• Aucun résultat trouvé

On a class of Danielewski surfaces in affine 3-space

N/A
N/A
Protected

Academic year: 2021

Partager "On a class of Danielewski surfaces in affine 3-space"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-00019635

https://hal.archives-ouvertes.fr/hal-00019635v2

Preprint submitted on 26 Aug 2006

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On a class of Danielewski surfaces in affine 3-space

Adrien Dubouloz, Pierre-Marie Poloni

To cite this version:

Adrien Dubouloz, Pierre-Marie Poloni. On a class of Danielewski surfaces in affine 3-space. 2006.

�hal-00019635v2�

(2)

ccsd-00019635, version 2 - 26 Aug 2006

ON A CLASS OF DANIELEWSKI SURFACES IN AFFINE 3-SPACE

ADRIENDUBOULOZANDPIERRE-MARIEPOLONI

Abstrat. In[16℄and[17℄,L.Makar-Limanovomputedtheautomorphismgroupsofsurfaes

inC3denedbytheequationsxnzP(y) = 0,wheren1andP(y)isanonzeropolynomial.

Similarresults havebeen obtainedbyA. Crahiola [3℄for surfaes dened by the equations

xnzy2σ(x)y= 0,wheren2andσ(0)6= 0,denedover anarbitrarybaseeld. Here

weonsiderthemoregeneralsurfaesdenedbytheequationsxnzQ(x, y) = 0,wheren2

and Q(x, y) isa polynomial with oeients in an arbitrary base eld k. Weharaterise

amongthemtheoneswhihareDanielewskisurfaesinthesenseof[8℄,andweomputetheir

automorphismgroups. We studylosed embeddingsof these surfaes inane3-spae. We

showthatingeneraltheirautomorphismsdonotextendtotheambientspae. Finally,wegive

expliitexamplesofC-ationsonasurfaeinA3

Cwhihanbeextendedholomorphiallybut notalgebraiallytoC-ationsonA3C.

Introdution

Sine they appeared in aelebrated ounterexampleto the CanellationProblem due to W.

Danielewski[5℄,thesurfaesdened bytheequationsxz−y(y−1) = 0 andx2z−y(y−1) = 0

in C3 andtheir naturalgeneralisations, suh assurfaesdened bythe equationsxnz−P(y) = 0, where P(y) is a nononstant polynomial, have been studied in many dierent ontexts. Of partiular interest is the fat that theyan be equipped with nontrivialations of the additive

group C+. The general orbitsof these ations oinide with the general bers of A1-brations

π:S→A1,that is,surjetivemorphismswithgeneriberisomorphito ananeline. Normal ane surfaes S equipped with an A1-bration π : S → A1 anbe roughly lassied into two lassesaordingthefollowingalternative: eitherπ:S→A1 isauniqueA1-brationonS upto

automorphismsofthebase,orthereexists aseondA1-brationπ :S →A1 withgeneralbers distintfromtheonesofπ.

Due to the symmetrybetween thevariables x andz, a surfaedened bythe equation xz− P(y) = 0 admits twodistint A1-brations over theane line. In ontrast, it wasestablished byL.Makar-Limanov[17℄that onasurfaeSP,n denedbytheequationxnz−P(y) = 0in C3, where n ≥ 2 and where P(y) is a polynomialof degree r ≥ 2, the projetionprx : SP,n → C

isauniqueA1-brationupto automorphismsof thebase. Inhis proof, L.Makar-Limanovused the orrespondene between algebrai C+-ations on an ane surfae S and loally nilpotent

derivations of the algebra of regular funtions on S. It turns out that his proof is essentially independentofthebaseeld k providedthat wereplaeloallynilpotentderivationsbysuitable systemsof Hasse-Shmidtderivationswhentheharateristiofkispositive(seee.g.,[3℄).

The fat that an ane surfae S admits a unique A1-bration π : S → A1 makesits study simpler. Forinstane, everyautomorphism of S must preservethis bration. Inthis ontext, a

resultduetoJ.Bertin[2℄assertsthattheidentityomponentoftheautomorphismsgroupofsuh

asurfaeisanalgebraipro-groupobtainedasaninreasingunionofsolvablealgebraisubgroups

of rank≤1. For surfaes dened by theequationsxnz−P(y) = 0 in C3, the piturehasbeen ompletedbyL.Makar-Limanov[17℄whogaveexpliitgeneratorsoftheirautomorphismsgroups.

SimilarresultshavebeenobtainedoverarbitrarybaseeldsbyA.Crahiola[3℄forsurfaesdened

bytheequationsxnz−y2−σ(x)y= 0,whereσ(x)isapolynomialsuh thatσ(0)6= 0.

MathematisSubjetClassiation(2000):14R10,14R05.

Keywords:A1-brations,Danielewskisurfaes,automorphismgroups,extensionofautomorphisms.

(3)

The latter surfaes are partiular examples of a general lass of A1-bred surfaes alled Danielewski surfaes [8℄, that is, normal integralanesurfaeS equipped with anA1-bration

π:S →A1

k overananelinewithaxedk-rationalpointo,suhthateveryberπ−1(x),where x∈ A1

k\ {o}, is geometriallyintegral, and suh that everyirreduible omponentof π−1(o)is

geometriallyintegral. Inthis artile,weonsiderDanielewskisurfaesSQ,n in A3

k dened byan

equationoftheformxnz−Q(x, y) = 0,wheren≥2andwhereQ(x, y)∈k[x, y]isapolynomial

suh that Q(0, y)splits with r ≥2 simple roots in k. This lass ontains mostof the surfaes

onsideredbyL.Makar-Limanovand A.Crahiola.

The paperis organised as follows. First, we briey reall denitions about weighted rooted

treesandthenotionofequivaleneofalgebraisurfaesinanane3-spae. Insetion2,wereall

from [8℄ the main fats about Danielewski surfaes and we review the orrespondene between

these surfaes andertain lassesof weightedtrees in aform appropriateto ourneeds. Wealso

generaliseto arbitrarybase eldsk someresultswhihareonlystated foreldsof harateristi zeroin [7℄and[8℄. Inpartiular, theaseof Danielewskisurfaeswhihadmit twoA1-brations with distintgeneralbersis studied in Theorem2.11. Weshowthat these surfaesorrespond

to Danielewskisurfaes S(γ)dened by thene k-weightedtreesγ whih are alled ombs and

wegiveexpliitembeddingsofthem. ThisresultgeneralisesTheorem4.2in[9℄.

In setion 3, we lassify Danielewski surfaes SQ,h in A3

k dened by equations of the form

xhz−Q(x, y) = 0 and determine their automorphism groups. We remark that suh a surfae

admits many embeddings as a surfae SQ,h. In partiular, we establish in Theorem 3.2 that

thesesurfaes analwaysbeembeddedassurfaeSσ,h denedbyanequationoftheform xhz− Qr

i=1(y−σi(x)) = 0 for asuitable olletion of polynomials σ ={σi(x)}i=1,...,r. We say that

thesesurfaesSσ,h arestandardform ofDanielewskisurfaesSQ,h. Next,weompute(Theorem

3.10)theautomorphismgroupsofDanielewskisurfaes instandardform. Weshowinpartiular

thatanyofthemomesastherestritionof analgebraiautomorphismoftheambientspae.

FinallyweonsidertheproblemofextendingautomorphismsofagivenDanielewskisurfaeSQ,h

toautomorphismsoftheambientspaeA3

k. Weshowthatthisisalwayspossibleintheholomorphi

ategorybut notin the algebraione. Wegive expliitexampleswhih ome from the studyof

multipliativegroupations on Danielewskisurfaes. For instane, weprove that everysurfae

S⊂A3C denedbytheequationxhz−(1−x)P(y) = 0,whereh≥2andwhere P(y)hasr≥2

simpleroots,admitsanontrivialC-ationwhihisalgebraiallyinextendablebutholomorphially extendabletoA3C. Inpartiular,eventheinvolutionofthesurfaeSdenedbytheequationx2z− (1−x)P(y) = 0induedbytheendomorphismJ(x, y, z) = (−x, y,(1 +x) ((1 +x)z+P(y)))of A3

k doesnotextendtoanalgebraiautomorphismofA3

k.

1. Preliminaries

1.1. Basifats onweighted rootedtrees.

Denition1.1. Atreeisanonempty,nite,partiallyorderedsetΓ = (Γ,≤)withauniquemin-

imalelemente0 alledtheroot,andsuhthatforeverye∈Γthesubset(↓e)Γ={e∈Γ, e≤e}

isahainfortheinduedordering.

1.2. Aminimalsub-hain

←−

ee={e< e}withtwoelementsofatreeΓisalledan edge ofΓ. We

denote the set of alledges in Γ by E(Γ). An element e ∈Γ suh that Card(↓e)Γ = m is said

to beat level m. The maximalelements ei=ei,mi, wheremi =Card(↓ei)Γ of Γ arealled the

leaves ofΓ. WedenotethesetofthoseelementsbyL(Γ). ThemaximalhainsofΓarethehains

(1.1) Γei,mi = (↓ei,mi)Γ={ei,0=e0< ei,1<· · ·< ei,mi}, ei,mi∈L(Γ).

Wesaythat Γhasheight h= max (mi). Thehildren ofanelemente∈Γare theelementsofΓ

atrelativelevel1withrespettoe,i.e.,themaximalelementsofthesubset{e ∈Γ, e> e}ofΓ.

Denition 1.3. A ne k-weighted tree γ = (Γ, w) isa treeΓ equipped witha weightfuntion w :E(Γ) →k with valuesin aeld k, whih assigns anelementw←−

ee

of kto everyedge←− ee

(4)

ofΓ,in suh awaythat w←−−

ee1

6=w←−−

ee2

whenevere1 ande2 are distinthildrenofasame

elemente.

Inwhatfollows,wefrequentlyonsiderthefollowinglassesoftrees.

Denition1.4. LetΓ bearootedtree.

a)IfalltheleavesofΓareatthesamelevelh≥1andifthereexists auniqueelement0∈Γ

forwhih Γ\ {¯e0} isanonemptydisjointunionofhainsthenwesaythatΓisarake.

b)IfΓ\L(Γ)isahain thenwesaythat Γisaomb. Equivalently,Γ isaombifandonlyif

everye∈Γ\L(Γ)hasat mostonehildwhihis notaleafofΓ. e00

Arakerootedin e0.

e0

Aombrootedin e0.

1.2. Algebraiand analyti equivaleneof losed embeddings.

Herewebrieydisussthenotionsofalgebraiandanalytiequivalenesoflosedembeddingsof

agivenanealgebraisurfaeinanane3-spae.

LetS be anirreduibleane surfaeandletiP1 :S ֒→A3

k and iP2 :S ֒→A3

k beembeddings

of S in asame ane3-spaeaslosed subshemesdened bypolynomialequations P1 = 0and P2= 0respetively.

Denition 1.5. In the above setting, wesay that the losed embeddings iP1 and iP2 are alge-

braiallyequivalent ifoneofthefollowingequivalentonditionsissatised:

1)Thereexists anautomorphismΦofA3

k suhthatiP2 =iP1◦Φ.

2)ThereexistsanautomorphismΦofA3

kandanonzeroonstantλ∈ksuhthatΦP1=λP2.

3)Thereexists automorphismsΦandφofA3

k andA1

k respetivelysuh thatP2◦Φ =φ◦P1.

1.6. Overtheeldk=Cofomplexnumbers,oneanalsoonsiderholomorphiautomorphisms.

With thenotationofdenition 1.5,twolosed algebraiembeddingsiP1 andiP2 ofagivenane

surfaeSinA3CarealledholomorphiallyequivalentifthereexistsabiholomorphismΦ :A3C→A3C

suhthatiP2 =iP1◦Φ. Clearly,theembeddingsiP2 andiP1 areholomorphiallyequivalentifand onlyifthereexistsabiholomorphismΦ :A3C→A3CsuhthatΦ(P1) =λP2foraertainnowhere

vanishingholomorphifuntion λ. Sinetherearemanynononstantholomorphifuntions with

thispropertyonA3C,ΦneednotpreservethealgebraifamiliesoflevelsurfaesP1:A3C→A1Cand

P2:AnC→A1C. Soholomorphiequivaleneisaweakerrequirementthanalgebraiequivalene.

2. Danielewski surfaes

Forertainauthors,aDanielewskisurfaeisananesurfaeSwhihisalgebraiallyisomorphi toasurfaeinC3denedbyanequationoftheformxnz−P(y) = 0,wheren≥1andP(y)∈C[y].

These surfaes ome equipped witha surjetive morphism π = prx |S: S → A1 restriting to a trivialA1-bundleovertheomplementoftheorigin. Moreover,iftherootsy1, . . . , yr∈CofP(y)

aresimple,thenthebrationπ= prx|S:S→A1fatorsthroughaloallytrivialberbundleover theaneline withanr -foldorigin(seee.g.,[5℄and [11℄). In[8℄, therstauthorused theterm

Danielewskisurfaetoreferto anane surfaeS equippedwith amorphismπ:S →A1 whih fatorsthroughaloally trivialberbundlein asimilar wayasabove. Inwhat follows,wekeep

this pointof view, whih leadsto anatural geometrigeneralisation of thesurfaes onstruted

by W. Danielewski [5℄. Wereall that an A1-bration overan integralsheme Y is afaithfully

at (i.e., atand surjetive) ane morphism π : X → Y with generi ber isomorphi to the

aneline A1

K(Y) overthe funtion eld K(Y)of Y. The followingdenition is ageneralisation toarbitrarybaseeldsk oftheoneintroduedin[8℄.

(5)

Denition 2.1. A Danielewski surfae is an integral ane surfae S dened over a eld k,

equippedwithanA1-brationπ:S→A1

k restritingtoatrivialA1-bundleovertheomplement oftheak-rationalpointoofA1

k andsuhthattheberπ−1(o)isredued,onsistingofadisjoint

unionofanelinesA1

k overk.

Notation2.2. Inwhatfollows,wexanisomorphismA1

k≃Spec (k[x])andweassumethatthe k-rationalpointoissimplythe"origin"ofA1

k,that is,thelosedpoint(x)ofSpec (k[x]).

2.3. In the following subsetions, we reall the orrespondene between Danielewski surfaes

and weighted rooted trees established by the rst author in [8℄ in a form appropriate to our

needs. Although the results given in lo. it. are formulated for surfaes dened over a eld

of harateristi zero, most of them remain valid withoutany hanges over a eld of arbitrary

harateristi. We provide full proofs only when additional arguments are needed. Then we

onsider Danielewski surfaes S with a trivial anonial sheaf ωS/k = Λ21S/k. We all them

speial Danielewskisurfaes. Wegiveaomplete lassiationof thesesurfaes intermsof their

assoiatedweightedtrees.

2.1. Danielewskisurfaes and weighted trees.

Here wereview the orrespondene whih assoiatesto everyne k-weightedtree γ = (Γ, w) a

Danielewskisurfaeπ :S(γ)→A1

k = Spec (k[x]) whih is thetotal spaeof anA1-bundle over thesheme δ:X(r)→A1

k obtainedfromA1

k byreplaingitsoriginobyr≥1k-rationalpoints o1, . . . , or.

Notation2.4. InwhatfollowswedenotebyUr= (Xi(r))i=1,...,r theanonialopenoveringof X(r)bymeansofthesubsetsXi(r) =δ−1 A1

k\ {o}

∪ {oi} ≃A1

k.

2.5. Letγ= (Γ, w)beanek-weightedtreeγ= (Γ, w)ofheighth,withleaveseiatlevelsni≤h, i= 1, . . . , r. Toeverymaximalsub-hainγi= (↓ei)ofγ(see1.2forthenotation)weassoiatea

polynomial

σi(x) =

ni−1

X

j=0

w(←−−−−−−ei,jei,j+1)xj∈k[x], i= 1, . . . , r.

Weletρ:S(γ)→X(r)betheuniqueA1-bundleoverX(r)whihbeomestrivialontheanonial

openoveringUr,andisdenedbypairsoftransitionfuntions

(fij, gij) = xnj−ni, x−nij(x)−σi(x))

∈k

x, x−12

, i, j= 1, . . . , r.

This means that S(γ) is obtained by gluing n opies Si = Spe(k[x] [ui]) of the ane plane A2

k over A1

k\ {o} ≃ Spe k

x, x−1

by means of the transition isomorphismsindued by the

k x, x−1

-algebrasisomorphisms

k x, x−1

[ui]→ k x, x−1

[uj], ui7→xnj−niuj+x−nij(x)−σi(x)) i6=, i, j= 1, . . . , r.

This denition makes sense as the transition funtions gij satisfy the twisted oyle relation

gik = gij +xnj−nigjk in k x, x−1

for everytriple of distint indies i, j and k. Sine γ is a

ne weightedtree,it followsthatfor everypairof distint indiesi and j,the rationalfuntion gij = x−nij(x)−σi(x)) ∈ k

x, x−1

does not extend to a regular funtion on A1

k. This

ondition guarantees that S(γ) is a separated sheme, whene an ane surfae by virtue of

Fieseler'sriterion(seeproposition1.4in [11℄). Therefore,πγ =δ◦ρ:S(γ)→A1

k=Spe(k[x])

isaDanielewskisurfae,theberπ−1(o)beingthedisjointunionofanelines Ciγ−1(o)∩SiSpe(k[ui]), i= 1, . . . , r.

2.6. A Danielewskisurfaeπ: S(γ)→ A1

k above omesanonially equippedwith abirational

morphism (π, ψγ) :S →A1

k×A1

k =Spe(k[x] [t]) restriting to anisomorphism overA1

k\ {o}.

Indeed,thismorphismorrespondsto theuniqueregularfuntion ψγ onS(γ)whoserestritions totheopensubsetsSiSpe(k[x] [ui])ofS aregivenbythepolynomials

ψγ,i=xniuii(x)∈k[x] [ui], i= 1, . . . , r.

Références

Documents relatifs

The second one (which is done in Section 1 below) concerns exoticity of X; it mainly relies on the fact that there are only few regular actions on X of the additive group C+ of

Nakajima, p-ranks and automorphism groups of algebraic curves, TransB. Raynaud, p-groupes et réduction semi-stable des courbes, The Grothendieck Festschrift, Vol.3,

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

In Section 3, we recall why the group GA n ( C ) of polynomial automorphisms of C n has the structure of an infinite-dimensional affine algebraic variety and study the subset of GA 3

Finally, we obtain the following description of normal affine surfaces with a trivial Makar-Limanov invariant, which generalizes previous results obtained by Daigle- Russell [3]

We construct explicit embeddings of generalized Danielewski surfaces [5] in affine spaces.. The equations defining these embeddings are obtain from the 2×2 minors of a matrix

Since every Danielewski hypersurface is isomorphic to a one in reduced standard form, the notion of reduced standard form is, in some sense, more relevant than the notion of

These invariants, known as the Derksen and Makar-Limanov invariants, are defined respectively for an affine variety X = Spec(A) admitting non trivial G a -actions as the