• Aucun résultat trouvé

THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION-POINT-DEFECT INTERACTIONS

N/A
N/A
Protected

Academic year: 2021

Partager "THE KINK PICTURE OF DISLOCATION MOBILITY AND DISLOCATION-POINT-DEFECT INTERACTIONS"

Copied!
29
0
0

Texte intégral

(1)

HAL Id: jpa-00221073

https://hal.archives-ouvertes.fr/jpa-00221073

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

AND DISLOCATION-POINT-DEFECT

INTERACTIONS

A. Seeger

To cite this version:

(2)

JOURNAL

DE

PHYSIQUE

CoZZoque

CS,

suppZ6ment au nolO, Tome

42,

octobre 1981

page

C5-201

THE KINK PICTURE OF DISLOCATION MOBILITY

AND

DISLOCATION-POINT-DEFECT INTERACTIONS

A. Seeger

Mm-PZanck-Institut fur MetaZlforschung, I n s t i t u t fur Physik,

m d Universittit

Stuttgart, I n s t i t u t fur theoretische und angewandte Physik, Postfach

800665,

0-7000

S t u t t g a r t 80, Germany

A b s t r a c t . - The paper g i v e s a coherent account of t h e t h e o r y of d i s l o c a t i o n m o b i l i t y i n terms of kink-pair formation and kink m i g r a t i o n . Three l e v e l s of d e s c r i p t i o n a r i s e i n a n a t u r a l way, namely those of t h e motion of s t r a i g h t d i s l o c a t i o n s , of k i n k - p a i r formation on d i s l o c a t i o n s , and of k i n k m i g r a t i o n . The i n t e r r e l a t i o n s h i p s between t h e s e l e v e l s ( " h i e r a r c h i e s " ) a r e d i s c u s s e d . The i n t e r a c t i o n w i t h phonons and f o r e i g n atoms ( " i m p u r i t i e s " ) i s t r e a t e d on t h e t h i r d l e v e l , t h a t of t h e kink m o b i l i t y .

Experimental i n f o r m a t i o n on t h e p r o p e r t i e s of kinks may be o b t a i n e d from measurements of d i s l o c a t i o n v e l o c i t i e s , of flow s t r e s s , and of i n t e r n a l f r i c t i o n and modulus e f f e c t . The comparison between t h e o r y and experiment i s i l l u s t r a t e d by examples from valence c r y s t a l s ( d i s l o c a t i o n v e l o c i t y i n Ge) and from body-centred c u b i c t r a n s i t i o n m e t a l s (y r e l a x a t i o n = k i n k - p a i r f o r - mation on screw d i s l o c a t i o n s ; dislocation-enhanced Snoek e f f e c t ; Snoek- K 6 s t e r r e l a x a t i o n i n Nb and Ta).

1 . I n t r o d u c t i o n and General Background.- The "discovery" of d i s l o c a t i o n s d u r i n g t h e p e r i o d 1929-34 provided t h e e x p l a n a t i o n f o r t h e o b s e r v a t i o n t h a t i n many c r y s t a l l i n e m a t e r i a l s t h e c r i t i c a l s h e a r s t r e s s

a.

f o r p l a s t i c deformation by g l i d e i s s e v e r a l o r d e r s of magnitude lower than t h e t h e o r e t i c a l s h e a r s t r e n g t h

oth

a s c a l c u l a t e d from t h e model of p e r f e c t c r y s t a l s . Already i n some of t h e e a r l y work i t was recognized t h a t t h e r e s i s t a n c e - t o - g l i d e due t o t h e d i s c r e t e n a t u r e of c r y s t a l s was n o t complete- l y removed by t h e movement of s t r a i g h t d i s l o c a t i o n s running p a r a l l e l t o one of t h e major c r y s t a l l o g r a p h i c d i r e c t i o n s ( t h i s was t h e model used throughout i n t h e e a r l y days of d i s l o c a t i o n t h e o r y ) . Based on what i s now c a l l e d t h e PRANDTL-DEHLINGER- FRENKEL-KONTOROVA model [1,6,7] an a t t e m p t t o e s t i m a t e t h e s t r e s s r e q u i r e d t o move a s t r a i g h t " d i s l o c a t i o n " i n a c r y s t a l i s a l r e a d y contained i n u.DEHLINGER'~ "Verhakungen" paper of 1929 [ l ] . (A b r i e f h i s t o r i c a l account of e a r l y d i s l o c a t i o n models and t h e i r r e l a t i o n s h i p s t o t h e problem of d i s s i p a t i o n of mechanical energy ( = i n t e r n a l f r i c t i o n ) i n c r y s t a l s has appeared elsewhere

[81.)

(3)

A t t h e s u g g e s t i o n of E.OROWAN, i n 1939 R.PEIERLS [g] performed t h e f i r s t de- t a i l e d c a l c u l a t i o n of t h e r e s o l v e d s h e a r s t r e s s r e q u i r e d t o move a s t r a i g h t d i s - l o c a t i o n through a c r y s t a l i n t h e absence of thermal f l u c t u a t i o n s . This s t r e s s i s now c a l l e d t h e P e i e r l s s t r e s s op. The l i n e energy Ed of a s t r a i g h t d i s l o c a t i o n on a given g l i d e p l a n e i s a minimum i n t h e s o - c a l l e d " P e i e r l s v a l l e y s " and a maximum on t h e " P e i e r l s h i l l s " (comp. F i g . 1 ) . The o r i g i n a l e s t i m a t e of P e i e r l s ( f o r a h i s t o r i - c a l d e s c r i p t i o n s e e [10]) was c o r r e c t e d and improved by v a r i o u s a u t h o r s ; f o r t h e methods used and t h e r e s u l t s o b t a i n e d t h e r e a d e r i s r e f e r r e d t o t h e review l i t e r a t u r e

[ ] l - 1 4 1 . The b e s t c a l c u l a t i o n s a v a i l a b l e i n d i c a t e t h a t i n many i n s t a n c e s t h e ob- served c r i t i c a l s h e a r s t r e s s e s , a t l e a s t a t n o t too low temperatures, a r e sub- s t a n t i a l l y lower than t h e c a l c u l a t e d P e i e r l s s t r e s s e s .

I n t h e post-war development of d i s l o c a t i o n t h e o r y i t became soon c l e a r t h a t d i s l o c a t i o n l i n e s must be considered f l e x i b l e . W.SHOCKLEY [ l 5 1 p o i n t e d o u t t h a t to- g e t h e r w i t h t h e e x i s t e n c e of t h e P e i e r l s p o t e n t i a l t h i s may l e a d t o t h e formation of

*,

i . e . , s h o r t segments of d i s l o c a t i o n l i n e s i n which t h e s e c r o s s over from one P e i e r l s v a l l e y t o a neighbouring one (comp. F i g . l ) , and e s t i m a t e d t h a t kinks may form i n thermal e q u i l i b r i u m . A.SEEGER [12,16] recognized t h a t the thermally a c t i v a t e d formation of p a i r s of k i n k s of o p p o s i t e s i g n ( o r i g i n a l name "double kinks", i n t h e f o l l o w i n g b r i e f l y c a l l e d kink p a i r s ) under t h e a c t i o n of an o s c i l l a t i n g a p p l i e d s t r e s s might l e a d t o a r e l a x a t i o n e f f e c t i n i n t e r n a l f r i c t i o n . He proposed t h a t t h e r e l a x a t i o n p r o c e s s observed by P.G.BORDON1 [17,18] i n v a r i o u s deformed f c c metals below room temperature might be due t o t h i s p r o c e s s . This s u g g e s t i o n was developed f u r t h e r i n numerous t h e o r e t i c a l and experimental papers ( s e e , e . g . , [19,20]) and appears now t o be g e n e r a l l y accepted a s t h e c o r r e c t e x p l a n a t i o n of t h e Bordoni r e l a x a t i o n . From a h i s t o r i c a l p o i n t of view i t i s i n t e r e s t i n g t o n o t e t h a t q u i t e a l a r g e number of a l t e r n a t i v e e x p l a n a t i o n s i n v o l v i n g d i s l o c a t i o n s have been proposed d u r i n g t h e l a s t twenty-five y e a r s ( s e e , e . g . , [20,211) but t h a t the f i r s t e x p l a n a t i o n i n terms of d i s L o c a t i o n t h e o r y proved t o be c o r r e c t (BORDONI himself [l81 suggested an e x p l a n a t i o n not i n v o l v i n g d i s l o c a t i o n s ) .

According t o the kink-pair formation model t h e Bordoni r e l a x a t i o n i s an i n t r i n s i c d i s l o c a t i o n p r o p e r t y d i r e c t l y r e l a t e d t o t h e e x i s t e n c e of t h e P e i e r l s p o t e n t i a l . I n most c r y s t a l s i t s t i l l p r o v i d e s t h e b e s t i n f o r m a t i o n f o r e s t i m a t i n g t h e numerical v a l u e of t h e P e i e r l s s t r e s s 0 o r t h e h e i g h t of t h e P e i e r l s b a r r i e r s of d i s l o c a t i o n s

P

l y i n g p a r a l l e l t o c r y s t a l l o g r a p h i c d i r e c t i o n s . Recently, t h e m o d i f i c a t i o n of t h e thermally a c t i v a t e d k i n k - p a i r formation p r o c e s s by atomic d e f e c t s ( i n p a r t i c u l a r by f o r e i g n i n t e r s t i t i a l atoms) has become the s u b j e c t of much i n t e r e s t , a s i s w i t - nessed by t h e p r e s e n t conference.

(4)

Peierls hill valley hill anchor point g 1 geometri- cal kink

I

anchoring point

kink double kink

pair

kink pair under applied stress G F i g . ] :

Top:

The l a t t i c e - p e r i o d i c P e i e r l s p o t e n t i a l U(u) of a s t r a i g h t d i s l o c a t i o n a s a f u n c t i o n of i t s displacement U. The mean value of U ( u ) i s t h e d i s - l o c a t i o n l i n e en- e r g y Ed. The d i s - placement uo of a s t r a i g h t d i s - l o c a t i o n under an a p p l i e d s t r e s s U < up i s i n d i c a t e d ( b = d i s l o c a t i o n s t r e n g t h = modu- l u s of Burgers v e c t o r ) . Bottom: Various d i s l o c a t i o n con- f i g u r a t i o n s on an g l i d e p l a n e w i t h P e i e r l s v a l l e y s ( f u l l l i n e s ) and P e i e r l s h i l l s (dashed l i n e s ) .

Table I. The t h r e e h i e r a r c h i e s of models and energy b a r r i e r s

(5)

v a l l e y (comp.Fig.1). They account f o r t h e f a c t t h a t d i s l o c a t i o n s approximately p a r a l l e l t o one of t h e major c r y s t a l l o g r a p h i c d i r e c t i o n s may c o n t r i b u t e t o t h e modu- l u s d e f e c t even a t temperatures w e l l below t h a t of t h e i r Bordoni r e l a x a t i o n .

T h e o r e t i c a l reasoninganalogous t o t h a t l e a d i n g t o t h e e x i s t e n c e of t h e P e i e r l s p o t e n t i a l of s t r a i g h t d i s l o c a t i o n s demonstrates t h a t t h e p o t e n t i a l energy of a kink i n a d i s l o c a t i o n must be a p e r i o d i c f u n c t i o n of t h e kink p o s i t i o n a l o n g t h e d i s - l o c a t i o n l i n e w i t h a p e r i o d e q u a l t o t h a t of t h e c r y s t a l l a t t i c e i n t h a t d i r e c t i o n . This p e r i o d i c p o t e n t i a l i s c a l l e d "kink p o t e n t i a l " o r , i n o r d e r t o emphasize t h e c l o s e analogy t o t h e P e i e r l s p o t e n t i a l of s t r a i g h t d i s l o c a t i o n l i n e s , " P e i e r l s po- t e n t i a l of t h e second kind".

We s e e t h a t a s i n t h e c l a s s i c a l system of t h e h i e r a r c h i e s of a n g e l s of Dionysius t h e Areopagite we have a d i v i s i o n of our models i n t o

three

o r d e r s , namely t h a t of p e r f e c t c r y s t a l s , t h a t of s t r a i g h t d i s l o c a t i o n l i n e s , and t h a t of

E.

To t h e s e t h r e e o r d e r s of models correspond t h r e e o r d e r s o f b a r r i e r s t o be overcome (by t h e motion of t h e d e f e c t s of t h e n e x t lower o r d e r ) , namely t h e t h e o r e t i c a l s h e a r s t r e n g t h of a p e r f e c t c r y s t a l

%,

t h e P e i e r l s p o t e n t i a l (of t h e f i r s t k i n d ) , and t h e kink p o t e n t i a l . These r e l a t i o n s h i p s a r e summarized i n Table I .

The s u b d i v i s i o n i n t o t h e models and t h e l a t t i c e - p e r i o d i c b a r r i e r s l i s t e d i n Table I has c o n s i d e r a b l e advantages f o r t h e d i s c u s s i o n of p h y s i c a l phenomena a s s o c i a t e d w i t h d i s l o c a t i o n s , s i n c e t h e i r b a s i c f e a t u r e s may o f t e n be understood by r e f e r r i n g t o one of t h e t h r e e h i e r a r c h i e s of Table I only. E.g., many b a s i c f e a t u r e s of t h e deformation of c r y s t a l s by g l i d e may be e x p l a i n e d i n terms of d i s l o c a t i o n s w i t h o u t paying a t t e n t i o n t o t h e e x i s t e n c e of t h e P e i e r l s b a r r i e r s . Most o b s e r v a t i o n s on t h e Bordoni r e l a x a t i o n a r e accounted f o r , a t l e a s t q u a l i t a t i v e l y , i n terms of k i n k - p a i r formation. I f t h e kink p o t e n t i a l i s l a r g e enough, g e o m e t r i c a l k i n k s may give r i s e t o a d i s t i n c t r e l a x a t i o n phenomenon a s s o c i a t e d with k i n k m i g r a t i o n [19,23-251.

Notwithstanding t h e impressive s u c c e s s e s of t h e s i m p l i s t i c approach j u s t out- l i n e d , a deeper understanding of t h e observed phenomenon can o f t e n only be achieved i f i t i s r e c a l l e d t h a t each of t h e t h r e e h i e r a r c h i e s o f Table I can a t b e s t give a p a r t i a l r e p r e s e n t a t i o n of a complex p h y s i c a l s i t u a t i o n .

The p r e s e n t paper aims a t developing, i n a coherent f a s h i o n , t h e theory of k i n k - p a i r formation and kink m i g r a t i o n , and a t t e m p t s t o apply i t to t h e i n t e r p r e - t a t i o n of measurement of d i s l o c a t i o n v e l o c i t i e s and of i n t e r n a l - f r i c t i o n phenomena. We s h a l l c a r e f u l l y d i s t i n g u i s h between phenomena t h a t may be understood be r e f e r e n c e t o only one of t h e models of Table 1 , w i t h t h e a s p e c t s r e p r e s e n t e d by t h e o t h e r models coming i n t o p l a y o n l y through phenomenological parameters, and those r e - q u i r i n g a more g e n e r a l ( " i n t e r - h i e r a r c h i c " ) approach.

(6)

mass p e r u n i t l e n g t h , yd. For a d d i t i o n a l s i m p l i c i t y we c o n s i d e r only de- v i a t i o n s from s t r a i g h t l i n e s , measured by t h e displacement U of t h e d i s l o c a t i o n

from a P e i e r l s v a l l e y . The motion of a d i s l o c a t i o n l i n e i s t h e n governed by t h e p a r t i a l d i f f e r e n t i a l e q u a t i o n

I n ( 1 ) z d e n o t e s t h e s p a t i a l c o o r d i n a t e i n t h e d i r e c t i o n of t h e P e i e r l s v a l l e y , t t h e time, b t h e d i s l o c a t i o n s t r e n g t h , 0 t h e a p p l i e d r e s o l v e d s h e a r s t r e s s , and U(u) the l i n e energy of a s t r a i g h t d i s l o c a t i o n l i n e a s a f u n c t i o n of i t s displacement. For t h e purpose of c a l c u l a t i n g t h e l i n e t e n s i o n Sd i t s u f f i c e s t o r e p l a c e U(u) by i t s average v a l u e Ed, t h e l i n e energy of t h e d i s l o c a t i o n s ( F i g . 1). We t h e n have L261

where 8 i s t h e a n g l e between t h e Burgers v e c t o r of t h e d i s l o c a t i o n l i n e and t h e d i r e c t i o n of t h e P e i e r l s v a l l e y s .

For s t a t i c s o l u t i o n s u ( z ) E q . ( l ) s i m p l i f i e s t o

Eq.(3) p o s s e s s e s t h e s o l u t i o n uo = c o n s t a n t corresponding t o a r i g i d displacement of a s t r a i g h t d i s l o c a t i o n l i n e , where

The maximum v a l u e of

a

a t which

( 4 )

s t i l l has a r e a l s o l u t i o n d e f i n e s t h e P e i e r l s s t r e s s Op (comp. F i g . l ) .

Among t h e s o l u t i o n s of (3) f o r

a

= 0 i s t h a t f o r a s i n g l e kink c e n t r e d a t

z = z I n i m p l i c i t form i t i s g i v e n by

0 '

U

where t h e s i g n s correspond t o p o s i t i v e o r n e g a t i v e k i n k s , r e s p e c t i v e l y . For "smooth" p o t e n t i a l s f o r which t h e maximum v a l u e Umax c o i n c i d e s w i t h U(a/2), where a i s t h e d i s t a n c e between neighbouring P e i e r l s v a l l e y s and t h e h e i g h t of a s i n g l e k i n k , we may d e f i n e t h e kink width a s

Within t h e p r e s e n t t h e o r e t i c a l framework ( b r i e f l y c a l l e d t h e " l i n e - t e n s i o n model") t h e energy of a s i n g l e k i n k i s given by

(7)

Under a n a p p l i e d s h e a r s t r e s s U(O<]Ul<a ) Eq.(3) p o s s e s s e s a s o l u t i o n which P

c o r r e s p o n d s t o a p a i r of k i n k s i n u n s t a b l e e q u i l i b r i u m . T h e f o r c e s e x e r t e d on t h e k i n k s by t h e a p p l i e d s t r e s s , f abo, tend t o move t h e k i n k s a p a r t . A c o n f i g u r a t i o n of u n s t a b l e equilibrium e x i s t s i n which t h e s e f o r c e s j u s t b a l a n c e t h e a t t r a c t i o n b e t - ween t h e k i n k s of o p p o s i t e s i g n s . The e n t h a l p y d i f f e r e n c e between a k i n k p a i r i n t h i s c o n f i g u r a t i o n and t h a t of a s t r a i g h t d i s l o c a t i o n l i n e a t u=uo c o n s t i t u t e s t h e s a d d l e - p o i n t e n t h a l p y f o r t h e f o r m a t i o n of a k i n k p a i r , HkD. Within t h e p r e s e n t framework w e have u=umax H = 2(2sd)112

1

kp [ u ( u ) - U(uo)

-

( U

-

U ~ ) ~ C J ] " ~ du

,

where t h e upper l i m i t of t h e i n t e g r a t i o n f o l l o w s from

U(umax)

-

U(uo)

-

(umax

-

uo)bb = 0

.

( 9 )

I n i n t e r n a l f r i c t i o n e x p e r i m e n t s we a r e p a r t i c u l a r l y i n t e r e s t e d i n low s t r e s s e s . For

5/op

<< l Eq. ( 7 ) may be w r i t t e n a s

c l U

H

= 2Hk { l

- -

kp [ l

-

~ n ( c ~ o / ~ ~ ) l +

.

.

.

.

. l

,

( 1 0 ) where c l and c 2 a r e n u m e r i c a l f a c t o r s t h a t depend on t h e c h o i c e of t h e p o t e n t i a l U(u)

.

For t h e s o - c a l l e d Eshelby p o t e n t i a l l ) [27]

t h e s e f a c t o r s a r e g i v e n by L281 C , = 2c2 = 3-'12/2

,

t h e e n t h a l p y of f o r m a t i o n of a s i n g l e k i n k by -1 14 Hk = 3 a ( a b 0 ~ ~ ~ / 2 ) " ~

,

and t h e k i n k width by wk = 2a2 Sd/ 3Hk c o n t r a s t t o t h e s i n u s o i d a l p o t e n t i a l

(8)

E q . ( l ) may be used t o determine t h e v i b r a t i o n a l spectrum a s s o c i a t e d with a s i n g l e k i n k o r w i t h t h e saddle-point c o n f i g u r a t i o n of a kink p a i r and t o c a l c u l a t e the e n t r o p y of kink f o r m a t i o n . For d e t a i l s and r e s u l t s the r e a d e r i s r e f e r r e d t o the l i t e r a t u r e [13,221. The r e s u l t s f o r i s o l a t e d k i n k s w i l l be used l a t e r . From ( 1 ) we may f u r t h e r deduce t h a t t h e " v e l o c i t y of sound" of small perturbations p r o p a g a t i n g a l o n g a d i s l o c a t i o n l i n e i s

Since (1) i s L o r e n t z - i n v a r i a n t , we may d e f i n e t h e r e s t mass

%

of an i s o l a t e d kink according t o

%

= H ~ I C ; =

Y ~ H ~ / s ~

(17) The p r e c e d i n g t h e o r e t i c a l d e s c r i p t i o n corresponds t o l i n e I1 of Table I . We have d i s r e g a r d e d t h e a t o m i s t i c s t r u c t u r e of t h e c r y s t a l i n t h e d i r e c t i o n of t h e P e i e r l s v a l l e y s ( 1 i n e 111 of Table I ) . This has t h e consequence t h a t t h e energy of a k i n k i s independent of i t s p o s i t i o n z a l o n g t h e d i s l o c a t i o n . The f a c t t h a t k i n k s a r e s h o r t segments of an o t h e r w i s e s t r a i g h t d i s l o c a t i o n embedded i n a three-dimen- s i o n a l e l a s t i c continuum ( l i n e I of Table I ) i s taken i n t o account only through t h e d i s l o c a t i o n l i n e t e n s i o n Sd and t h e e f f e c t i v e mass ydper u n i t d i s l o c a t i o n l e n g t h . For some purposes, i n p a r t i c u l a r f o r t h e c a l c u l a t i o n of t h e kink--kink i n t e r a c t i o n a t l a r g e s e p a r a t i o n s , t h i s i s n o t s u f f i c i e n t , s i n c e i t does n o t adequately d e s c r i b e t h e e l a s t i c i n t e r a c t i o n between k i n k s .

I t i s e a s y t o show t h a t f o r l a r g e s e p a r a t i o n s t h e e l a s t i c i n t e r a c t i o n energy must vary a s t h e i n v e r s e d i s t a n c e between kinks on t h e same d i s l o c a t i o n [13,22,27, 29,301. For e l a s t i c a l l y i s o t r o p i c media with s h e a r modulus G and P o i s s o n ' s

r a t i o v t h e f o r c e between k i n k s of h e i g h t a a t s e p a r a t i o n s X >> a r e a d s [13,22,27, 29,301

=&

2

-[(l+v)cos2 a 2 0 + (l-2v)sin2 01 (18)

4~

1-v

2x2

where 8 denotes t h e a n g l e between t h e d i s l o c a t i o n l i n e and t h e C s i g n s r e f e r t o k i n k s of e q u a l o r o p p o s i t e s i g n s , r e s p e c t i v e l y . The g e n e r a l i z a t i o n of (12) t o a n i s o t r o p i c e l a s t i c i t y i s [31, 321 a2 F =

sel

( 18a) O 2 2 Here SE1 i s t h e p r e l o g a r i t h m i c f a c t o r of t h e e l a s t i c p a r t of t h e d i s l o c a t i o n l i n e - t e n s i o n . I t may be w r i t t e n i n t h e form

(9)

abcx

abcx

F i g . 2 : The t o t a l e n t h a l p y o f two k i n k s of o p p o s i t e s i g n ( f u l l l i n e ) and t h e i n t e r a c t i o n e n t h a l p y H i n t (X) a s a f u n c t i o n of t h e k i n k s e p a r a t i o n X. The en- t h a l p y of k i n k - p a i r f o r - mation Hkp i s i n d i c a t e d ; t h e k i n k s e p a r a t i o n X I c o r r e s p o n d s t o u n s t a b l e e q u i l i b r i u m .

0

l

l

XI kink

separatio"

X

i s g i v e n by -abos. The s u p e r p o s i t i o n of t h e s e two p o t e n t i a l e n e r g i e s ( f u l l l i n e ) l e a d s t o a maximum a t X

l

x 1 = (asE1/2b upr2 9 (20)

c o r r e s p o n d i n g t o a k i n k - p a i r f o r m a t i o n e n t h a l p y

Eq.(21) c o r r e s p o n d s t o t h e f i r s t term of a " m u l t i p o l e expansion". At s m a l l s e p a r a t i o n s and l a r g e

o

i t c e a s e s t o be v a l i d . Then t h e e l a s t i c i n t e r a c t i o n between t h e k i n k s depends n o t o n l y on a and b b u t i n a d d i t i o n on t h e shape o f t h e k i n k s ( c f . [221). I n th$ p r e s e n t c o n t e x t , however, i t i s n o t worthwhile t o work t h i s o u t i n d e t a i l s i n c e f o r sllall k i n k s e p a r a t i o n s t h e e l a s t i c i n t e r a c t i o n i s s m a l l compared w i t h t h a t g i v e n by Eq.(8) of t h e l i n e - t e n s i o n model.

The stress

3

which s e p a r a t e s t h e r a n g e of v a l i d i t y o f (8) and (21) may be found by e q u a t i n g (10) and ( 2 1 ) . The Eshelby p o t e n t i a l (12) g i v e s u s [28]

I f we choose, e . g . , sd/SZ1 = 4.1, Eq. ( 2 2 ) h a s t h e s o l u t i o n

;/c$

= 0.14, ln(3*4-+/;)

= 5. F i g . 3 shows t h e r e l a t i o n s h i p between

a/%

and H /2Hk f o r t h i s p a r t i c u l a r c a s e . kp

A d i f f e r e n t c h o i c e of sd/SZ1 o r U(u) d o e s n o t change t h e f u n c t i o n a l form of t h i s r e -

(10)

Fig.3: The r e l a t i o n s h i p between t h e r e s o l v e d s h e a r s t r e s s a ( i n u n i t s of t h e P e i e r l s s t r e s s op) and t h e en- t h a l p y of formation of a k i n k p a i r H ( i n u n i t s of t h e formation e n t h a l p y kp of a s i n g l e k i n k , Hk) a c c o r d i n g t o Eq.(lO) ( l i n e - t e n s i o n model) and Eq.

(21) (long-range e l a s t i c i n t e r a c t i o n ) . The s t r e s s

3

a t which t h e p r e d i c t e d r e l a t i o n s h i p ( f u l l l i n e ) changes over 0 1 from Eq.(lO) t o Eq.(21) i s i n d i c a t e d .

'-',p"%

where t h e c h o i c e of U(u) a f f e c t s only t h e numerical v a l u e of c 3 ( f o r (12): 2)

c 3 = ( 6 / 5 ) (2/3) 5j

'

= 0.73).

For small kink s e p a r a t i o n s i t i s n o t p o s s i b l e t o d e f i n e t h e kink s e p a r a t i o n i n a unique manner. I n F i g . 2 t h i s i s i n d i c a t e d by t h e dashed curve. F o r t u n a t e l y , t h e p h y s i c a l conclusions t o be drawn from t h e H (0) r e l a t i o n s h i p a r e u n a f f e c t e d by

kp t h i s u n c e r t a i n t y .

2. The Kink-Pair Formation Rate.- The c a l c u l a t i o n of t h e r a t e of formation of kink p a i r s on a n o t h e r w i s e s t r a i g h t d i s l o c a t i o n l i n e of u n i t l e n g t h ,

F, i n t h e f o l l o w i n g

b r i e f l y c a l l e d the k i n k - p a i r formation r a t e , i s b e s e t by t h e problems of r a t e theory i n g e n e r a l . A t h e o r e t i c a l framework capable of g i v i n g p r a c t i c a l r e s u l t s and being a p p l i c a b l e under a l l p h y s i c a l c o n d i t i o n s does n o t e x i s t . The two most s u c c e s s f u l approaches a r e ( i ) a n a d a p t i o n of t h e t r a n s i t i o n s t a t e t h e o r y , o r i g i n a l l y developed f o r t h e c a l c u l a t i o n of chemical r e a c t i o n r a t e s and going back t o t h e work of H.PELZER and E.WIGNER [34], and ( i i ) t h e d i f f u s i o n theory based on t h e work of H.A.KRAMERS [ 3 5 ] . For a g e n e r a l d i s c u s s i o n of t h e theory of k i n k - p a i r formation r a t e s t h e r e a d e r i s r e f e r r e d t o A.SEEGER and P.SCHILLER [ 1 3 ] .

The common i d e a behind both approaches i s t h a t t h e degrees of freedom of t h e e n t i r e c r y s t a l a r e t r e a t e d by t h e u s u a l s t a t i s t i c a l mechanics of harmonic o s c i l l a t o r s with two exceptions: The mode d e s c r i b i n g t k e change i n t h e kink-kink s e p a r a t i o n X

and t h e mode a s s o c i a t e d w i t h the t r a n s l a t i o n of a kink p a i r of f i x e d s e p a r a t i o n X a l o n g t h e d i s l o c a t i o n l i n e . By well-known arguments t h e maximum i n t h e energy- d i s t a n c e diagram of t h e f i r s t of t h e s e modes ( F i g . 2 ) corresponds t o t h e saddle-point i n t h e many-dimensional c o n f i g u r a t i o n a l space s e p a r a t i n g a k i n k - f r e e d i s l o c a t i o n from t h e r e g i o n c o n t a i n i n g a p a i r of k i n k s of o p p o s i t e s i g n . The two t h e o r e t i c a l approaches mentioned above d i f f e r i n t h e assumptions made concerning t h e way i n which t h e system c r o s s e s t h e above-mentioned s a d d l e - p o i n t .

(11)

( i )

The t r a n s i t i o n s t a t e t h e o r y makes t h e assumption t h a t once t h e system h a s reached t h e s a d d l e p o i n t w i t h a v e l o c i t y p o i n t i n g from t h e "no-kink" r e g i o n t o t h e "kink-pair" r e g i o n , k i n k - p a i r f o r m a t i o n t a k e s p l a c e . The p r o b a b i l i t y t h a t t h e system "back-crosses" t h e s a d d l e p o i n t i s n e g l e c t e d . The k i n k - p a i r f o r m a t i o n r a t e i s t h e n g i v e n exp [-H (O)/kT] h2 kP d e n o t e t h e energy e i g e n - v a l u e s of t h e harmonic o s c i l l a t o r s of c i r c u l a r f r e q u e n c y

mm

a s s o c i a t e d w i t h a n unkinked d i s l o c a t i o n , those a s s o c i a t e d w i t h d i s l o c a t i o n s c o n t a i n i n g a k i n k p a i r i n t h e s a d d l e - p o i n t con- f i g u r a t i o n (3'1 = P l a n c k ' s c o n s t a n t h d i v i d e d by 2 n ) . As a compensation f o r t h e two n o n - v i b r a t i o n a l modes mentioned above, the sum ( o r p r o d u c t ) o v e r m c o n t a i n s two more terms t h a n t h a t o v e r m".

(12)

f o r t h e s i n u s o i d a l p o t e n t i a l ( I I ) , and t o

f o r t h e E s h e l b y p o t e n t i a l ( 1 2 ) . I n (28b) ad d e n o t e s t h e i n t e r a t o m i c d i s t a n c e a l o n g t h e d i s l o c a t i o n l i n e .

I n s e r t i o n of (27,28) i n t o (24) g i v e s us f o r t h e k i n k - p a i r f o r m a t i o n r a t e i n t h e t r a n s i t i o n s t a t e t h e o r y

Here Hint r e f e r s t o t h e s a d d l e - p o i n t s e p a r a t i o n o f t h e k i n k s , (29a) t o t h e s i n u s - o i d a l p o t e n t i a l , (29b) t o t h e E s h e l b y p o t e n t i a l .

( i i ) The s t a r t i n g e q u a t i o n of t h e d i f f u s i o n t h e o r y i s a p a r t i a l d i f f e r e n t i a l e q u a t i o n f o r t h e p a r t i c l e d e n s i t y p ( p x , x , t ) i n t h e phase s p a c e o f t h e s p a t i a l co- o r d i n a t e x d e s c r i b i n g t h e k i n k - k i n k s e p a r a t i o n and t h e momentum px a s s o c i a t e d w i t h i t [35]. The t h e o r y i s based o n t h e p h y s i c a l pictume t h a t , i n a d d i t i o n t o t h e f o r c e s g i v i n g r i s e t o H i n t ( x ) ( F i g . 2 ) , t h e k i n k a r e s u b j e c t t o Brownian f o r c e s due t o t h e i r i n t e r a c t i o n w i t h l a t t i c e v i b r a t i o n s . The e f f e c t s o f t h e Brownian f o r c e s may be des- c r i b e d i n terms of a k i n k m o b i l i t y pk o r a k i n k v i s c o s i t y

]/vk.

By t h e ~ i n s t e i r r N e r n s t r e l a t i o n s h i p t h e k i n k m o b i l i t y may be e x p r e s s e d i n t e r m s of t h e k i n k d i f f u - s i v i t y

D k = k T v k

.

(30)

There a r e two l i ~ i t i n g c a s e s i n which t h e number of i n d e p e n d e n t v a r i a b l e s i n KRAML?RS7 b a s i c p a r t i a l d i f f e r e n t i a l e q u a t i o n may be reduced by one.

( a ) I f t h e k i n k m o b i l i t y i s s o h i g h t h a t t h e o s c i l l a t i o n s of t h e k i n k s i n t h e a t t r a c t i v e p o t e n t i a l formed by t h e i n t e r a c t i o n of k i n k s of o p p o s i t e s i g n a r e o n l y l i t t l e i n f l u e n c e d by t h e Brownian f o r c e s , o r px and X may be r e p l a c e d by t h e a c t i o n v a r i a b l e

I ( E ) = pXdx

.

(31)

(13)

E.MANN [391 h a s r e c e n t l y shown t h a t under t h e c o n d i t i o n H >> kT t h e kink- kp p a i r f o r m a t i o n r a t e f o r h i g h k i n k m o b i l i t i e s i s g i v e n by 8Hkwk

r

=- ( S ) ' " (p:q)? exp ( l l i n t / k ~ ) , Dk"k

Here and l a t e r i n ( 3 4 ) t h e same a s s u m p t i o n s f o r t h e c a l c u l a t i o n o f t h e e n t r o p y terms have been made a s i n t h e t r e a t m e n t ( i ) .

F o r t e m p e r a t u r e - i n d e p e n d e n t k i n k d i f f u s i v i t i e s Dk t h e t e m p e r a t u r e dependence o f (29) and ( 3 2 ) a r e t h e same. The r e s u l t s o f t h e t r a n s i t i o n s t a t e t h e o r y and t h e h i g h - m o b i l i t y d i f f u s i o n t h e o r y a g r e e w i t h e a c h o t h e r i f we make t h e i d e n t i f i c a t i o n Dk = ~ w ~ ( B ~ / % ) ' : ' = 8wkco ( 3 3 ) ( b ) I f t h e e f f e c t o f t h e Brownian f o r c e s on t h e k i n k v e l o c i t y e x c e e d s t h o s e of t h e " e x t e r n a l " f o r c e s ( i . e . , i f t h e k i n k m o b i l i t y i s s m a l l ) ,

Kramers'

e q u a t i o n s i m p l i f i e s t o a so-calledSmolukowskiequation ( d i f f u s i o n e q u a t i o n w i t h d r i f t t e r m ) w i t h t h e s p a t i a l c o o r d i n a t e X a s a n i n d e p e n d e n t v a r i a b l e . F o r t h e p h y s i c a l s i t u a t i o n s t r e a t e d i n t h i s p a p e r , t h i s i s t h e most i m p o r t a n t c a s e . I t h a s been d i s c u s s e d i n de- t a i l by SEEGER and SCHILLER [13], STENZEL [40], ENGELKE [441, and MANN [391. I f t h e a s s u m p t i o n H >> kT i s made t h e k i n k - p a i r f o r m a t i o n r a t e may be e x p r e s s e d i n terms

kp

o f q u a d r a t u r e s . The f u r t h e r a s s u m p t i o n t h a t t h e s a d d l e p o i n t o c c u r s i n t h e regime o f v a l i d i t y o f ( 2 1 ) l e a d s t o t h e c l o s e d - f o r m e x p r e s s i o n 1391

where

and Kn(y) d e n o t e s t h e MacDonald ( m o d i f i e d Hankel) f u n c t i o n o f o r d e r n . I m p o r t a n t s p e c i a l c a s e s a r e y >> 1, KI ( y ) " ( ~ r / 2 ~ ) ~ ' ~ e x ~ ( - ~ ) , l e a d i n g t o [13,401

and y << 1, K 1 ( y ) y-l, l e a d i n g t o [42, 431

-'3/ 2

We n o t e t h a t i n ( 3 6 ) t h e p r e - e x p o n e n t i a l f a c t o r depends on t e m p e r a t u r e a s (kT)

,

whereas i n ( 3 7 ) i t d e p e n d s on T a s (kT)-'.

(14)

d i s t a n c e by which the two members of a kink p a i r s e p a r a t e b e f o r e they c e a s e t o move. This may e i t h e r be t h e case when they meet o b s t a c l e s a l o n g t h e d i s l o c a t i o n l i n e s t h a t a r e impenetrable t o k i n k s , o r when t h e y a n n i h i l a t e with o t h e r kinks on t h e same d i s - l o c a t i o n l i n e . The d i s l o c a t i o n v e l o c i t y w i l l be determined by t h e s h o r t e r of t h e two d i s t a n c e s , t h e s e p a r a t i o n L of t h e o b s t a c l e s o r t h e s e p a r a t i o n

$

of t h e two k i n k s i n

a

p a i r b e f o r e t h e i r a n n i h i l a t i o n w i t h o t h e r k i n k s , s o t h a t we e x p e c t

X L

The s e p a r a t i o n

%

e q u a l s t h e d i s t a n c e t h a t two kinks of o p p o s i t e s i g n d r i f t towards each o t h e r d u r i n g t h e mean l i f e t i m e tk of t h e k i n k s . I t i s t h u s given by 3)

xk = 2uk a b U tk (39)

I n a s t a t i o n a r y s i t u a t i o n t h e mean l i f e t i m e tk of t h e kinks must be e q u a l t o t h e average time f o r t h e n u c l e a t i o n of a f r e s h kink p a i r on a d i s l o c a t i o n segment of Length

%,

i . e . 4) Hence t h e f i n a l r e s u l t f o r xk r e a d s I n s e r t i o n of (41) i n t o ( 3 8 ) g i v e s us w i t h t h e l i m i t i n g c a s e s (xk << L) vd = a(2pkab0r) and

(%

>> L ) v d = a L T

I n m a t e r i a l s on which measurements of d i s l o c a t i o n v e l o c i t i e s under t h e a c t i o n of a known r e s o l v e d a p p l i e d s h e a r s t r e s s U a r e a v a i l a b l e ( e . g . , Ge and S i , s e e Sect.5) Eq.(42) may be compared d i r e c t l y w i t h experiment.

3 ) ~ o r s i m p l i c i t y we d i s r e g a r d the f a c t t h a t d i s l o c a t i o n s anchored i n d i f f e r e n t P e i e r l s v a l l e y s c o n t a i n a l s o g e o m e t r i c a l k i n k s . Geometrical kinks w i l l be t r e a t e d s e p a r a t e l y a t t h e end of S e c t . 4.

(15)

I n i n t e r n a l f r i c t i o n e x p e r i m e n t s t h e a c t i n g s t r e s s i s o f t e n s o low t h a t t h e e q u i l i b r i u m d e n s i t y of t h e k i n k s i s m a i n t a i n e d . We t h e n have

~ ~ ~ ~( 4 3 ) i n t o ( 4 1 ) ~ i v e s ~ t i ~ ~ us ( 3 7 ) , a s we e x p e c t from t h e assumptionsmade. o f 4 . ) R e l a x a t i o n S t r e n g t h and R e l a x a t i o n Time.- The c a l c u l a t i o n o f t h e i n t e r n a l f r i c - t i o n and t h e modulus d e f e c t on t h e b a s i s o f t h e model d e v e l o p e d s o f a r i s a formi- d a b l e t a s k . Under c e r t a i n s i m p l i f y i n g a s s u m p t i o n a s o l u t i o n was g i v e n by H.ENGELKE

[41,44,45] and reviewed e l s e w h e r e P92. F o r t h e p r e s e n t p u r p o s e s i t s u f f i c e s t o de- r i v e some s i m p l e e s t i m a t e s c a p a b l e of b r i n g i n g o u t t h e dependence of t h e r e l a x a t i o n s t r e n g t h and r e l a x a t i o n t i m e on t e m p e r a t u r e T and on t h e o b s t a c l e s e p a r a t i o n L.

The r e l a x a t i o n s t r e n g t h i s p r o p o r t i o n a l t o t h e a r e a A swept o u t by t h e d i s - l o c a t i o n segments. F o l l o w i n g A.SEEGER, H.DONTH and F.PFAFF [46] t h e e s t i m a t e (which i n f a c t c o n s t i t u t e s a n upper l i m i t f o r t h e a r e a t h a t a d i s l o c a t i o n segment w i t h l i n e t e n s i o n Sd may sweep o u t under t h e a p p l i e d s h e a r s t r e s s )

may be o b t a i n e d . I f

A

d e n o t e s t h e t o t a l l e n g t h p e r u n i t volume of t h o s e d i s l o c a t i o n s t h a t p a r t i c i p a t e i n t h e r e l a x a t i o n p r o c e s s and i f ?I d e n o t e s t h e e l a s t i c modulus a p p r o p r i a t e f o r t h e mode of d e f o r m a t i o n employed, we have f o r t h e r e l a x a t i o n s t r e n g t h

A =

A2

b2 ~ 1 1 2 5 ~ ( 4 5 ) We e s t i m a t e t h e r e l a x a t i o n time T by c a l c u l a t i n g t h e time r e q u i r e d by a d i s l o c a t i o n moving w i t h t h e v e l o c i t y v d ( L ' ) and sweeping o u t t h e a r e a A i n t h e manner i n d i c a t e d i n F i g . 4 . T h i s g i v e s u s w i t h t h e h e l p of ( 3 8 )

---

7---

anchortng anchor~ng

polnt point

(16)

Among t h e i n t e r e s t i n g f e a t u r e s of (45) i s t h a t t h e r e l a x a t i o n s t r e n g t h i s pre- d i c t e d t o be independent of temperature and ( f o r a g i v e n t o t a l Length of d i s l o c a t i o n s ) p r o p o r t i o n a l t o L2. Eq. (46) e x h i b i t s a t r a n s i t i o n from a l i n e a r dependence of t h e r e l a x a t i o n time f o r small L t o a q u a d r a t i c one f o r l a r g e L . This t r a n s i t i o n i s accom- panied by a change i n t h e temperature dependence of -c.

I n a c r y s t a l t h e r e w i l l be i n g e n e r a l a f a i r l y wide d i s t r i b u t i o n of L v a l u e s . Following G.SCHOECK 1471 we may e s t i m a t e t h e i n t e r n a l f r i c t i o n Q-' and t h e modulus d e f e c t by making t h e assumption (which i s n o t q u i t e c o r r e c t ) t h a t f o r a f i x e d l e n g t h L we have a Debye r e l a x a t i o n p r o c e s s and i n t e g r a t i n g over t h e L - d i s t r i b u t i o n . We de- noteby p ( L ) ~ L t h e number of d i s l o c a t i o n segments p e r u n i t volume w i t h o b s t a c l e

L

s e p a r a t i o n between L and L

+

dL c o n t r i b u t i n g t o t h e r e l a x a t i o n p r o c e s s , so t h a t t h e d i s l o c a t i o n l e n g t h p e r u n i t volume i s

n

=

j

pL(L)LdL

.

0

The i n t e r n a l f r i c t i o n measured a t a c i r c u l a r frequency W i s then given by

and t h e corresponding e l a s t i c modulus by

where T(L) i s t o be taken from (46) and where

MU

denotes t h e unrelaxed e l a s t i c modu- l u s . The i n t e g r a l m

which a r i s e s i f pL(L) CC e x p ( - ~ / i ) and T a L2, has been e v a l u a t e d n u m r i c a l l y [47].

-

2

I t g i v e s a maximum v a l u e I = 2.2 a t (W?) = 7

.

10

,

where

5

=

;

(L).

max

A s remarked above, i n i n t e r n a l f r i c t i o n experiments we o f t e n encounter s i t u a - t i o n s where t h e s i m p l i f i c a t i o n s (37) and (43) a r e a p p l i c a b l e . Then (46) t a k e s t h e form

Eq.(50) shows t h a t a s l i m i t i n g c a s e s t h e r e l a x a t i o n time T may e x h i b i t two d i f f e r e n t dependences on temperature and o b s t a c l e d i s t a n c e , namely i n t h e c a s e

p E q ~

<<

1

( i . e . , low t e m p e r a t u r e s )

(17)

The a p p a r e n t a c t i v a t i o n e n t h a l p i e s

a r e g i v e n by

d l n T

H e f f

"

d ( l/kT)

i n the case of p E q ~ c < 1 , and by

dlnDk

Heff = Hk

-

-

- -

d ( l / k T ) 2 kT i n the case

p E q ~ > >

1 .

I n t h o s e c a s e s i n which Hk i s n o t small compared w i t h t h e o t h e r terms, (51a) and (52a) show t h e remarkable f e a t u r e t h a t t h e a c t i v a t i o n e n t h a l p y i s h i g h e r a t lower t e m p e r a t u r e s . The r e a s o n f o r t h i s i s t h a t a t low temperature t h e d i s t a n c e a newly gene- r a t e d kink has t o t r a v e l u n t i l i t i s stopped a t an o b s t a c l e i s independent of tempera- t u r e , whereas a t high temperatures t h e kink may recombine w i t h kinks of o p p o s i t e s i g n , t h e d e n s i t y of which i n c r e a s e s w i t h i n c r e a s i n g temperature.

Another important s p e c i a l case i s t h a t i n which k i n k - p a i r formation may be d i s - regarded a l t o g e t h e r ( e . g . , because of low t e m p e r a t u r e s ) and we have t o c o n s i d e r only a temperature-independent d e n s i t y pk of geometrical k i n k s . This case h a s been t r e a t e d by A.D.BRAILSFORD [ 2 3 ] , C.kTiiTHRICH [25], and A.SEEGER and C.WUTHRICH [ 4 8 ] . I f t h e s e r e s u l t s a r e expressed i n terms of t h e kink d i f f u s i v i t y , an approximate e x p r e s s i o n f o r t h e r e l a x a t i o n time i s

where L denotes a g a i n t h e d i s t a n c e between t h e o b s t a c l e s . The r e l a x a t i o n s t r e n g t h i s given by

8 ~ ~ b ~

A =--F

-

a 2 ~ 2 p k ~ c o s 2 @

.

(55) kT

I n (55) $ denotes t h e a n g l e between t h e d i r e c t i o n of the P e i e r l s v a l l e y and t h e aver- age d i r e c t i o n of t h e d i s l o c a t i o n l i n e , which i s determined by t h e ~ o s i t i o n s of the ob- s t a c l e s .

An L d i s t r i b u t i o n may be handled a s above and l e a d s t o t h e i n t e g r a l ( 4 9 ) . I n a d d i t i o n one h a s t o average o v e r t h e a n g l e @, t a k i n g i n t o account t h a t t h e d e n s i t y of g e o m e t r i c a l k i n k s i s g i v e n by

pk = s i n $ / a ( 5 6 )

(18)

of k i n k s w i t h f o r e i g n atoms o r l a t t i c e v i b r a t i o n s . Such i n t e r a c t i o n s c a n o n l y be un- d e r s t o o d q u a n t i t a t i v e l y i f we t a k e i n t o a c c o u n t t h a t a k i n k i s a p e r t u r b a t i o n on a n o t h e r w i s e s t r a i g h t d i s l o c a t i o n l i n e t h a t i s endowed w i t h a long-range s t r a i n f i e l d d e c r e a s i n g w i t h t h e i n v e r s e second power of t h e d i s t a n c e from t h e k i n k . T h i s means t h a t we have t o go back t o l e v e l I of Table I .

An e x h a u s t i v e t h e o r e t i c a l t r e a t m e n t of D would be beyond t h e s c o p e of t h e p r e - k

s e n t p a p e r . We s h a l l c o v e r o n l y some examples o f ( i ) p u r e c r y s t a l s and ( i i ) i n t e r - a c t i o n s w i t h f o r e i g n i n t e r s t i t i a l atoms.

( i ) P u r e C r y s t a l s . - I n p u r e c r y s t a l s t h e d i f f u s i v i t y Dk ( o r m o b i l i t y

uk

= Dk/kT) of k i n k s on d i s l o c a t i o n l i n e s w i t h a l a r g e k i n k p o t e n t i a l i s d e t e r m i n e d by t h e r a t e by which k i n k s w i l l overcome t h e k i n k p o t e n t i a l . A complete t h e o r e t i c a l t r e a t m e n t of t h i s r a t e h a s n o t y e t been g i v e n , b u t we have good r e a s o n s t o b e l i e v e t h a t t h e ana- l o g y w i t h t h e jumps o f a t o m i c d e f e c t s i n c r y s t a l s i s q u i t e c l o s e . I n t h e s p i r i t o f t h e t r a n s i t i o n s t a t e t h e o r y we may i n t r o d u c e t h e f r e e e n t h a l p y of k i n k m i g r a t i o n

a s t h e d i f f e r e n c e between t h e f r e e e n t h a l p i e s when t h e k i n k s i s i n t h e s a d d l e - p o i n t c o n f i g u r a t i o n and when i t i s i n t h e p o s i t i o n o f s t a b l e e q u i l i b r i u m ( e x c l u d i n g t h e de- g r e e o f freedoms l e a d i n g o v e r t h e s a d d l e - p o i n t s i n t h e s e c o n d c a s e ) . I f V: d e n o t e s t h e a t t e m p t f r e q u e n c y w i t h which t h e k i n k v i b r a t e s i n i t s s t a b l e p o s i t i o n towards t h e s a d d l e - p o i n t and ad t h e p e r i o d o f t h e k i n k p o t e n t i a l , t h e t r a n s i t i o n s t a t e t h e o r y g i v e s u s u n d e r t h e a s s u m p t i o n >> kT

k

A s i m i l a r e x p r e s s i o n w i t h t h e same t e m p e r a t u r e dependence may b e o b t a i n e d from t h e

(19)

As p o i n t e d o u t by A.SEEGER and B . ~ E S T A K [24] t h e r e i s one e x c e p t i o n a l c a s e where one m i g h t e x p e c t , f o r t h e o r e t i c a l r e a s o n s , a f a i r l y h i g h k i n k m i g r a t i o n e n t h a l p y M . Hk 1 n m e t a l s . T h i s e x c e p t i o n c o n c e r n s k i n k s i n s c r e w d i s l o c a t i o n s w i t h B u r g e r s v e c t o r s b = a <l 11 >/2 i n b c c m e t a l s . P .B.HIRSCH [ 5 0 1 r e c o g n i z e d t h e p o s s i b i l i t y t h a t b e c a u s e o f t h e t h r e e f o l d symmetry o f < l 11> a x e s i n c u b i c c r y s t a l s t h e s e d i s l o ~ a t i o ~ might n o t have a w e l l - d e f i n e d g l i d e p l a n e a n d t h a t t h e y may hence b e s e s s i l e . F o r t h e pur- p o s e o f t h e p r e s e n t d i s c u q s i o n t h i s i s e q u i v a l e n t t o a h i g h P e i e r l s s t r e s s

ap.

With c e r t a i n m o d i f i c a t i o n s ( s e e , e . g . , [481) t h e v i e w - p o i n t o f HIRSCH h a s p r o v e d c o r r e c t . Computer s i m u l a t i o n s t u d i e s by CH.WuTHRICH l511 on a n a t o m i s t i c model f o r &Fe s u p p o r t t h e s u g g e s t i o n o f SEEGER and SESTAK 1241 on t h e k i n k m i g r a t i o n e n t h a l p y i n a o < 1 1 1 > / 2 s c r e w d i s l o c a t i o n s i n g e n e r a l t e r m s w i t h o u t b e i n g a b l e t o make q u a n t i t a t i v e p r e d i c - t i o n s .

I n t h e c a s e o f s c r e w d i s l o c a t i o n s i n b c c m e t a l s t h e h i g h P e i e r l s b a r r i e r i s due t o s p e c i a l c i r c u m s t a n c e s r e l a t e d t o symmetry and n o t t o c h e m i c a l bonding. (Non-screw d i s l o c a t i o n s i n bcc m e t a l s o r s c r e w d i s l o c a t i o n s w i t h o t h e r B u r g e r s v e c t o r s p o s s e s s "normal" P e i e r l s s t r e s s e s . ) The s i t u a t i o n i s d i f f e r e n t i n c r y s t a l s w i t h d i r e c t i o n a l bonds, i . e . , v a l e n c e c r y s t a l s s u c h a s germanium and s i l i c o n .

T h e r e i s c o n s i d e r a b l e e x p e r i m e n t a l e v i d e n c e , s t a r t i n g w i t h t h e work o f DASH[52] o n d i s l o c a t i o n l i n e s i n S i d e c o r a t e d w i t h Cu and l a t e r s u b s t a n t i a t e d by t r a n s m i s s i o n e l e c t r o n microscopy t h a t d i s l o c a t i o n s i n Ge and S i l y i n g a l o n g <110;. d i r e c t i o n ~ p o s s e s s h i g h P e i e r l s b a r r i e r s [531. The o r i g i n o f t h i s i s t h o u g h t t o l i e i n t h e c o v a l e n t na- t u r e o f b o n d i n g i n Ge a n d S i [54,55]. It is t h e r e f o r e r e a s o n a b l e t o assume t h a t Ge and S i p o s s e s s n o t o n l y h i g h k i n k f o r m a t i o n e n e r g i e s b u t t h a t t h e r e may a l s o be a sub- s t a n t i a l e n e r g y b a r r i e r f o r t h e m i g r a t i o n o f k i n k s a l o n g d i s l o c a t i o n l i n e s . M I f t h e k i n k m i g r a t i o n e n t h a l p y Hk i s l a r g e enough f o r t h e k i n k m i g r a t i o n b a r r i e r t o show up e x p e r i m e n t a l l y , t h e k i n k d i f f u s i v i t y (58) w i l l i n g e n e r a l be s m a l l enough f o r t h e d i f f u s i o n t h e o r y o f k i n k - p a i r f o r m a t i o n t o be a p p l i c a b l e . I n S i and Ge t h e k i n k f o r m a t i o n e n e r g y i s s o h i g h t h a t a t t h e t e m p e r a t u r e s a t which d i s l o c a t i o n v e l o - c i t i e s a r e measured t h e c o n d i t i o n

i s u s u a l l y f ~ l f i l l e d . ~ ) T h i s means t h a t a t s u f f i c i e n t l y low s t r e s s e s ( 3 7 ) and (42b)

(20)

hold, l e a d i n g t o

rd

= 2 Dk a2 b L

(pzqf

a / k T (60) The experimental r e s u l t s r e p o r t e d on Ge and S i approach indeed a l i n e a r dependence of t h e d i s l o c a t i o n v e l o c i t i e s on s t r e s s a t l o w s t r e s s e s and high temperatures. From

(60) follows t h e e f f e c t i v e a c t i v a t i o n e n t h a l p y of d i s l o c a t i o n motion

A t s u f f i c i e n t l y h i g h s t r e s s e s t h e r a t e of kink-pair formation may become s o l a r g e t h a t t h e k i n k l i f e t i m e i s l i m i t e d by t h e a n n i h i l a t i o n of k i n k s of o p p o s i t e s i g n . We t h e n have t o use (42a). Together w i t h (34) and (35) t h i s g i v e s us

-

11 2

vd = 2 s b a u k P? [Y K ~ ( Y ) I (62) I f y > 0 t h e s t r e s s dependence p r e d i c t e d by (62) i s s t r o n g e r than l i n e a r . The e f f e c - t i v e a c t i v a t i o n energy i s given by

For y >> 1 Eq.(63) becomes

M

Solving (61) and (64) f o r

%

and Hk g i v e s us

For a given type of d i s l o c a t i o n

se'

may be c a l c u l a t e d from t h e e l a s t i c c o n s t a n t s , s o ( 1 )

t h a t from measurements of Heff an: ;::H we may determine both t h e formation e n t h a l p y Hk and t h e m i g r a t i o n e n t h a l p y H: of k i n k s . For 60°-dislocations on < I l I > g l i d e p l a n e s i n germanium we have

sel

= 6 ' 10-l0 N (A.KORNER, H.O.K.KIRCHNER, U n i v e r s i t l t Wien, p e r s o n a l communication). From SCHAUMBURG1s L561 o b s e r v a t i o n s on such d i s l o c a t i o n s

[H!

:: = (3.00 k 0 . 2 0 ) e ~ ~ ) , ::H: = (1.55 i O.OS)eY] we f i n d f o r Ce Hk=(1.39 i O.25)eY and

Hf:

= (0.33 i 0.3)eV.

M

I n c r y s t a l s i n which Hk i s n e g l i g i b l y small t h e kink d i f f u s i v i t y must be e s t i - mated by c o n s i d e r i n g t h e i n t e r a c t i o n between k i n k s and phonons e x p l i c i t l y [13,57,58].

A t low temperatures one e x p e c t s pk t o decrease w i t h i n c r e a s i n g temperature roughly

-

1

a s Eph

,

where E denotes t h e phonon energy d e n s i t y . ph

(21)

A t s u f f i c i e n t l y high temperatures t h e t h e o r y p r e d i c t s T - l , i . e . , a tempera- ture-independent kink d i f f u s i v i t y Dk. The same temperature dependence f o l l o w s from (58) f o r kT >> H:

.

C a l c u l a t i o n s of t h e a b s o l u t e magnitude of

vk

a r e q u i t e d i f f i c u l t . The e s t i m a t e s of SEEGER and ENGELKE [ 5 7 ] i n d i c a t e t h a t the c o n d i t i o n s f o r t h e a p p l i c a b i l i t y of the d i f f u s i o n t h e o r y of k i n k - p a i r formation ( s e e S e c t . 2) a r e s a t i s f i e d below about one f i f t h t o one t e n t h of the Debye temperature.

( i i ) S o l i d S o l u t i o n s . - F o r e i g n atoms i n s o l i d s o l u t i o n may i n t e r a c t w i t h k i n k s i n s e v e r a l ways.There may be an a t t r a c t i v e i n t e r a c t i o n between k i n k s and immobile f o r e i g n atoms, and t h e l a t t e r may a c t a s p i n n i n g p o i n t s f o r t h e k i n k s ( s e e , e . g . ( 5 9 ) ) . Here we c o n s i d e r t h e c a s e t h a t on t h e time s c a l e of t h e i n t e r n a l f r i c t i o n o r r e l a x a t i o n experiments t h e f o r e i g n atoms a r e mobile, i . e . t h a t they can perform a t l e a s t one d i f f u s i o n a l a n d l o r r o t a t i o n a l jump d u r i n g a time comparablewith T. We a r e particularly i n t e r e s t e d i n s o l i d s o l u t i o n s of f o r e i g n atoms occupying s i t e s with lower symmetry t h a n t h e h o s t l a t t i c e , s o t h a t t h e kink-foreign-atom i n t e r a c t i o n may l e a d t o a r e - d i s t r i b u t i o n of t h e symrcetry a x e s of t h e f o r e i g n atoms. I n o r d e r t o f i x t h e i d e a s , we s h a l l r e f e r s p e c i f i c a l l y t o t h e "heavy" i n t e r s t i t i a l s oxygen, n i t r o g e n , and carbon

i n bcc t r a n s i t i o n m e t a l s .

I n

s e v e r a l t r a n s i t i o n m e t a l s w i t h bcc s t r u c t u r e , i n p a r t i - c u l a r i n a-Fe and t h e Group-V m e t a l s V , Nb, and Ta, t h e s e f o r e i g n atoms have been demonstrated t o occupy i n t e r s t i c e s of t e t r a g o n a l symmetry. The r e d i s t r i b u t i o n between i n t e r ' s t i c e s w i t h d i f f e r e n t i y o r i e n t e d t e t r a g o n a l axes l e a d t o t h e w e l l known

r e l a x a t i o n e f f e c t [ 6 0 ] . I n t h i s p a r t i c u l a r example t h e elementary atomic jumps involved i n t h e Snoek e f f e c t and i n t h e long-range d i f f u s i o n a r e t h e same; hence t h e a c t i v a t i o n e n t h a l p y of t h e Snoek e f f e c t , HS, e q u a l s t h a t of long-range m i g r a t i o n , HM, of the i n t e r s t i t i a l atoms.

The i n t e r a c t i o n of t h e s t r a i n - f i e l d surrounding a kink on a d i s l o c a t i o n with t h e mobile i n t e r s t i t i a l atoms i n i t s neighbourhood may g i v e an important c o n t r i b u t i o n t o t h e k i n k v i s c o s i t y S i n c e t h e s i t u a t i o n i s p a r t i c u l a r l y simple f o r k i n k s on a <111>/2 screw d i s l o c a t i o n s i n bcc m e t a l s we develop the f o l l o w i n g q u a l i t a t i v e argu- ments [61] f o r t h i s p a r t i c u l a r c a s e . A q u a n t i t a t i v e , more g e n e r a l treatment w i l l be g i v e n i n a s e r i e s of p a p e r s by T.o.OGURTAN1, Z.Q.SUN, and the p r e s e n t w r i t e r .

A t a g i v e n d i s t a n c e from a s t r a i g h t screw d i s l o c a t i o n along < i l l > t h e t h r e e p o s s i b l e < l o o > a x e s of t h e i n t e r s t i c e s w i t h t e t r a g o n a l symmetry a r e e n e r g e t i c a l l y de- g e n e r a t e . The presence of a kink on t h e d i s l o c a t i o n d e s t r o y s t h i s degeneracy and Leads t o t h e development of a "Snoek atmosphere1' [62]

,

i . e . , t h e t h r e e p o s s i b l e < l o o > axes of t h e i n t e r s t i c e s a r e no l o n g e r e q u a l l y populated. When a kink moves a l o n g t h e d i s - l o c a t i o n l i n e t h i s Snoek cloud e x e r t s on the kink a r e s t o r i n g f o r c e which may be r e - p r e s e n t e d i n terms of a complex compliance [63]. For a slowly moving k i n k t h i s l e a d s t o a dragging f o r c e which i s p r o p o r t i o n a l t o t h e kink v e l o c i t y , t o the i n v e r s e concen-

-

1

(22)

p r i n c i p a l components of t h e s t r a i n t e n s o r ( e l a s t i c d i p o l e t e n s o r ) o f t h e i n t e r s t i t i a l s . I n t e r m s of t h e k i n k d i f f u s i v i t y Dk t h i s means t h a t

S i n c e t h e d i f f u s i v i t y of t h e i n t e r s t i t i a l atoms i s w e l l r e p r e s e n t e d by S

D = Do e x p ( - H /kT) (68) w i t h t e m p e r a t u r e - i n d e p e n d e n t H' and Do, t h e t e m p e r a t u r e dependence of k i n k d i f f u s i v i t y i s d e s c r i b e d by a n A r r h e n i u s law w i t h a p p a r e n t a c t i v a t i o n e n t h a l p y H

M

k + H . S

-

1

The a p p e a r a n c e o f t h e f a c t o r (Cd) r e q u i r e s some comments. E q . ( 6 7 ) c l e a r l y be- comes i n v a l i d when Cd t e n d s towards z e r o . Then o t h e r mechanisms l i m i t D k , e . g . t h o s e d i s c u s s e d f o r p u r e c r y s t a l s . As a f i r s t a p p r o x i m a t i o n we may superimpose t h e k i n k v i s c o s i t i - e s due t o d i f f e r e n t mechanisms, s o t h a t i n t h e r e g i o n where one mechanism r e p l a c e s a n o t h e r r e c i p r o c a l d i f f u s i v i t i e s s h o u l d be added.

We t r e a t t h e t e m p e r a t u r e dependence o f Cd by means of a s i m p l e model u s e d i n a s i m i l a r c o n t e x t by R.deBAT1ST [64]. The model assumes t h a t we may d i v i d e t h e s i t e s a v a i l a b l e t o t h e f o r e i g n . a t o m s i n t o b u l k s i t e s and d i s l o c a t i o n s i t e s w i t h a f r e e

B

e n t h a l p y o f b i n d i n g Gd. We d e n o t e t h e number o f a v a i l a b l e o r o c c u p i e d b u l k s i t e by nb o r Nb, and t h e number of a v a i l a b l e o r o c c u p i e d d i s l o c a t i o n s i t e s by nd o r Nd ( s a y , p e r u n i t volume). S t r a i g h t f o r w a r d s t a t i s t i c a l thermodynamics g i v e s u s 1641 o r , s i n c e f o r d i l u t e s o l u t i o n s n b << Nb, Here Cb 5 nb/Nb d e n o t e s t h e b u l k c o n c e n t r a t i o n , Cd = nd/Nd t h e c o n c e n t r a t i o n of d i s l o - c a t i o n s . E q . ( 7 0 ) i s p a r t i c u l a r l y u s e f u l i f t h e f o r e i g n - a t o m c o n c e n t r a t i o n i s s o h i g h B t h a t Cb may be c o n s i d e r e d a s c o n s t a n t . I m p o r t a n t l i m i t i n g c a s e s a r e Cbexp(G /kT)>, l ,

B

c o r r e s p o n d i n g t o a h i g h b i n d i n g e n t h a l p y and h i g h c o n c e n t r a t i o n s , and Cbexp(G /kT)

<< 1 , c o r r e s p o n d i n g t o s m a l l b i n d i n g e n t h a l p i e s and s m a l l c o n c e n t r a t i o n s . I n t h e f i r s t c a s e Cd r e a c h e s i t s s a t u r a t i o n v a l u e and i s i n d e p e n d e n t of t e m p e r a t u r e , i n t h e second c a s e Cd shows a t e m p e r a t u r e dependence a c c o r d i n g t o

(23)

u n d e r t h e a u x i l i a r y c o n d i t i o n

w i t h t h e s o l u t i o n

6. A p p l i c a t i o n t o R e l a x a t i o n P r o c e s s e s a n d Comparison w i t h E x p e r i m e n t s .

( i ) The Bordoni R e l a x a t i o n . - The c l a s s i c a l f i e l d of a p p l i c a t i o n of t h e t h e o r y of k i n k - p a i r f o r m a t i o n i s t h e Bordoni r e l a x a t i o n i n f c c m e t a l s (comp. S e c t . l ) . Here H: i s n e g l i g i b l y s m a l l . According t o t h e d i s c u s s i o n of S e c t . 5 ( i ) t h e k i n k d i f f u s i v i t y i s e i t h e r t e m p e r a t u r e i n d e p e n d e n t o r d e c r e a s e s w i t h i n c r e a s i n g t e m p e r a t u r e . T h i s means

t h a t , depending o n t h e l e n g t h of t h e d i s l o c a t i o n segments, t h e r e l a t i o n s h i p between t h e e f f e c t i v e a c t i v a t i o n e n e r g y d e r i v e d from A r r h e n i u s p l o t s of t h e r e l a x a t i o n time a r e g i v e n by e i t h e r ( 5 1 a ) o r ( 5 2 a ) 7 ) w i t h a n e g l i g i b l e o r s m a l l p o s i t i v e v a l u e of d I n D k / d ( l / k T ) . A d e t a i l e d comparison w i t h e x p e r i m e n t s i s beyond t h e s c o p e o f t h i s p a p e r . The r e a d e r i s r e f e r r e d t o t h e work of ENGELKE [44,45] and of FANTOZZI e t a l .

[ 201

.

( i t ) The y - r e l a x a t i o n i n p u r e bcc m e t a l s , - F o l l o w i n g R.G.CHAMBERS [65] t h e y - r e l a x a - t i o n i s d e f i n e d a s b e i n g r e l a t e d t o t h e long-range motion of d i s l o c a t i o n s i n p l a s t i c d e f o r m a t i o n . According t o SEEGER and

BESTAK

[ 2 4 ] t h e y - r e l a x a t i o n i n bcc m e t a l s i s due t o t h e f o r m a t i o n of k i n k p a i r s on a <111>/2 s c r e w d i s l o c a t i o n s . T h i s i n t e r p r e - t a t i o n h a s r e c e n t l y b e e n c o n f i r m e d i n c o n s i d e r a b l e d e t a i l .

There i s a l a r g e body of e v i d e n c e t h a t a t low and i n t e r m e d i a t e t e m p e r a t u r e s t h e f l o w - s t r e s s of b c c m e t a l s i s c o n t r o l l e d by t h e motion of t h e above-mentioned s c r e w d i s l o c a t i o n s [66]. Recent measurements by ACKERmNN L671 on t h e t e m p e r a t u r e and s t r a i n - r a t e dependence of t h e f l o w s t r e s s of h i g h - p u r i t y niobium have c o n f i r m e d t h e k i n k - p a i r f o r m a t i o n t h e o r y of t h e f l o w s t r e s s L681 i n g r e a t d e t a i l . E . g . , t h e tempera- t u r e and s t r a i n - r a t e dependence f o l l o w i n g from t h e e x p r e s s i o n s d e r i v e d o f S e c t . 2 i n - c l u d i n g t h e t r a n s i t i o n between t h e d i f f e r e n t H ( U ) laws a t

a

=

:

c o u l d be v e r i f i e d

kp

and t h e q u a n t i t i e s 2 Hk + H: = ( 0 . 6 7

+

0.02)eV and a3 bsE1 c o u l d be d e r i v e d from t h e d a t a .

Références

Documents relatifs

control these collective effects: when recovery (by cross-slip and/or climb) is effective, dense dislocation arrays tend to form stable structures which minimize

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

However: each site will encounter of tlie order of 0.2 vac:incies bound to impurity ions, and tlie dislocation must sweep up many of these vacancies to acquire

Interesting, however, is that the radii of curvature for the trailing partials in the high stress deformed crystals in general are found too large, so that the force

To account for the fact that in samples with high interstitial solute contents the intrinsic dislocation relaxation can be observed even in the presence of some atppm

Résumé.- Nous présentons les méthodes et les modèles utilisés pour calculer les énergies et les configurations des défauts ponctuels situés dans le coeur des dislocations dans