• Aucun résultat trouvé

HYDROGEN-DISLOCATION INTERACTIONS AND INTRINSIC DISLOCATION RELAXATION IN NIOBIUM

N/A
N/A
Protected

Academic year: 2021

Partager "HYDROGEN-DISLOCATION INTERACTIONS AND INTRINSIC DISLOCATION RELAXATION IN NIOBIUM"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00220967

https://hal.archives-ouvertes.fr/jpa-00220967

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HYDROGEN-DISLOCATION INTERACTIONS AND INTRINSIC DISLOCATION RELAXATION IN

NIOBIUM

M. Maul, H. Schultz

To cite this version:

M. Maul, H. Schultz. HYDROGEN-DISLOCATION INTERACTIONS AND INTRINSIC DISLOCA- TION RELAXATION IN NIOBIUM. Journal de Physique Colloques, 1981, 42 (C5), pp.C5-73-C5-78.

�10.1051/jphyscol:1981510�. �jpa-00220967�

(2)

page C5-73

HYDROGEN-DISLOCATION INTERACTIONS AND INTRINSIC DISLOCATION RELAXATION

IN

NIOBIUM

M. Maul and H. Schultz

Max-PZanck Institut fiir MetaZZforschung, Institut fiir Physik, Heisenbergstr.1, 0-7000 Stuttgart 80 and Institut fiir Theoretische und Angewandte Physik der Universittit Stuttgart, F. R. G.

Abstract.- The dislocation relaxation between 100 K and 200 K (IkHz) in plastically deformed niobium, formerly named "a-relax- ation" is a hydrogen Snoek-Koster relaxation (cold work relaxa- tion). This is shown by experiments on extremely degassed samples, which contained controlled amounts of hydrogen and/or oxygen.

The intrinsic, hydrogen-free dislocation relaxation appears bet- ween 30 K and 70 K (IkHz), the exact peak location depends on the interstitial (0,N) content. This relaxation is probably iden- tical with the "6 peak", observed earlier by Vazzolai and Nuovo.

1. Experiment.- In an ultra high vacuum system the internal friction of deformed Nb single crystals was measured in the temperature range from 15 K to 320 K by bending oscillations (1 kHz). All samples got a

"standard" degassing treatment by heating 3 hours at 2 3 0 0 ~ ~ and 10 -10 mbar to remove oxygen and nitrogen to a level of some atppm. It could be shown that the samples, following this standard treatment, still contained 5 atppm hydrogen, in contrast to thermodynamic equilibrium considerations, which let expect much lower H contents. After degassing, the sample surface was sealed with a surface oxyde in a low pressure oxygen atmosphere at 200°c, to protect the sample against hydrogen pick up. For extrem hydrogen degassing (<I atppm) long time degassing treatments (2 days, 1 week) at 1 0 0 0 ~ ~ and mbar were applied in connection with the "standard" treatment.

Some samples were doped with oxygen. Subsequently all samples were doped with hydrogen, usually by electrolytic charging in 10% H2S04.

The oxygen concentration was determined by residual resistance measure- ments. The hydrogen concentration was determined by a new method based on residual resistance measurements on attached niobium foils /I/.

All specimens were deformed in the apparatus by bending.

2. Results.- In specimens of low interstitial solute content a large internal friction peak appears after deformation. This peak was called in the past "a-relaxation" and is shown in fig.1 in a sample with 5 atppm residual hydrogen concentration. As we will show below this peak has to be considered as a hydrogen cold-work ~ e a k (Snoek-Koster Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981510

(3)

C5-74 JOURNAL DE PHYSIQUE

0 I I

0 100 200 300

T(K)

-

F i g . I : The a H - r e l a x a t i o n i n h i g h p u r i t y niobium a f t e r d e f o r m a t i o n a t 320 K .

CO< 5 atppm

F = 1.3 kHz 1 2 3 1 5 6 7

100 200 300

T(K)

-

F i g . 3 : I n f l u e n c e of hydrogen on t h e a H - r e l a x a t i o n a f t e r d e f o r m a t i o n a t 320 K i n h i g h p u r i t y Nb

1 cH = 7 atppm

2 26 atppm

3 34 atppm

4 75 atppm

5 1 3 6 atppm

6 > 200 atppm

7 > 200 atppm

F i g . 2 : I n f l u e n c e of oxygen on t h e a H - r e l a x a t i o n i n Nb s i n g l e c r y s t a l s a f t e r d e f o r m a t i o n a t 320 K

F i g . 4 : I n f l u e n c e of H on t h e a n - r e l a x a t i o n a f t e r d e f o r m a t i o n a t 320 K i n a 0-doped Nb-sample c = 204 atppm

c = 7 atppm

2 16 atppm

3 24 atppm

4 37 atppm

5 106 atppm

r e l a x a t i o n ) . T h e r e f o r e we c a l l t h i s peak h e r e a H - r e l a x a t i o n . I n f l u e n c e of oxygen

The a H - r e l a x a t i o n i s s u p p r e s s e d and s h i f t e d t o lower t e m p e r a t u r e s w i t h i n c r e a s i n g oxygen c o n c e n t r a t i o n . T h i s was a l s o found i n /2/ a f t e r n i t r o g e n - d o p i n q o f Ta. Sample Nb 67/1 was d e g a s s e d 2 days a t 1 0 0 0 ~ ~ and 10-lo mbar t o lower t h e r e s i d u a l H c o n c e n t r a t i o n . A s a consequence of t h i s t r e a t m e n t an a d d i t i o n a l s m a l l peak a t 30 K can be o b s e r v e d . I n f l u e n c e of hydrogen

The i n f l u e n c e of H-dopings on t h e a H - r e l a x a t i o n depends on t h e concen- t r a t i o n of i n t e r s t i t i a l s o l u t e s ( 0 , N ) . T h i s can be s e e n from f i g . 3 a n d 4 . I n samples w i t h low oxygen c o n t e n t and a w e l l developed a H - r e l a x a t i o n

( f i g . 3 ) no i n f l u e n c e of hydrogen on t h e peak h e i g h t c a n be o b s e r v e d .

(4)

s h i f t o c c u r s by H doping. F i g . 3 shows t h i s on a sample w i t h an i n t e r - m e d i a t e 0 c o n c e n t r a t i o n (204 atppm)

.

T h i s i n c r e a s e of t h e a H - r e l a x a t i o n

i n samples w i t h h i g h e r 0 c o n c e n t r a t i o n s means, t h a t t h e r e l a x a t i o n s t r e n g t h and hence t h e m o b i l i t y o f d i s l o c a t i o n segments i s i n c r e a s e d by H-dopings. We s u g g e s t e d / 3 / , t h a t t h i s may be due t o a r e d u c t i o n of l o n g r a n g e f o r c e s between oxygen and d i s l o c a t i o n s .

F i g . 5 : Temperature of t h e a H - r e l a x a t i o n a s a f u n c t i o n o f t h e H c o n c e n t r a t i o n

+

e x p e r i m e n t a l p o i n t s

--

c a l c u l a t e d by t h e model of t h e Snoek-Koster r e l a x a t i o n / 4 , 5 /

The s h i f t of t h e r e l a x a t i o n t o h i g h e r t e m p e r a t u r e s a f t e r hydrogen dopings c a n b e w e l l d i s c r i b e d by t h e models of t h e Snoek-Koster r e l a x a - t i o n (cold-work peak) / 4 , 5 / . F i g . 5 f o r example show t h e peak tempera- t u r e a s a f u n c t i o n of hydrogen c o n c e n t r a t i o n i n t h e sample. The good agreement between t h e e x p e r i m e n t a l p o i n t s ( c r o s s e s ) and t h e model c a l - c u l a t i o n ( c u r v e ) i s a s t r o n g i n d i c a t i o n t h a t t h i s i s indeed a hydrogen c o l d work peak a s s u g g e s t e d e a r l i e r by Mazzolai e t a l . /6/ and F e r r o n e t a l . / 7 / .

The i n t r i n s i c d i s l o c a t i o n r e l a x a t i o n

To o b s e r v e t h e r e l a x a t i o n p r o c e s s e s c a u s e d by hydrogen-free d i s l o c a t i o n segments we t r i e d t o remove t h e hydrogen from t h e samples by a long t i m e d e g a s s i n g t r e a t m e n t ( 1 week a t 1 0 0 0 ~ ~ and 1 0 - l o mbar)

.

The e x p e r i m e n t a l r e s u l t s o b t a i n e d on such a sample a r e shown i n f i g . 6 and 7. A f t e r d e f o r m a t i o n a t 20 K and s u b s e q u e n t a n n e a l i n g a t 300 K t o g e t a s t a b l e s t a t e , two r e l a x a t i o n peaks a r e v i s i b l e ( c u r v e 1 , f i g . 6)

.

A f t e r measuring c u r v e 1 t h e UHV pump system was t u r n e d o f f , s o that t h e specimen took up some hydrogen from t h e r e s i d u a l g a s . A f t e r H con- t a m i n a t i o n t h e 70 K peak i s reduced and s h i f t e d t o lower t e m p e r a t u r e s whereas t h e a H - r e l a x a t i o n i s enhanced and s h i f t e d t o h i g h e r ternperatu- r e s . The i n c r e a s e of t h e a H - r e l a x a t i o n i s c o n n e c t e d w i t h t h e d i s a p p e a r - a n c e of t h e d i s l o c a t i o n r e l a x a t i o n p r o c e s s e s a t 30-70 K . S i m i l a r be- h a v i o u r was o b s e r v e d and d i s c u s s e d i n Fe / 8 / . No f u r t h e r i n c r e a s e of

(5)

C5-76 JOURNAL DE PHYSIQUE

t h e a H - r e l a x a t i o n w i t h i n c r e a s i n g H - c o n c e n t r a t i o n s h o u l d o c c u r i f a t 30-70 K a l l d i s l o c a t i o n s a r e p i n n e d by H and hence a r e immobile. T h i s i s i n d e e d t h e c a s e a s c a n b e s e e n from f i g . 6 c u r v e 3 and 4 , and f i g . 3 .

F i g . 6 : I n f l u e n c e of hydrogen o n t h e r e l a x a t i o n p r o c e s s e s i n a Nb s i n g l e c r y s t a l a f t e r e x t r e m hydrogen d e g a s s i n g (1 week) 1 c H < < 1 atppm

2 1 atppm

3

-

5-10 atppm

4 -10-20 atppm

F i g . 7 : Frequency (modulus) c u r v e s c o r r e s p o n d i n g t o t h e damping c u r v e s i n f i g . 6 .

The d e s c r i b e d e x p e r i m e n t a l f a c t s s u g g e s t t h a t t h e 70 K peak i s due t o t h e movement of h y d r o g e n - f r e e d i s l o c a t i o n segments whereas t h e a - r e l a x a t i o n i s c a u s e d by t h e same d i s l o c a t i o n segments, b u t d e c o r a t e d H w i t h hydrogen. T h i s i n t e r p r e t a t i o n i s f u r t h e r s u p p o r t e d by t h e modulus

( f r e q u e n c y ) c u r v e i n f i g . 7 . A comparison of c u r v e s 1 and 2 shows t h a t t h e r e l a x a t i o n s t r e n g h t of t h e 70 K peak i s s h i f t e d t o t h e a H - r e l a x a t i o n by hydrogen doping and hence t h a t t h e same d i s l o c a t i o n s a r e i n v o l v e d i n b o t h r e l a x a t i o n p r o c e s s e s .

Samples w i t h h i g h i n t e r s t i t i a l s o l u t e c o n t e n t s

I n a sample w i t h h i g h oxygen c o n c e n t r a t i o n (900 atppm) ( f i g . 8 , c u r v e 1 ) a second r e l a x a t i o n p r o c e s s i s v i s i b l e i n t h e v i c i n i t y of 30 K . A s a consequence of t h e h i g h 0 c o n c e n t r a t i o n t h e cxH-relaxation i s v e r y s m a l l and a p p e a r s a t a r e l a t i v e l y low t e m p e r a t u r e (150 K ) . Curve 3 i n f i g . 8 shows a measurement o f V a z z o l a i e t a l . / 6 / o b t a i n e d on a Nb sample w i t h h i g h i n t e r s t i t i a l s o l u t e c o n t e n t (0,N) a t a f r e q u e n c y of 45 kHz.

A s i n o u r measurement ( c u r v e 1 ) two r e l a x a t i o n peaks a r e o b s e r v a b l e ,

(6)

sample of Mazzolai et al., we believe that in both measurements the same relaxation peaks are observed.

After doping our sample with -50 atppm hydrogen the 30 K peak has disappeared and the aH-relaxation is enhanced by a factor of 10. This behaviour corresponds to that expected for an intrinsic dislocation peak (70 K peak, fiq.6), which is suppressed by hydrogen and the in- crease of the ~ ~ - ~ e a k corresponds to samples with high oxygen concen- tration.

I

Fig.8 : Comparison of our meas-

?,

s urements (IkHz) on a Nb single

X

b crystal (-900 atppm oxygen) after

deformation (curve 1 ) and subse-

05- quent hydrogen doping (-50 atppm)

with one result of Mazzolai et al.

/6/(45kHz) obtained on a sample with high interstitial solute

content after deformation.

Curve 2: Nb

+

50 atppm H

O o Curve 3: Mazzolai et al.

T(K)

- -

These experimental facts lead to the conclusion, that the 30 K peak is an intrinsic dislocation peak as proposed earlier by Mazzolai et al.. The microscopic mechanism of the 30 K and the 70 K peak should be the same. The difference of the peak temperatures in high purity specimen (peak at 70 K) and in specimen with high oxygen concentrations

(peak at 30 K) is caused by the reduction of the free dislocation lenght due to the high oxygen concentration.

To account for the fact that in samples with high interstitial solute contents the intrinsic dislocation relaxation can be observed even in the presence of some atppm hydrogen,we suggest that in such samples hydrogen atoms can be partly trapped at interstitial solute atoms. This has the effect that the dislocations are partly free of hydrogen even at low temperatures and the intrinsic dislocation peak may be observed. Due to the investigations reported in this paper on Nb, and regarding the similar properties of V and Ta in respect to hydrogen solubility and the work of other authors, cited above, it can be ex- pected that in all three metals the 150/200 K ( 1 kHz) dislocations relaxation effects are caused by hydrogen decorated dislocation seg- ments. This view gets support by /9/ and /lo/.

(7)

C5-78 JOURNAL DE PHYSIQUE

I n summary, d u e t o t h e d e t a i l e d e x p e r i m e n t a l r e s u l t s o n Nb, a s g i v e n i n t h i s p a p e r , we a r e c h a n g i n g o u r o p i n i o n c o n c e r n i n g t h e n a t u r e o f t h e 1 5 0 / 2 0 0 K d i s l o c a t i o n r e l a x a t i o n e f f e c t s i n g r o u p V t r a n s i t i o n m e t a l s , a s e x p r e s s e d i n / 2 , 3 / , / 1 2 - 1 7 / . T h i s d i s l o c a t i o n r e l a x a t i o n e f f e c t i s a h y d r o g e n S n o e k - K o e s t e r r e l a x a t i o n ( H c o l d - w o r k p e a k ) a s s u g g e s t e d b y o t h e r a u t h o r s c i t e d a b o v e . More d e t a i l s a r e g i v e n i n /18/.

R e f e r e n c e s :

/ I / M. Waul, T h e s i s U n i v e r s i t a t S t u t t g a r t ( 1 9 8 1 ) / 2 / G . K n o b l a u c h , A c t a M e t .

24,

491 ( 1 9 7 6 )

/ 3 / H. S c h u l t z , U. R o d r i a n , a n d M. Maul, P r o c . o f t h e 3 r d E u r o p e a n C o n f e r e n c e o n I n t e r n a l F r i c t i o n a n d U l t r a s o n i c A t t e n u a t i o n i n S o l i d s , M a n c h e s t e r 1 9 7 9 , E d i t o r : C.C. S m i t h , Pergamon P r e s s , O x f o r d 1 9 8 0 , p. 19

/ 4 / G . SchBck, A c t a M e t . 1 1 , 617 ( 1 9 6 3 )

/ 5 / A. S e e g e r , p h y s . s t a t . s o l . ( a ) 5 5 , 457 ( 1 9 7 9 )

/ 6 / F.M. M a z z o l a i a n d M. Nuovo, S o l i d S t a t e Commun.

2,

1 0 3 ( 1 9 6 9 ) / 7 / G . F e r r o n , M . Q u i n t a r d , a n d J . d e F o u q u e t , P r o c . 6 t h I n t e r n a t i o n -

a l C o n f . o n I n t e r n a l F r i c t i o n a n d U l t r a s o n i c A t t e n u a t i o n i n S o l i d s , Tokyo 1 9 7 7 . E d s . R. H a s i g u t i a n d N . M i k o s h i b a U n i v e r s i t y o f Tokyo P r e s s , 1977 p . 671

/ 8 / K . T a k i t a a n d K . S a k a m o t o , S c r i p t a M e t .

10,

399 ( 1 9 7 6 )

/ 9 / K . S h i b a t a , M. Koiwa, a n d 0 . Y o s h i n a r i , T r a n s . J a p . I n s t . M e t . 1 9 , 491 ( 1 9 7 8 )

/ l o / K u r a m o c h i , H . M i z u b a y a s h i , a n d S . Okuda, S c r i p t a M e t .

14,

1 0 4 7 ( 1 9 8 0 )

/ 1 1 / S . Okuda, H. M i z u b a y a s h i , N . K u r a m o c h i , S . Amano, M . S h i m a d a , a n d H . T a t e k a w a , t o b e p u b l . P r o c . o f t h e 7 t h I n t e r n a t i o n a l C o n f . o n I n t e r n a l F r i c t i o n a n d U l t r a s o n i c A t t e n u a t i o n i n S o l i d s ,

L a u s a n n e 1 9 8 1

/ 1 2 / G . K n o b l a u c h , W . B e n o i t , a n d H . S c h u l t z , S c r i p t a M e t .

9 ,

657 ( 1 9 7 5 )

/ 1 3 / G. K n o b l a u c h , H . S c h u l t z e t W . B e n o i t , H e l v . P h y s . A c t a

47,

396 ( 1 9 7 4 )

/ 1 4 / R . Klam, H.-R. S c h a e f e r , a n d H . S c h u l t z , P r o c . o f t h e 6 t h I n t e r - n a t i o n a l C o n f . o n I n t e r n a l F r i c t i o n a n d U l t r a s o n i c A t t e n u a t i o n i n S o l i d s , Tokyo 1 9 7 7 , E d s . R . H a s i g u t i a n d N . M i k o s h i b a U n i v e r s i t y o f Tokyo P r e s s , 1 9 7 7 , p . 599

/ 1 5 / R. Klam, H . S c h u l t z , a n d H.-E. S c h a e f e r , A c t a M e t .

27,

205 ( 1 9 7 9 )

/ 1 6 / R . Klam, H . S c h u l t z , a n d H.-E. S c h a e f e r , A c t a M e t .

28,

259 (19801 / 1 7 / H.-E. S c h a e f e r , H . S c h u l t z , a n d H.-P. S t a r k , P r o c . o f t h e 3rd

E u r o p e a n C o n f e r e n c e o n I n t e r n a l F r i c t i o n a n d U l t r a s o n i c A t t e n u a - t i o n i n S o l i d s , M a n c h e s t e r 1 9 7 9 , E d i t o r : C.C. S m i t h , Pergamon P r e s s , O x f o r d 1 9 8 0 , p . 25

/ 1 8 / M. Maul a n d H . S c h u l t z , t o b e p u b l i s h e d

Références

Documents relatifs

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come

Although having an average stress exponent near 5, the pure aluminum data demonstrate a power law exponent of about 3 at the lowest strain rates. The

In well annealed specimens, an (H)-peak is observed at 215-225 K, which has a linearly x-dependent amplitude and exhibits an isotope effect on its activation energy

By analyzing the temperature-dependent isochronal relaxation spectra of non-deformed and cold- worked α-Fe and thermally aged Fe-1%Cu, we observed the structure at about 320 K

In the present paper dislocation properties were observed with the help of the dislocation luminescence spectrum discovered earlier /3&gt;/» It should be noted, however, that

In contrast to that is the increase of y2 with increasing oxygen concentration (cp. 4) and its stability with oxygen present at the dislocation line (fig. 4): the peakheight

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

It can be seen, that (i) the y-peak is significantly increased by low temperature defor- mation, and (ii) the relative heiqhts of the low temperature parts of the a-relaxation