• Aucun résultat trouvé

Location of the studied sections

N/A
N/A
Protected

Academic year: 2021

Partager "Location of the studied sections"

Copied!
144
0
0

Texte intégral

(1)
(2)

I TABLE OF CONTENTS

Volume I: Explanatory Notes Volume II: Figures & Appendices Fig. 1.1. Location of the studied sections.

Fig. 1.2. Worldwide palaeogeographic reconstruction in the Devonian (modified after Scotese, 2000).

Fig. 1.3. Morphological trends of miospores from Ordovician to basal Carboniferous (Loboziak et al., 2005).

Fig. 1.4. Types of biozones mainly used in palynological studies (partly inspired from Salvador, 1994).

Fig. 1.5. Factors bearing on the quality of the fossil record (modified after Gradstein et al., 1985).

Fig. 1.6. Comparisons between the most significant Devonian miospore zonations established in Euramerica (Richardson & McGregor, 1986; Streel et al., 1987; Avkimovitch et al., 1993) and western Gondwana (Loboziak & Melo, 2002).

Fig. 2.1. Main sedimentary basins and regional tectonic structure of the Arabian Plate.

Fig. 2.2. Generalized lithostratigraphy of Devonian section of northwestern Saudi Arabia (modified after Al-Hajri et al., 1999).

Fig. 2.3. Regional Devonian schematic cross-section (modified after Al-Hajri et al., 1999).

Fig. 2.4. Location of studied boreholes/wells on the Arabian Peninsula.

Fig. 2.5. Reference section of the Jauf Formation in the Al Qalibah quadrangle (modified after Al-Husseini & Matthews, 2006).

Fig. 2.6. Chart comparing biozonation from the main studies on Devonian from Saudi Arabia.

Fig. 2.7. Stratigraphic ranges of miospores encountered in borehole BAQA-1.

Fig. 2.8. Relative abundance of each individual taxon encountered in borehole BAQA-1.

Fig. 2.9. Relative abundance of the main miospore genera encountered in borehole BAQA-1.

Fig. 2.10. Relative abundance of the main different miospore morphological groups encountered in borehole BAQA-1.

Fig. 2.11. Relative abundance of the miospore groups according to their palaeogeographic affinity in borehole BAQA-1 on the left and relative abundance of the different miospore structure groups.

Fig. 2.12. Stratigraphic ranges of miospores encountered in borehole BAQA-2.

Fig. 2.13. Relative abundance of each individual taxon encountered in borehole BAQA-2.

Fig. 2.14. Relative abundance of the main miospore genera encountered in borehole BAQA-2.

Fig. 2.15. Relative abundance of the main different miospore morphological groups encountered in borehole BAQA-2.

Fig. 2.16. Relative abundance of the miospore groups according to their palaeogeographic affinity in borehole BAQA-2 on the left and relative abundance of the different miospore structure groups.

Fig. 2.17. Stratigraphic ranges of miospores encountered in borehole JNDL-1.

Fig. 2.18. Relative abundance of each individual taxon encountered in borehole JNDL-1.

Fig. 2.19. Relative abundance of the main miospore genera encountered in borehole JNDL-1.

Fig. 2.20. Relative abundance of the main different miospore morphological groups encountered in borehole JNDL-1.

(3)

II Fig. 2.21. Relative abundance of the miospore groups according to their palaeogeographic affinity in borehole JNDL-1 on the left and relative abundance of the different miospore structure groups.

Fig. 2.22. Stratigraphic ranges of miospores encountered in borehole JNDL-3.

Fig. 2.23. Relative abundance of each individual taxon encountered in borehole JNDL-3.

Fig. 2.24. Relative abundance of the main miospore genera encountered in borehole JNDL-3.

Fig. 2.25. Relative abundance of the main different miospore morphological groups encountered in borehole JNDL-3.

Fig. 2.26. Relative abundance of the miospore groups according to their palaeogeographic affinity in borehole JNDL-3 on the left and relative abundance of the different miospore structure groups.

Fig. 2.27. Stratigraphic ranges of miospores encountered in borehole JNDL-4.

Fig. 2.28. Relative abundance of each individual taxon encountered in borehole JNDL-4.

Fig. 2.29. Relative abundance of the main miospore genera encountered in borehole JNDL-4.

Fig. 2.30. Relative abundance of the main different miospore morphological groups encountered in borehole JNDL-4.

Fig. 2.31. Relative abundance of the miospore groups according to their palaeogeographic affinity in borehole JNDL-4 on the left and relative abundance of the different miospore structure groups.

Fig. 2.32. Stratigraphic ranges of miospores encountered in borehole S-462.

Fig. 2.33. Stratigraphic ranges of miospores encountered in well ABSF-29.

Fig. 2.34. Relative abundance of each individual taxon encountered in well ABSF-29.

Fig. 2.35. Relative abundance of the main miospore genera encountered in well ABSF-29.

Fig. 2.36. Relative abundance of the main different miospore morphological groups encountered in well ABSF-29.

Fig. 2.37. Relative abundance of the miospore groups according to their palaeogeographic affinity in well ABSF-29 on the left and relative abundance of the different miospore structure groups.

Fig. 2.38. Stratigraphic ranges of miospores encountered in well FWRH-1.

Fig. 2.39. Stratigraphic ranges of miospores encountered in well HWYH-956.

Fig. 2.40. Relative abundance of each individual taxon encountered in well HWYH-956.

Fig. 2.41. Relative abundance of the main miospore genera encountered in well HWYH-956.

Fig. 2.42. Relative abundance of the main different miospore morphological groups encountered in HWYH-956.

Fig. 2.43. Relative abundance of the miospore groups according to their palaeogeographic affinity in well HWYH-956 on the left and relative abundance of the different miospore structure groups.

Fig. 2.44. Stratigraphic ranges of miospores encountered in well KHRM-2.

Fig. 2.45. Relative abundance of each individual taxon encountered in well KHRM-2.

Fig. 2.46. Relative abundance of the main miospore genera encountered in well KHRM-2.

Fig. 2.47. Relative abundance of the main different miospore morphological groups encountered in KHRM-2.

Fig. 2.48. Relative abundance of the miospore groups according to their palaeogeographic affinity in well KHRM-2 on the left and relative abundance of the different miospore structure groups.

Fig. 2.49. Stratigraphic ranges of miospores encountered in well NFLA-1.

Fig. 2.50. Stratigraphic ranges of miospores encountered in well SDGM-462.

Fig. 2.51. Relative abundance of each individual taxon encountered in well SDGM-462.

Fig. 2.52. Relative abundance of the main miospore genera encountered in well SDGM-462.

(4)

III Fig. 2.53. Relative abundance of the main different miospore morphological groups

encountered in well SDGM-462.

Fig. 2.54. Relative abundance of the miospore groups according to their palaeogeographic affinity in well SDGM-462 on the left and relative abundance of the different miospore structure groups.

Fig. 2.55. Stratigraphic ranges of miospores encountered in well UTMN-1830.

Fig. 2.56. Relative abundance of each individual taxon encountered in well UTMN-1830.

Fig. 2.57. Relative abundance of the main miospore genera encountered in well UTMN-1830.

Fig. 2.58. Relative abundance of the main different miospore morphological groups encountered in well UTMN-1830.

Fig. 2.59. Relative abundance of the miospore groups according to their palaeogeographic affinity in well UTMN-1830 on the left and relative abundance of the different miospore structure groups.

Fig. 2.60. Stratigraphic ranges of miospores encountered in well YBRN-1.

Fig. 3.1. Regional structural framework of North Africa, highlighting the main sedimentary basins.

Fig. 3.2. Palaeozoic outcrops in Northern Africa (modified after Boote et al., 1998 and Massa, 1988).

Fig. 3.3. Chart comparing biozonation from the main studies on Devonian from North Africa.

Fig. 3.4. Stratigraphic ranges of miospores encountered in borehole A1-69.

Fig. 3.5. Relative abundance of the main miospore genera encountered in borehole A1-69.

Fig. 3.6. Relative abundance of the main different miospore morphological groups encountered in borehole A1-69.

Fig. 3.7. Relative abundance of the miospore groups according to their palaeogeographic affinity in borehole A1-69 on the left and relative abundance of the different miospore structure groups.

Fig. 3.8. Palynostratigraphic and chronostratigraphic charts for borehole A1-69.

Fig. 3.9. Stratigraphic ranges of miospores encountered in borehole MG-1.

Fig. 3.10. Relative abundance of the main miospore genera encountered in borehole MG-1.

Fig. 3.11. Relative abundance of the main different miospore morphological groups encountered in borehole MG-1.

Fig. 3.12. Relative abundance of the miospore groups according to their palaeogeographic affinity in borehole MG-1 on the left and relative abundance of the different miospore structure groups.

Fig. 3.13. Palynostratigraphic and chronostratigraphic charts for borehole MG-1.

Fig. 4.1. Composite stratigraphic chart of the main miospore taxa.

Fig. 4.2. Correlation between the studied sections on the basis of miospore assemblages.

Fig. 4.3. Correlation in North Africa on the basis of the new biozonation.

Fig. 4.4. Correlation in northwestern Saudi Arabia on the basis of the new biozonation.

Fig. 4.5. Correlation in eastern Saudi Arabia on the basis of the new biozonation.

Fig. 4.6. Comparisons of the new biozonation from northwestern Gondwana with the miospore zonations from Euramerica (Richardson & McGregor, 1986; Streel et al., 1987;

Avkhimovitch et al., 1993).

Fig. 4.7. Comparisons of the new biozonation from northwestern Gondwana with the most complete miospore zonations from western Gondwana (Moreau-Benoit, 1989; Loboziak &

Melo, 2002; Melo & Loboziak, 2003).

Fig. 4.8. Comparisons of ranges of some common species in northwestern Gondwana (continuous lines) and Euramerica (dotted lines).

(5)

IV Fig. 5.1. Operational palynological zonation in Saudi Arabia compared with the standard Euramerican zonation of Richardson & McGregor (1986) and Streel et al. (1987) (modified after Al-Hajri et al., 1999).

Fig. 5.2. Composite stratigraphic chart of the main miospore taxa for the new provisional downward biozonation.

Fig. 5.3. Correlation between the studied sections on the basis of the downward biozonation.

Fig. 5.4. Comparisons between the correlations according either the upward or downward biozonation.

Fig. 5.5. Comparisons of the upward and downward biozonations from northwestern Gondwana with the miospore zonations from Euramerica (Richardson & McGregor, 1986;

Streel et al., 1987).

Fig. 5.6. Comparisons of the new provisional downward biozonation from northwestern Gondwana with the operational palynological zonation of Al-Hajri et al. (1999) which was calibrated with the miospore zonations from Euramerica (Richardson & McGregor, 1986;

Streel et al., 1987).

Fig. 6.1. Location of Emsian-Givetian miospore assemblages used for the calculation of the coefficients of similarity.

Fig. 6.2. Matrix of numbers of species in common between two compared regions. The total numbers of species for each region are distributed diagonally.

Fig. 6.3. Matrix of coefficient of similarities (CS) calculated between two compared regions.

Fig. 6.4. Coefficients of similarity between the different regions calculated on the basis of Emsian-Givetian miospore assemblages.

Fig. 6.5. Climatic belts and palaeogeographic reconstruction modified after Scotese (2000).

Fig. 6.6. Distribution and diversity of the main genera and miospore types according to the different regions and climatic belts during the Emsian-Givetian interval.

Fig. 6.7. Correlation within the D3B interval between boreholes JNDL-3 and JNDL-4 on the basis of palynofacies.

Fig. 6.8. Graphic correlation between boreholes JNDL-3 and JNDL-4. L.O.C.: line of correlation; FO: first occurrence; LO: last occurrence; events in red: common in the two sections; events in black: occurring only in a single section.

Appendix 1.1. List of miospore morphological groups.

Appendix 2.1. List of species encountered in borehole BAQA-1.

Appendix 2.2. List of species encountered in borehole BAQA-2.

Appendix 2.3. List of species encountered in borehole JNDL-1.

Appendix 2.4. List of species encountered in borehole JNDL-3.

Appendix 2.5. List of species encountered in borehole JNDL-4.

Appendix 2.6. List of species encountered in borehole S-462.

Appendix 2.7. List of species encountered in well ABSF-29.

Appendix 2.8. List of species encountered in well FWRH-1.

Appendix 2.9. List of species encountered in well HWYH-956.

Appendix 2.10. List of species encountered in well KHRM-2.

Appendix 2.11. List of species encountered in well NFLA-1.

Appendix 2.12. List of species encountered in well SDGM-462.

Appendix 2.13. List of species encountered in well UTMN-1830.

Appendix 2.14. List of species encountered in well YBRN-1.

Appendix 3.1. List of species encountered in borehole A1-69.

Appendix 3.2. Table of conversion between samples from borehole MG-1 expressed in meter and feet.

Volume III: Taxonomy

(6)

Fig. 1.1. Location of the studied sections.

(7)

Fig. 1.2.Worldwide palaeogeographic reconstruction in the Devonian (modified after Scotese, 2000).

(8)

Fig. 1.3. Morphological trends of miospores from Ordovician to basal Carboniferous (Loboziak et al., 2005). 1:

the first undoubted trilete mark at one pole; 2: haptotypic (linked to the tetrad status) proximo-subequatorial features (retusoid miospores); 3: distal thickening of the exine (patina);4: proximal radial muri; 5: interradial papillae; 6, 17 and 24: verrucate sculpture; 7: patinate verrucate sculpture; 8 and 15: patinate apiculate sculpture;

9: apiculate sculpture; 10: reticulate sculpture; 11 and 16: biform sculptural elements; 12: patinate reticulate sculpture; 13: patinate foveolate sculpture; 14: equatorial extension of an external layer of the exine, the sexine (acamerate); 18: two-layered zonate, camerate (cavity between the sexine and the inner layer, the nexine); 19:

two-layered azonate with bifurcated spines; 20, 21 and 25: two-layered zonate, camerate, with apiculate sculpture; 22: two-layered zonate, acamerate; 23: two-layered zonate, camerate, endoreticulate; 26: three-layered zonate, camerate; 27: two-layered zonate, camerate, with apiculate, reticulate sculpture.

(9)

Fig. 1.4. Types of biozones mainly used in palynological studies (partly inspired from Salvador, 1994). a: the

‘lowest-occurrence zone’ represents the range between the lowest occurrence of taxa A and B; b: the ‘highest- occurrence zone’ represents the range between the highest occurrence of taxa A and B; c: the lowest boundary of the zone is the lowermost occurrence of taxon A and the upper boundary is the highest occurrence of taxon B; d:

the assemblage diagnostic of the zone include four taxa with diverse stratigraphic ranges, the lower boundary is placed at the lowermost occurrence of index taxa A or D and the upper boundary at the highest occurrence of taxon C; e: the abundance zone represents the range of taxon A where it is the most abundant; f: the lineage zone represents the entire range of taxon B, from the highest occurrence of its ancestor, taxon B; g: the lineage zone represents the part of the range of taxon B between its lowest occurrence and the lowest occurrence of its descendant, taxon C; h: the lowermost boundary is fuzzy because the emphasis is on gradual development over time of the assemblage.

(10)

Fig. 1.5. Factors bearing on the quality of the fossil record (modified after Gradstein et al., 1985). The presence or absence of a taxon depend on multiple factors.

(11)

Fig. 1.6. Comparisons between the most significant Devonian miospore zonations established in Euramerica (Richardson & McGregor, 1986; Streel et al., 1987; Avkimovitch et al., 1993) and western Gondwana (Loboziak

& Melo, 2002).

(12)

Fig. 2.1. Main sedimentary basins and regional tectonic structure of the Arabian Plate.Basement and Palaeozoic outcrops are shown by various colours.

(13)

Fig. 2.2. Generalized lithostratigraphy of Devonian section of northwestern Saudi Arabia (modified after Al- Hajri et al., 1999).

(14)

Fig. 2.3. Regional Devonian schematic cross-section (modified after Al-Hajri et al., 1999).

(15)

Fig. 2.4. Location of studied boreholes/wells on the Arabian Peninsula.Basement and Palaeozoic outcrops are shown by various colours.

(16)

Fig. 2.5. Reference section of the Jauf Formation in the Al Qalibah quadrangle (modified after Al-Husseini &

Matthews, 2006). The Jauf Formation consists of 21 informal units in the Al Qalibah quadrangle. The Jauf Formation is interpreted as second-order depositional sequence DS2 28 that is bounded by SB2 28 (407.6 my) = Jauf/Tawil and SB2 27 (393.0 my) = Jubah/Jauf (Al-Husseini & Matthews, 2005). Biostratigraphic dating in Al- Hajri et al. (1999) approximately places the Jubah/Jauf boundary at late Emsian-early Eifelian and the lower Jubah at late Eifelian. The Jauf Formation manifests several aspects of a model DS2 including six possible third- order cycles (DS3 28.1 to 28.6) that are separated by five third-order sequence boundaries (SB3 28.2 to 28.6).

The Hammamiyat Member contains the maximum flooding interval (MF12 28 in Hammamiyat unit 2). It forms a

‘nominal’ third-order sequence (Matthews & Frohlich, 2002), denoted DS2 28.4, that consists of six fourth-order sequences (DS4 28.4.1 to 28.4.6 = Hammamiyat units 1-6), each deposited in 0.405 my.

(17)

Fig. 2.6. Chart comparing biozonation from the main studies on Devonian from Saudi Arabia. Loboziak & Streel (1995), Steemans (1995) and Loboziak (2000) used biozonation of Streel et al. (1987). In addition, Loboziak used also biozonation of Richardson & McGregor (1986).

(18)

Depth

175' 200' 225' 250' 275' 300' 325' 350' 375' 400' 425'

Lith ostr atig ra ph y

Jau Form f

ati on

Subba

t Qasr

Mem ber

Lithology

Samp les (fe et)

Apic uliret usi spo ras pp .

Ch elin osp orahe mies fe rica

Broc hotrilet es fov eolatus

Ch elin osp orac an tab rica

Chelino spo ra sp.1

Chelino spo ra spp.

cry pto spor es pp.

Cym bohila te sb aq aensi s

Cym bohila te sc omptul us

Cym bospor ites sp.1

Cym bospor ites sp.2

Dibo lis por ites sp p.

Dic tyo tri let es bior natu s

Dictyo tril etes sp.1

Dicty otr ile tes spp.

Em phanisp orites ro tat us

Re tuso trile tes sp p.

Synor ispo rites papillens is

Ver rucos isp ori tes po lyg ona lis

Ver rucos isp ori tes spp.

Apic uliret usi spo rap lic ata

Dibo lis por ites sp.3

Retus otr iletes rot undus

Zonot rile tes sp.2

Zonot rile tes spp .

Bior na tis po ra dubia

Cirra trir adites diapha nu s

Dicty otr ile tes

?gor go neus

Em phanisp orites sch ultz ii

Gneu dnaspor ad ivellome diav ar.m in or

Retus otr iletes trian gulatus

Amicos pori te ss tree lii

Arc haeozonot rilet es sp p.

Broc hotrilet es huds on ii

Cama ro zo notrilet es filat offii

Cliv osi sp orav erruc ata var.

co nvol uta

Cliv osi sp orav erruc ata var.

verru ca ta

Co ncen tric osi sp orite ss ag itta rius

Cym bospor ites ra ris pino sus

Cym bospor ites sp.3

Dicty otr ile tes em sie nsi s

Dicty otr ile tes subgr anife r

Em phanisp orites mcgr egor ii

La tos porite sov alis

Ra ist ricki a sp.2

Retus otr iletes mac ulatus

Re tus otr ile tes ten erime diu m

Scyl asp ora costu lo sa

Ver rucos isp ori tes sp.2

Ver rucos isp ori tes sp.3

?K no xis porites riond ae

Am bitis po rites avit us

Chelino spo ra sp.2

Devo no monole tes sp.1

Iber oespo raglabel la

Lyc ospor ac ulpa

Am bitis po rites eslae

Art emo pyra incons picu a

Cym bospor ites damm am en sis

Cym bospor ites ech inat us

Cym bospor ites se ne x

Dictyo tril etes sp.4

Cym bospor ites dittonen sis

Cym bospor ites sp p.

Diap ha no spo ra sp.1

Zonot rile tes sp.1

Apic uliret usi spo rad ens a

Retic ulo idosp ori tes an tar ctic us

Aneu ro sp ora cf.

bolla ndensis

Em phanisp orites cf.

E.e dw ards ia e

Art emo pyra re ctic osta

Ap icul ire tus isp ora brandt ii

Dibo lis por ites bu lla tus

Dibo lisp ori tes eife lien sis

Gneu dnaspor ad ivellome diav ar.d ivellom edia

Zonot rile tes sp.6

Ver rucos isp ori tes sp.4

169.10 175.90 205.80 219.20 222.50223.50227.10 285.50 308.30 345.50 366.90 371.10 376.40 395.20 399.00 406.00 408.30 416.60

Miospore taxa 100Trilete spores 100 100 100 100 100 100 100 100 100 100 100 100 100 100100 100 100 100

Other playnomorphs 1 1 12 353 6 15 4 54 8 5 8 2827 9687 99

Monolete spores 1 1 12 353 6 15 4 54 8 5 8 2827 9687 99

Incertae sedis .39 .78 12 24 3 6 15 3 52 7 5 8 2827 9687 99

Cryptospores .39 .78 12 24 3 6 15 3 50 7 5 8 2626 9687 99

Acritarchs 36 3 1 2423 9681 99

Chelinospo ra hem ies fe ric

a cf.

Fig. 2.7.Stratigraphic ranges of miospores encountered in borehole BAQA-1.

(19)

Chelinospo ra hem ies feric

a cf.

Dep th

175' 200' 225' 250' 275' 300' 325' 350' 375' 400' 425'

Lith ostr atig ra ph y

Jau Form f

ati on

Subba

t Qasr

Mem ber

Lithology

Sample s(

fee t)

Ap iculi re tus isp ora spp.

Chelin osp ora hemies fe ric a

Bro chot rilet es fo veol atus

Chelin osp ora cant abric a

Chelin osp ora sp.1

Chelin osp ora spp.

cry pto sp ore spp.

Cymbohi la te sb aqaen sis

Cymbohi la te sc omptu lus

Cymbos porites sp.1

Cymbos porites sp.2

Dibolis po rite ss pp.

Dicty otr ile tes biorn atu s

Dictyo tril etes sp.1

Dicty otr ile tes spp.

Em phani spor ites ro tat us

Re tuso trile tes sp p.

Syn ori spor ites papil le nsi s

Verr ucos ispor ite spo lyg on alis

Verr ucos ispor ite ss pp.

Ap iculi re tus isp ora plic ata

Dibolis po rite s sp.3

Retu so trilet es rot undus

Zo notr ile tes sp.2

Zo no tril etes spp.

Biorna tis po ra dub ia

Cirra trir adites diaph an us

Dicty otr ile tes

?gorgoneu s

Em phani spor ites sch ultz ii

Gn eu dnas pora div ello media var .m in or

Retu so trilet es tri angulat us

Am icos pori te ss tre elii

Arc haeoz ono tril ete ss pp .

Bro chot rilet es hu dsonii

Camaro zonot rile te sfilat off ii

Cliv osis po rav erru ca ta var.

co nvol uta

Cliv osis po rav erru ca ta var.

ve rruca ta

Concent ric osi sp orite ss ag itt ari us

Cymbos porites ra ris pino sus

Cymbos porites sp.3

Dicty otr ile tes emsi ensis

Dicty otr ile tes subgr an ifer

Em phani spor ites mcg re gorii

La tos por ites ova lis

Raistr icki a sp.

2 Re tuso trile tes ma cu la tus

Retu so trilet es te ner ime dium

Scy la spo ra co stulos a

Verr ucos ispor ite s sp.2

Verr ucos ispor ite s sp.3

?K no xis porites riond ae

Am biti sp orit esav itus

Chelin osp ora sp.2

Devo nomo nolet es sp.1

Ib eroes pora gla be lla

Lyc ospor ac ulp a

Ambi tis pori te se sla e

Art em op yra incons picu a

Cymbos porites da mm am ensis

Cymbos porites echinat us

Cymbos porites senex

Dictyo tril etes sp.4

Cymbos porites ditt one nsi s

Cymbos porites spp.

Diapha nos po ra sp.1

Zo notr ile tes sp.1

Apicu lire tus ispo rade nsa

Re tic ulo id ospo rites ant arctic us

An euro sp ora cf.

bollan dens is

Em phani spor ites cf.

E.ed wa rd sia e

Artemo pyrare ctic ost a

Ap iculi re tus isp ora bra ndt ii

Dib olis porit es bul la tu s

Dibolisp ori te se ifelien sis

Gn eu dnas pora div ello media var .d ivello media

Zo notr ile tes sp.6

Verr ucos ispor ite s sp.4

169.1084.39.39.39.39.3910.39.39.391.39.39 175.9080.39.39.3916.39.39.39.39.39.39 205.8040210.844.4.41 219.2070.382.38.38.38.3820.38.38.38.38.38.38.38.38.38.38.38.38 222.5059.383.7727.38.38.38.38.38.38.381.38.38.381.38 223.5068.3911.3920.78.39.39.39.39.39.39.391.39.78.78.39.39 227.106713.39.39.3918.39.39.781.39.39.78.39.39.78.39.39.39 285.5044.37212.37131.37.37.37.37.37.74.37.37.37.37.74.371.37.37.37 308.3068.38.38.382.38.38.38.38.3819.38.38.38.75.75.38.38.38.38.38.38.38.38.38.38.38 345.5020.23.234.237.23.23.47.47.23114.23.23.47.71.71.23.231.231.23.23.23.23.23 366.9028.36.3621.36.362.36.363356.36.36.36.72.361.72.72.36.36.36.36.72.36.36.363.72.36.361.36 371.1039.351.35.351.691.35.35.351.352343.351.35.35.35.35.691.35.35.35.35.35.35.35.35.35.35.35.35.35.35 376.4035.38115.38.383366.38.38.38.77.38.381.38.38.77.38.38.38.38.38.38.38.38 395.2014.54.27.54.54.82.27.27.27.82.27.824111.271.27.27.54.27.27.27.82.27.54.27.27.27.27.54.27.27.27.54.27.82.27.27 399.0014.87.44.87.441.87.44.4450.44.44.44.87.44.44.44.44.44.44 406.00.11.11.11.11.22.11.11.112.11.11.11.11.11.11 408.302.23.23.23.23.234.46.69.23.23.92.69.23.23.235.23.23.23 416.60.06.06

Miospore taxa

acri ta rch sp p.

Leio sp ha eri dia spp.

20+16+ .72+2+ .35+1+ 17+7+23+ 14+81+40+40+ .12+99+

Acritarchs Fig. 2.8.Relative abundance of each individual taxon encountered in borehole BAQA-1.

Références

Documents relatifs

2 Venn diagrams of differentially expressed genes (DEGs) identified in pairwise comparisons between heifers (H) and post-partum lactating (L) and non-lactating (NL) cows in the

Utilisez la m´ethode de multiplication par treillis pour trouver chaque produit.. M´ethode de Multiplication par Treillis

The aim of this investigation was to establish the relative incidence of persistent wound complications after CABG surgery at both radial artery and great saphenous vein harvest

La synthèse d’une couronne étant possible sur une nanoplaquette, nous avons ensuite essayé le protocole de synthèse d’ajout de la couronne sur des nanocristaux sphériques dans le

Le présent travail concerne plusieurs milieux d'écoulement dans la vallée de la Seille caractérisés par une salinité modérée et variable.. Un important cortège

This study was conducted on the composi- tion and relative abundance of the species belonging to the genus Culicoides (Diptera: Ceratopogonidae) in certain regions of Romania

Pour l’élève de l’éducation préscolaire visé à l’article 32, le calendrier scolaire comprend un maximum de 200 journées dont au moins 180, à raison de 5 par semaine,