)

𝑒

𝑒𝑥𝑝

𝛾

𝑆𝐹𝐸

/𝜇𝑏

𝑒𝑒𝑥𝑝

𝜸

𝑺𝑭𝑬

/𝛍𝐛(𝟏𝟎

−𝟑

)

𝒚

𝒆

(𝐧𝐦)

𝑒

𝐶𝑎𝑙𝑐𝑢𝑙

=

𝜇𝑏

4

2𝜋(1 − 𝜈)𝐸

𝑣𝑎𝑐

𝐸

𝑣𝑎𝑐

𝑏 =

2.54 10

−10

𝑚

𝜇 = 75 𝐺𝑃𝑎

𝐸

𝑣𝑎𝑐

= 1.4𝑒𝑉

𝑒

𝐶𝑎𝑙𝑐𝑢𝑙

𝑒

𝐶𝑎𝑙𝑐𝑢𝑙

= 0.38 −

0.63 nm

𝑒

𝑒𝑥𝑝

= 1.2 nm

(98)

𝑠

𝑒𝑥𝑝

𝑠

𝑒𝑥𝑝

𝛾

𝑆𝐹𝐸

/𝜇𝑏

𝑠

𝑒𝑥𝑝

= 15 nm

𝑒

𝑚𝑎𝑥

y

s

= 4.2546 (γ

SFE

/μb)^1.5397

R² = 0.9728

1

10

100

1000

0

5

10

15

20

25

Cu-10%Al (Franciosi et al., 1980)

316LN (Feaugas, 1999)

Cu-2%Al (Franciosi et al., 1980)

Cu (Essmann and Mugrhabi, 1979)

Al (Jaoul, 1964)

𝒚

𝒔

(

𝒏𝒎

)

𝜸

𝑺𝑭𝑬

𝝁𝒃

(𝟏𝟎

−𝟑

)

(99)

𝑒

𝑚𝑎𝑥

𝑚𝑎𝑥

=

𝜇𝑏

8𝜋(1 − 𝑣)𝜏

𝑐,𝑖

h

max

Annihilation

y

e

Dipole

(100)

𝜎̇ = Σ̇ + 2𝜇(1 − 𝛽) (𝐸̇

𝑣𝑝

− 𝜖̇

𝑣𝑝

) + 2𝜇(1 − 𝛽) 𝜂

−1

d

− 𝜎

𝑑

)

𝛽 =

2(4−5𝜈)

15(1−𝜈)

𝜂 =

Σ

11

𝐸̇

11𝑣𝑝

𝜎̇

𝜖̇

𝑣𝑝

Σ̇

𝐸̇

𝑣𝑝

𝜎

𝑑

Σ

d

𝜂 =

Σ

11

𝐸̇

11𝑣𝑝

𝜂

−1

= 0

𝚼

(101)

𝚼

𝝓

μ

μ

μ

μ

μ

𝑖𝑗

,

𝑒

𝑠

𝜌

0

𝜿

𝒃

1.38 10

−23

𝐽. 𝐾

−1

𝒗

𝑫

10

13

𝑠

−1

𝒃

2.54 10

−10

𝒗

𝒚

𝒆

𝒚

𝒔

𝒉

𝟎

𝒉

𝒄𝒐𝒑𝒍𝒂

𝒉

𝑳𝒐𝒎𝒆𝒓

𝒉

𝑯𝒊𝒓𝒕𝒉

𝒉

𝒈𝒍𝒊𝒔

𝒉

𝒄𝒐𝒍𝒍

𝝆

𝟎

10

10

𝑚

−2

(102)

𝜅

𝑠𝑖𝑛𝑔𝑙𝑒

𝜅

𝑚𝑢𝑙𝑡𝑖

𝑉

𝑄

𝜏

0

τ − τ

0

τ

0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0 0.02 0.04 0.06 Karaman et al., 2001 Simulation -τ=90MPa Simulation -τ=180MPa Simulation -τ=45MPa

Single crystal [123]

K=400

plastic strain, 0 10 20 30 40 50 60 0 0.005 0.01 0.015 0.02 Karaman et al., 2001 Simulation -τ=90MPa Simulation -τ=180MPa Simulation -τ=45MPa plastic strain,

Single crystal [100]

K=25

0 10 20 30 40 50 60 70 80 0 0.01 0.02 0.03 0.04 Karaman et al., 2001 Simulation -τ=90MPa Simulation -τ=45MPa Simulation -τ=180MPa platic strain,

Single crystal [111]

K=25

(103)

𝜅

𝑠𝑖𝑛𝑔𝑙𝑒

= 400

𝜅

𝑚𝑢𝑙𝑡𝑖

= 25

𝛾

𝑝

= 2%

𝜏

𝑝𝑟𝑖𝑚𝑎𝑟𝑦

𝜏

𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

𝑅 = 𝜏

𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

/𝜏

𝑝𝑟𝑖𝑚𝑎𝑟𝑦

𝑅

𝑅

𝑐𝑟𝑖𝑡

𝑅

𝑐𝑟𝑖𝑡

𝑅

𝑐𝑟𝑖𝑡

𝑅

𝑐𝑟𝑖𝑡

= 0.97

(104)

|𝜏

𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

/𝜏

𝑝𝑟𝑖𝑚𝑎𝑟𝑦

|

𝑉

𝑄

𝜏

0

[100] [110] [111] 𝜏 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝜏 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 = 1.00 𝜏 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝜏 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 = 0.72 𝑝

for FCC crystals

Color step =0.03

Single-slip (tensile loading,

E

p

=1.0%, 𝐸̇=3.10

-4

s

-1

)

Main dislocation patterns (tensile

loading, E

p

=3.0%,

𝐸̇=3.10

-4

s

-1

)

316L(N) SS

Dipole

walls

Polarized

dislocations

(105)

𝑄/𝑉,

𝑸 𝑽

= 𝟏𝟔𝟑. 𝟎 𝑴𝑷𝒂

𝑄 𝑉

= 112.4 𝑀𝑃𝑎

0 50 100 150 200 250 300 350 400 0 0.005 0.01 Simulation - dE/dt=1E-03 /s Yu et al., 2012 - dE/dt=1E-03 /s Simulation - dE/dt=1E-04 /s Yu et al., 2012 - dE/dt=1E-04 /s Simulation - dE/dt=1E-05 /s Yu et al., 2012 - dE/dt=1E-05 /s Str ess, (M Pa) Strain, 316L(N) SS 0 50 100 150 200 250 300 350 400 0 0.005 0.01 Simulation - T=293K Gaudin, 2002 - T=293K Simulation - T=373K Gaudin, 2002 - T=373K S tress, (M P a) Strain, 316L(N) SS 0 50 100 150 200 250 300 0 0.005 0.01 0.015 0.02 Simulation - dE/dt=2E-3/s Kang et al., 2010 - dE/dt=2E-3/s Simulation - dE/dt=3E-4/s Portier et al., 1999 - dE/dt=3E-4/s

S tres s, (MP a) Strain, 316L SS 0 50 100 150 200 250 300 0 0.005 0.01 0.015 0.02 Simulation - T=293K Portier et al., 1999 - T=293K Simulation - T=523K Portier et al., 1999 - T=523K S tress, (M P a) Strain, 316L SS

(106)

𝐸̇ = 3.10

−4

𝑠

−1

Σ

0

= 250 𝑀𝑃𝑎

Σ

0

= 200 𝑀𝑃𝑎

1.0E+12 1.0E+13 1.0E+14 1.0E+15

1.0E-03 1.0E-02 1.0E-01

Gaudin, 2002 Simulation Viscoplastic strain, 𝑬𝒗𝒑 D lo o d y ρ -2)

Total dislocation density (edge, screw and dipole) 316L(N) SS

(107)

𝐸 =

±0.6%

𝐸̇ = 3.10

−4

𝑠

−1 0 50 100 150 200 250 300 0 20 40 60 80 100

Exp. Lemaitre & Chaboche, 1988 -Σo=250MPa Simulation -Σo=250MPa

Exp. Lemaitre & Chaboche, 1988 -Σo=200MPa Simulation -Σo=200MPa Holding time(h) S tress, (M P a) 316L SS -400 -300 -200 -100 0 100 200 300 400

-7E-3 0E+0 7E-3

Simulation Gentet, 2010 316L(N) SS - N=1 Strain, Str ess,

(108)

𝐸 =

±0.6%

𝐸̇ = 3.10

−4

𝑠

−1

𝐸

𝑐𝑢𝑚

𝑣𝑝

=

4. 𝑁. 𝐸

𝑎

𝑣𝑝

𝜌

𝑐𝑎𝑙𝑐𝑢𝑙

= 3.6 10

14

𝑚

−2

𝜌

𝑒𝑥𝑝

= 2.4 10

14

𝑚

−2

𝐸 =

±0.6%

𝐸̇ = 3.10

−4

𝑠

−1 0 50 100 150 200 250 300 350 400 0 50 100 150 Simulation - T=293K Gentet , 2010 - T=293K Simulation - T=323K Gentet, 2010 - T=323K Simulation - T=473K Gentet, 2010 - T=473K 316L(N) SS S tress ampl it ud e, (M P a) N (cycles) 1E+11 1E+12 1E+13 1E+14 1E+15 0 1.2 2.4 3.6 4.8 6 Total dislocations Edge dislocations Screw dislocations Edge-dipole dislocations Dis loc a tion de ns ity (m -2)

Cumulative viscoplastic strain, N (cycle) 600 750 450 300 150 0 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 1.2 2.4 3.6 4.8 6 Edge dislocations Screw dislocations Edge-dipole dislocations F ra c ti o n o f d is lo c a ti o n p o p u la ti o n d e n s it y

Cumulative viscoplastic strain, 𝑬𝒄𝒖𝒎𝒗𝒑

N (cycle) 600 750 450 300 150 0

(109)

𝐸

𝑎

𝑣𝑝

= ±0.1%

𝐸

𝑎

𝑣𝑝

= ±0.8%

𝐸 = ±0.5%; 𝐸 = ±0.65%; 𝐸 =

±0.8%

0 100 200 300 400 500 600

1.0E-4 5.1E-3 1.0E-2 1.5E-2

Exp. Gaudin, 2002 Simulation 316L(N) SS S tress ampli tu d e, (M P a)

Viscoplastic strain amplitude,

0 100 200 300 400 500 600

1.0E-4 1.0E-3 1.0E-2 1.0E-1

Exp. Gaudin, 2002 Simulation 316L(N) SS S tress ampl it ud e, (M P a)

Viscoplastic strain amplitude,

-400 -300 -200 -100 0 100 200 300 400 -0.01 -0.005 0 0.005 0.01

Simulation - T=293K - E=0.5% Portier, 1999 - E=0.5% Simulation - T=293K - E=0.65% Portier, 1999 - E=0.65% Simulation - T=293K - E=0.8% Portier, 1999 - E=0.8%

316L SS - Stable cycle

Stress,

(M

Pa)

(110)

𝑉 = 96𝑏³

𝑄 = 1.55 𝑒. 𝑉

𝑉 = 136𝑏³

𝑄 = 1.6 𝑒. 𝑉

𝐸

𝑟

𝑣𝑝

𝐸

𝑟

Σ

a

= ±250𝑀𝑃𝑎

𝛴

𝑚

= 50𝑀𝑃𝑎

−150𝑀𝑃𝑎 < 𝛴

𝑚𝑖𝑛

< 0 𝑀𝑃𝑎

Σ

a

= ±275 𝑀𝑃𝑎

𝛴

𝑚

= 125 𝑀𝑃𝑎

𝛴 = 50 ± 250 𝑀𝑃𝑎

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 0 100 200 300 400 500 Gaudin, 2002 -Σ = 50 250 MPa Simulation -Kröner Simulation- Kröner-Secant 316L(N) SS R atc h etin g strai n , N (cycles)

(111)

𝛴 = 125 ± 275 𝑀𝑃𝑎

𝛴

𝑚

𝛴

𝑚𝑎𝑥

𝛴

𝑚

𝛴

𝑚 0.0E+0 1.0E-2 2.0E-2 3.0E-2 4.0E-2 5.0E-2 6.0E-2 7.0E-2 8.0E-2 0 20 40 60 80 100 Exp. CEA/SRMA Kroner Kroner-Secant N (Cycles) R a tc h e ti n g s tr a in

316L(N) SS

T = 293 , Σ = 125 ± 275 𝑀𝑃𝑎, Σ̇ = 50𝑀𝑃𝑎. 𝑠−1, 𝜙 = 50 𝜇𝑚 0% 5% 10% 15% 20% 25% 0 100 200 300 400 500

Simul. Kroner -Σ=50 480 MPa Gaudin, 2002 -Σ = 50 480 MPa Simul. Kroner -Σ=50 400 MPa Gaudin, 2002 -Σ = 50 400 MPa Simul. Kroner -Σ=50 250 MPa Gaudin, 2002 -Σ = 50 250 MPa

R atch eti n g str ai n , N (cycles) 316L(N) SS 0.0% 0.5% 1.0% 1.5% 2.0% 0 20 40 60 80 100

Simul. Kroner -Σ=125 200 MPa Yu et al., 2012 -Σ=125 200MPa Simul. Kroner -Σ=125 175 MPa Yu et al., 2012 - Σ=125 175MPa Simul. Kroner -Σ=125 150 MPa Yu et al., 2012 - Σ=125 150MPa

M axi mu n axi al str ai n , N (cycles) 316L(N) SS

(112)

Σ = 50 ± 250 𝑀𝑃𝑎

𝛴

𝑚𝑎𝑥

𝛴

𝑚𝑎𝑥 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 0 100 200 300 400 500

Simul. Kroner -Σ=80 270 MPa Gaudin, 2002 -Σ = 80 270 MPa

Simul. Kroner -Σ=175 175 MPa Gaudin, 2002 -Σ = 175 175 MPa

R atch eti n g str ai n , N (cycles) 316L(N) SS 0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 12.0% 0 100 200 300 400 500

Simul. Kroner -Σ=80 370 MPa Gaudin, 2002 -Σ = 80 370 MPa

Simul. Kroner -Σ=20 430 MPa Gaudin, 2002 -Σ = 20 430 MPa

N (cycles) R atch eti n g str ai n , 316L(N) SS

(113)

𝛴 = 50 ± 250 𝑀𝑃𝑎

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1E+11

1E+12

1E+13

1E+14

0

100

200

300

400

500

Total dislocations

Edge dislocations

Screw dislocations

Edge-dipole dislocations

dEr/dN

D

is

lo

c

a

ti

o

n

d

e

n

s

it

y

(

m

-2

)

N (cycle)

R

a

tc

h

e

tin

g

s

tr

a

in

r

a

te

,

𝒅

𝑬

𝒓

/

𝒅𝑵

316L(N) SS

𝑇 = 293 𝐾, Σ = 20 ± 250 𝑀𝑃𝑎

0.0% 0.2% 0.4% 0.6% 0.8% 1.0% 1.2% 1.4% 0 20 40 60 80 100

Simul. Kroner - dΣ/dt=10MPa/s Yu et al., 2012 - dΣ/dt=10MPa/s Simul. Kroner - dΣ/dt=100MPa/s Yu et al., 2012 - dΣ/dt=100MPa/s Simul. Kroner - dΣ/dt=1000MPa/s Yu et al., 2012 - dΣ/dt=1000MPa/s

M axi mu n axi al str ai n , N (cycles) 316L(N) SS

(114)

Σ=225±225 MPa

𝛴 = 100 ± 140 𝑀𝑃𝑎

𝛴 = 60 ± 100 𝑀𝑃𝑎

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% 9.0% 10.0% 0 100 200 300 400 Gaudin, 2002 Simulation - Kroner R atcheti ng str ai n, N (cycles) 316L(N) SS T=293K 1) 2) 3) 1 2 3 0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% 9.0% 10.0% 0 100 200 300 400 Gaudin, 2002 Simulation - Kroner R atcheti ng str ai n, N (cycles) 1 2 3 316L(N) SS T=293K 1) 2) 3) 0.0% 0.2% 0.4% 0.6% 0.8% 1.0% 1.2% 1.4% 1.6% 0 50 100 Portier, 1999 Simul. Kroner R atcheti ng str ai n, N (cycles)

316L SS

0.0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0% 0 50 100 Portier, 1999 Simul. Kroner R atcheti ng str ai n, N (cycles)

316L SS

(115)

(𝐸̇ = 3.10

−4

𝑠

−1

𝐸 = ±0.6% 𝐸̇ =

3.10

−4

𝑠

−1

(Σ = 50 ± 250 𝑀𝑃𝑎 𝐸̇ = 3.10

−4

𝑠

−1

𝑬 = 𝟑%)

𝝆

𝟎

→ (𝟏𝟎

𝟗

; 𝟏𝟎

𝟏𝟏

) 𝒎

−𝟐

−0.03% ; 0.16%

−0.01% ; 0.22%

−0.46% ; 0.39%

𝒚

𝒆

→ (𝟎. 𝟔 ; 𝟏. 𝟖) 𝒏𝒎

0.11% ; −0.21%

4.51% ; −4.37%

−4.41% ; 10.53%

𝒚

𝒔

→ (𝟕. 𝟓 ; 𝟐𝟐. 𝟓) 𝒏𝒎

0.19% ; −0.11%

10.79% ; −1.18%

−7.50% ; 0.94%

𝑲

𝒔𝒊𝒏𝒈𝒍𝒆

→ (𝟐𝟎𝟎 ; 𝟔𝟎𝟎)

+0.00% ; −0.00%

0.35% ; −0.10%

−0.07% ; 0.06%

𝑲

𝒎𝒖𝒍𝒕𝒊

→ (𝟏𝟐. 𝟓 ; 𝟑𝟕. 𝟓)

8.79% ; −3.08%

3.89% ; −1.68%

−15.06% ; 7.50%

𝜌

0

𝜌

0

~3 10

12

m

−2

10

12

𝑚

−2

10

13

𝑚

−2

10

12

𝑚

−2

(116)

0 50 100 150 200 250 300 350 400 450 500 0.00 0.01 0.02 0.03 Gaudin, 2002 Rho0=10^10 m² (reference) Rho0=10^9 m² Rho0=10^11 m² Rho0=10^12 m² Rho0=10^13 m² Effect of S tress, (M P a) Strain, 0 100 200 300 400 500 0 50 100 150 200 Gentet, 2010 Rho0=10^10 m² (reference) Rho0=10^09 m² Rho0=10^11 m² Rho0=10^12 m² Rho0=10^13 m² Effect of S tress ampli tud e, (M P a) N (cycle) 0.000 0.002 0.004 0.006 0.008 0.010 0 100 200 300 400 500 Gaudin, 2002 Rho0=10^10 m² (reference) Rho0=10^9 m² Rho0=10^11 m² Rho0=10^12 m² Rho0=10^13 m² Effect of Ratchet ing st rai n, N (cycle)

Références

Documents relatifs

Je ne commenterai pas cette liste, sauf à constater que trois de ces lexèmes (déité, édilité et fraternité) ont un correspondant latin, que déité a pu

La signature du cycle semi-annuel est observée de façon claire dans la région équatoriale au-dessus de 27 km, où sa contribution explique plus de 10% de la variabilité totale

on rdalise diffdrents essais multiaxds en traction-torsion et traction-pression inteme, h vitesses de ddformation ou contraintes imposdes.. Compte tenu de la multiplicitd des essais

Les données étant localisées, nous explorons la figure des flux de l’ex-Tchécoslovaquie (1990) sous la forme de matrice ordonnée, de graphe et de carte de

The states on which T acts are as in the 1BTL case, except that links which are exposed to the right boundary (i.e., which are not to the left of the rightmost string) may be blobbed

Ces résultats permettent d’étudier l’influence des paramètres de l’essai (fréquence et température) sur les mesures des différents paramètres présentés dans

(Vogel, 2016). What can be deduced from the results of the research, is that Eastern Switzerland is a good region to start up a wedding planning business in comparison with the

Sous cet angle, les asymétries de prises du logement performant apparaissent moins comme un problème fonc- tionnel d’accès aux dispositifs de la politique de performance