• Aucun résultat trouvé

A computational approach to the control of voluntary saccadic eye movements.

N/A
N/A
Protected

Academic year: 2021

Partager "A computational approach to the control of voluntary saccadic eye movements."

Copied!
5
0
0

Texte intégral

(1)

HAL Id: inria-00166540

https://hal.inria.fr/inria-00166540

Submitted on 7 Aug 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A computational approach to the control of voluntary saccadic eye movements.

Jérémy Fix

To cite this version:

Jérémy Fix. A computational approach to the control of voluntary saccadic eye movements.. The 1st International Conference on Cognitive Neurodynamics : ICCN 2007, 2007, Shanghai, China. �inria- 00166540�

(2)

voluntary saadi eye movements

JeremyFix

Loria,CampusSientique,BP239

54506Vandoeuvre-les-Nany,Frane

Abstrat. We present a omputational model of how the several ar-

eas involvedinthe ontrol of voluntarysaadieyemovementsmight

ooperate. This modelis based on anatomial onsiderations and lays

theemphasisonthetemporalevolutionoftheativitiesineahofthese

areas,andtheirpotentialfuntionalroleintheontrolofsaades.

1 Introdution

Fromthe early work of [1℄,re-examinedby [2℄, we knowthat the visual infor-

mation is proessed along two pathways : the ventral stream provides visual

information forobjetreognitionwhereasthedorsal streamprovidesinforma-

tion neessary for the the ontrol of ation. In the rest of the artile, we will

exlusivelyfousontheontrolof voluntarysaadi eyemovementsinvolving

aortial pathway throughout severalbrain areas. A subortial pathwayalso

existandmightbeinvolvedinreexivesaades.Ifwefollowthepathwayfrom

avisualstimulationtotheprodutionofasaade,weanidentifyseveralstru-

tures involveddiretly orindiretly in the ontrol of these movements.In the

aseof voluntary saadieyemovements, themain areasinlude thesuperior

olliulus(SC),thefrontaleyeelds(FEF),thesupplementaryeyeelds(SEF),

thedorsolateralprefrontalortex(dlPFC),thelateralintraparietalsulus(LIP)

andthevisualortex([3,4℄).

Inthe last few years, several studies haveled to a better understanding of

the representation of the spatial representation of visual information in LIP.

Bothexperimentalmeasurementsandomputationalmodelshaveshedthelight

onaneyeentered representation([5,6℄).Theneuronsin LIParealsostrongly

modulated bythe position of theeye,headand bodyparts.Andersen et al[5℄

haveshown,forexample,thattheativityoftheneuronsinthisareadependson

theeentriityoftheeye,whilealwaysexhibitingamaximalresponseatagiven

retinalposition.Computationalmodelings[7℄haveprovidedstrongresultsthat

indiate that the representation of the information in a ommon eye-entered

representation,modulatedbythepositionoftheeye,headandbodyparts,an

bedeodedinseveralframesofreferene,namelyeye-,head-andbody-entered.

The neurons in FEF reeive strong topographially organized projetions

(3)

ation of asaade.On theopposite, movement related neurons rebefore and

duringsaades,whetherornotthesaadeistriggeredbyavisualstimulus.Vi-

suomovement neurons havebothvisualandmovement-relatedativity.Among

thesethreetypesofells,onlyonesrelatedtomovementprojettothesuperior

olliulusandto theaudatenuleus[3℄.Therstprojetionarriesthetarget

ofthesaadewhiletheseonddetermineswhenthemovementisexeuted.

Anenhanedativityinthesupplementaryeyeeld(SEF)isreordedwhen

theseletionofatarget(amongseveralpossiblestimuli)forasaadieyemove-

mentisbasedoninternalfatorssuhasmotivationorrewardexpetation[9,10℄.

TheSEFhasbeenthoughttorepresentthetargetsofsaadieyemovementsin

aranioentriframeof referene[11℄.Morereently,[12℄ haveshownthat the

enodinginSEFismuhmoreomplexthanasimpleranioentrirepresenta-

tionandthatthereoexistsaontinuumofeye-,head-andspae/body-entered

representationsforgazeoding.Finally,[13℄haveprovidedevidenesfortherole

ofthedorsolateralprefrontalortexinspatialworkingmemory.

While more and more is known about the dierent strutures involved in

theontrolof saadieyemovements,the waythese areasooperateto selet

the relevant stimuli, to deide whih of them is the next target to fous on,

to memorize these targets when the task at hand requires it is still unlear.

We propose in the next setion a neural network arhiteture relying on the

previously introdued anatomial onsiderations and illustrate its funtioning

withalassialdouble-steptask.

2 Arhiteture of the model

Themodelwepropose,depitedongure1,isbasedontheContinuumNeural

Field Theory([14,15℄), aframework of dynamiallateralinterationswithin a

neural map. It onsists in several two dimensional sets of units, eah of them

haraterised by an ativitydenoted u

M

(x;t) (for aunit at position x, in the

mapM)that followstheordinarydierentialequation1.

u

M

(x;t+1)=u

M

(x;t)+:Æu

M (x;t)

Æu

M

(x;t)= X

y2M w

xy :u

M

(y;t)+I(u

M 0

(y;t);y2M 0

;M 0

6=M) (1)

whereM andM 0

aremapsofunits,w

xy

amexian-hat lateral-weightfuntion

andI(u

M

0(y;t);M 0

6=M)afuntionomputingtheinueneofinputunits.We

distinguishtwokindsoffuntion fortheintegrationoftheinputs:thelassial

weightedsum and aweightedsum of theprodut of inputs' ativity. Wehave

shownin[16℄that thesesigma-piintegrationsprovideaneÆientwaytoremap

avisualinformationarosssaadieyemovements.

After this brief introdution of the omputational bases, we will desribe

the global arhiteture of the model and thefuntional roleof eah map. The

(4)

FEFvm FEFv LIP

FEFm

Visual input Fixation

Eye movement SC

Eye Position SEF

dlPFC

Fig.1.Apossiblearhitetureofhowthemajorbrainareasinvolvedintheontrolof

voluntarysaadieyemovementsmightooperate.(Refertothetextfordetails)

aneye-enteredframeofreferene,itsunitsbeingmodulatedbythepositionof

the eye. The lipmap then projetsto thefefv and sef maps. The pathway

from fefv to fefm selets onetargetfor asaadi eyemovementamong the

presentedstimuli.Thesemapsrepresentthevisualinformationinaneyeentered

frameof referene(FR). Whilefefvm representsallthepotentialtargetsfora

saadi eyemovement,aloal exitatory- globalinhibitory pattern oflateral

onnetionsin fefm providesaompetition amongthese targets, so that only

onestimulusanemergeinfefm:thetargetofthenextsaade.Thistargetthen

reenterslip;thisreentrysignalrepresentsthespatialattentionbiasobservedin

physiologial reordings. The sef map enodesthe positions of the eye in the

orbit(inaranioentriorhead-enteredFR) thatentereah stimulusonthe

retina. As detailed in the introdution, the distributed representation in lip

(inaneyeenteredFR,modulatedbytheproprioeption)allowstodeodethe

informationinsuhaframeofreferene.Thereurentiruitformedbysefand

dlpfformsaranioentrimemoryofthestimuli,usedwhenthetaskrequires

to memorizetheirposition.Thismemoryhastheadvantageto beindependent

on the position of the eye and provides the fefvm map with the positions of

thestimulirelativetotheurrentposition oftheeye,thistransformationbeing

realised by the sigma-pi ombination of the sef and eye position maps (we

annotexplainindetailthistransformationbutthesameprinipleisdetailedin

[16℄). Theprojetionsfrom fefm to sarrytheposition ofthetarget forthe

eye movement.s is stronglyinhibited by fixation units so that the saade

is exeutedonlyifthese neuronsreleasetheirinhibition. This inhibitionmight

representtheinhibitoryprojetionsfromtheFEFtoSC,goingthroughthebasal

ganglia,reportedin anatomialstudies.

3 Disussion

The presented arhiteture was suessfully applied to a lassial double-step

task 1

. The aim of the model was notto reprodue all the physiologial prop-

1

A video showing the temporal evolution of the model is avalaible at

(5)

movements.Rather,wewantedtotestapossiblewayinwhihtheseareasmight

ooperateemphasizing the funtional role of eah of them. One of the limita-

tionsofthismodelisthattheseletionofthetargetofthesaadeemergesfrom

lateralompetition in thefefm map, givingtheopportunity to allthe poten-

tial stimuli to be seletedwhile onemaydesire toavoid seletingapreviously

fousedone.Abias towardnonpreviouslyfousedstimulimaybe ahievedby

adjoiningaworkingmemorytotheFEFmapsasillustratedin[16℄.

Referenes

1. Ungerleider, L.,Mishkin,M.: Twoortialvisualsystems. In:AnalysisofVisual

Behavior.MITPress(1982)549{586

2. Milner,D.,Goodale, M.: Thevisualbrainination. (1995)

3. Goldberg,M.: TheControlofGaze. In:PriniplesofNeuralSiene.(2000)

4. Krauzlis, R.: The ontrol of voluntaryeyemovements: New perspetives. The

Neurosientist(2005)

5. Andersen,R.,Braewell,R.,Barash,S.,Gnadt,J.,Fogassi,L.: Eyepositioneets

on visual, memoryand saade-related ativity in areaslip and 7aof maaque.

JournalofNeurosiene10(1990)1176{1196

6. Cohen, Y.,Andersen, R.: Aommonreferene frame formovementplansinthe

posteriorparietalortex. Nat. Rev.Neurosi.3(2002)553{562

7. Pouget,A.,Deneve,S.,Duhamel,J.: Aomputationalperspetiveontheneural

basisofmultisensoryspatialrepresentations.Nat.Rev.Neurosi.3(2002)741{747

8. Brue,C., Goldberg, M.: Primatefrontal eyeelds:I.singleneuronsdisharging

beforesaades. J.ofNeurophysio.(1985)

9. Coe,B.,Tomihara,K.,Matsuzawa,M.,Hikosaka,O.:Visualandantiipatorybias

inthreeortialeyeeldsofthemonkeyduringanadaptivedeision-makingtask.

TheJournalofNeurosiene22(12)(2002)5081{5090

10. Amador,N.,Shlag-Rey,M., Shlag,J.: Reward-preditingandreward-deteting

neuronal ativityintheprimatesupplementaryeyeeld. JournalofNeurophysi-

ology84(2000)2166{2170

11. Shlag, J., Shlag-Rey,M.: Evidene for a supplementaryeye eld. Journal of

Neurophysiology57(1)(1987)179{200

12. Martinez-Trujillo,J.,Medendorp,W.,Wang,H.,Crawford,J.:Framesofreferene

foreye-headgazeommandsinprimatesupplementaryeyeelds.Neuron44(2004)

1057{1066

13. Funahashi,S.,Brue,C., Goldman-Raki,P.: Dorsolateral prefrontallesions and

oulomotordelayed-response performane:Evidene for mnemonisotomas. J.

ofNeurosi.13(4) (1993)1479{1497

14. Amari,S.: Dynamialstudyofformationofortialmaps. BiologialCybernetis

27(1977)77{87

15. Taylor,J.:Neuralbubbledynamisintwodimensions. Biologial Cybernetis80

(1999)5167{5174

16. Fix,J.,Vitay,J.,Rougier,N.: Adistributedomputationalmodelofspatialmem-

oryantiipation duringavisualsearhtask. In:ABiALS.SpringerVerlag,LNAI

4520 (2006)

Références

Documents relatifs

(pre-adaptation) gain between sessions 1 and 2 relative to the adaptation after-effect in session 1 (post- 236?. versus pre-adaptation gain change): retention rate (%) = 100 x

To specifically investigate the possibility that saccadic eye movements can be modified in response to a change of intra-saccadic visual information, we designed an experi- ment

A comparison of these data to two control conditions in which training trials of a single type (backward or forward) are presented at both 12.5 ° and − 25 ° eye elevations

Moreover, the appearance of this difference during the third block of adaptation trials (B block) cannot be easily related to the design of our protocol because (1) the two

For example, the spatial distance to the next fixation (saccade amplitude) is a key variable in rauding (words that are spatially close are much more likely to be selected

Percentage of correct responses, number of fixations and latencies to the end of the last fixation to a correct response during the 5-choice (N = 40) and the Yes/No (N = 40)

9 Comparison of the performance of individual glue lines regarding the three measures of glue line integrity DIB (Intact glue lines after delamination), SFV (Shear strength) and

Then also here (by analogy to the situation considered in [4]) in the case where the ground process and the stochastic volatility are assumed to be observable data themselves at