Article
Reference
Measurement of the exclusive γγ → μ + μ − process in proton–proton collisions at √s = 13 TeV with the ATLAS detector
ATLAS Collaboration AKILLI, Ece (Collab.), et al.
Abstract
The production of exclusive γγ→μ+μ− events in proton–proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb −1 . The measurement is performed for a dimuon invariant mass of 12 GeV
ATLAS Collaboration, AKILLI, Ece (Collab.), et al . Measurement of the exclusive γγ → μ + μ − process in proton–proton collisions at √s = 13 TeV with the ATLAS detector. Physics Letters. B , 2018, vol. 777, p. 303-323
DOI : 10.1016/j.physletb.2017.12.043
Available at:
http://archive-ouverte.unige.ch/unige:101030
Disclaimer: layout of this document may differ from the published version.
1 / 1
Contents lists available atScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb
1 66
2 67
3 68
4 69
5 70
6 71
7 72
8 73
9 74
10 75
11 76
12 77
13 78
14 79
15 80
16 81
17 82
18 83
19 84
20 85
21 86
22 87
23 88
24 89
25 90
26 91
27 92
28 93
29 94
30 95
31 96
32 97
33 98
34 99
35 100
36 101
37 102
38 103
39 104
40 105
41 106
42 107
43 108
44 109
45 110
46 111
47 112
48 113
49 114
50 115
51 116
52 117
53 118
54 119
55 120
56 121
57 122
58 123
59 124
60 125
61 126
62 127
63 128
64 129
65 130
Measurement of the exclusive γ γ → μ+μ
− process in proton–proton collisions at √
s = 13 TeV with the ATLAS detector
.TheATLASCollaboration
a r t i c l e i n f o a b s t ra c t
Articlehistory:
Received15August2017
Receivedinrevisedform13December2017 Accepted13December2017
Availableonlinexxxx Editor:W.-D.Schlatter
Theproductionofexclusiveγ γ→μ+μ−eventsinproton–protoncollisionsatacentre-of-massenergy of13 TeVismeasuredwiththeATLASdetectorattheLHC,usingdatacorresponding toanintegrated luminosity of 3.2 fb−1. The measurement is performed for a dimuon invariant mass of 12 GeV<
mμ+μ−<70 GeV.Theintegratedcross-sectionisdeterminedwithinafiducialacceptanceregionofthe ATLASdetectoranddifferentialcross-sectionsaremeasuredasafunctionofthedimuoninvariantmass.
The results are comparedto theoretical predictionsbothwith and withoutcorrections for absorptive effects.
©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
When proton–proton(pp) beams collideat the LHC, typically rarephoton–photoninduced(γ γ)interactionsoccuratperceptible rateandprovideaunique opportunitytostudyhigh-energyelec- troweakprocesses[1].Comparedtootherfinalstates,thedilepton production is a standard candle process of the photon-induced productionmechanism,thanks toits sizeablecross-section. Using pp collisionsatacentre-of-mass energyof√
s=7 TeV,measure- mentsofpp(γ γ)→μ+μ−ppproduction(referredtoasexclusive
γ γ →μ+μ−) were performed by the ATLAS and CMS collabo- rations [2,3]. The exclusive γ γ →e+e− process was also mea- sured [3,4]. A similar experimental signature has been used to studythe γ γ→W+W−reaction[5–7].
Theexclusive γ γ→μ+μ− productionprocess competeswith the two-photon interactions involving single- or double-proton dissociation due to the virtual photon exchange (Fig. 1 (a–c)).
The electromagnetic (EM) break-up of the proton typically re- sults in a production of particles at small angles to the beam direction, which can mimic the exclusive process. However, the proton-dissociative processes have significantly different kine- matic distributions compared to the exclusive reaction, allow- ing an effective separation of the different production mecha- nisms.
Ingeneral, thephoton-inducedproductionofleptonpairscon- tributesup to afew percent tothe inclusivedileptonproduction atLHCenergies[8–10].
E-mailaddress:atlas.publications@cern.ch.
Inordertoreproducethedata,thecalculationsofsuchphoton- inducedreactions,inparticularexclusive γ γ→μ+μ−production, need totake intoaccount the protonabsorptiveeffects [3].They are mainly related to additional gluon interactions between the protons(orprotonremnants),showninFig. 1(d),whichtakeplace inaddition to theQEDprocess. The sizeof theabsorption isnot expectedto bethe sameforexclusiveanddissociativeprocesses;
itmayalsodependonthereactionkinematics.Theseeffectslead to the suppression of exclusive cross-sections (typically around 10–20%)byproducingextrahadronicactivityintheeventbesides the final-state muons. Recent phenomenological studies suggest that the exclusive cross-sections are suppressed, with a survival factorthatdecreaseswithmass[11,12].
In thispaper, a measurement ofexclusive dimuon production in ppcollisions at√
s=13 TeV is presentedformuon pairswith invariant mass12 GeV<mμ+μ−<70 GeV.The differentialcross- sections,dσ/dmμ+μ−,aredeterminedwithinafiducialacceptance region. In the region 30 GeV<mμ+μ− <70 GeV, the minimum transversemomentumofeachmuonisrequiredtobe10 GeV.For 12 GeV<mμ+μ−<30 GeV, the minimum muon transverse mo- mentum is reduced to 6 GeV by taking advantage of the lower triggerthresholdsavailableby makingadditionalrequirementson muon-pairtopology.Inaddition,bothmuonsaremeasuredinthe pseudorapidity range of |ημ|<2.4. The measurements are com- paredtotheoreticalpredictionsbothwithandwithoutcorrections forabsorptiveeffects.
2. ATLASdetector
TheATLAS experiment[13] attheLHC isa multi-purposepar- ticledetectorwitha forward–backwardsymmetriccylindricalge- https://doi.org/10.1016/j.physletb.2017.12.043
0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
1 66
2 67
3 68
4 69
5 70
6 71
7 72
8 73
9 74
10 75
11 76
12 77
13 78
14 79
15 80
16 81
17 82
18 83
19 84
20 85
21 86
22 87
23 88
24 89
25 90
26 91
27 92
28 93
29 94
30 95
31 96
32 97
33 98
34 99
35 100
36 101
37 102
38 103
39 104
40 105
41 106
42 107
43 108
44 109
45 110
46 111
47 112
48 113
49 114
50 115
51 116
52 117
53 118
54 119
55 120
56 121
57 122
58 123
59 124
60 125
61 126
62 127
63 128
64 129
65 130
Fig. 1.Schematicdiagramsfor(a)exclusive,(b)single-protondissociativeand(c)double-protondissociativetwo-photonproductionofmuonpairsinppcollisions.Theeffect ofadditionalinteractionsbetweentheprotonsisshownin(d).
ometryandnearly4π coverageinsolidangle.1 Itconsistsofinner tracking devices surrounded by a superconducting solenoid, EM and hadronic calorimeters, and a muon spectrometer. The inner detector (ID) provides charged-particle tracking in the pseudora- pidity region |η|<2.5 and vertexreconstruction. It comprises a siliconpixeldetector,asiliconmicrostriptracker,andastraw-tube transition radiation tracker. The ID is surrounded by a solenoid that produces a 2 Taxial magnetic field. Lead/liquid-argon (LAr) samplingcalorimetersprovideEMenergymeasurementswithhigh granularity.Ahadron(steel/scintillator-tile)calorimetercoversthe central pseudorapidity range |η|<1.7.The end-capand forward regions are instrumented withLAr calorimeters forboth the EM and hadronic energy measurements up to |η|=4.9. The muon spectrometer(MS)isoperatedinamagneticfieldprovidedbyair- coresuperconducting toroids andincludes tracking chambers for precisemuonmomentummeasurementsupto|η|=2.7 andtrig- gerchamberscoveringtherange|η|<2.4.
Atwo-level triggersystem[14] selects theevents usedinthe analysis.Thefirstlevelisimplementedincustomelectronics,while thesecondtriggerlevelisaflexiblesoftware-basedsystem.
3. Data,simulatedeventsamplesandtheoreticalpredictions This analysis uses a data set of pp collisions collected at a centre-of-mass energy √
s=13 TeV during 2015 under stable beam conditions. After applying data quality requirements, this datasamplecorrespondstoanintegratedluminosityof3.2 fb−1.
Calculations of the cross-section for exclusive γ γ →μ+μ−
production in pp collisions are based on the Equivalent Photon Approximation(EPA)[15,16]. TheEPArelies onthe propertythat the EM fields produced by the colliding protons can be treated asa beamof quasi-realphotonswith a smallvirtuality of Q2<
0.1 GeV2. Thisfluxofequivalent photonsisdetermined fromthe Fourier transform of the EM field of the proton, takinginto ac- counttheEMformfactors [17].Thecross-sectionforthereaction pp(γ γ)→μ+μ−pp is calculated by convolving the respective photon fluxeswith the elementary cross-section for the process
γ γ →μ+μ−.The signal events forexclusive γ γ →μ+μ− pro- ductionweregeneratedusingtheHerwig7.0[18,19]MonteCarlo (MC)eventgenerator,inwhichthecross-sectionfortheprocessis computedby combiningthe pp EPA withthe leading-order (LO) formula for γ γ →μ+μ−. It is found that the predictions for exclusive γ γ →μ+μ− production from Herwigare identicalto thosefromLpair4.0[20]generator.
1 ATLASusesaright-handed coordinatesystemwith itsoriginat thenominal interactionpointinthecentreofthedetectorandthez-axiscoincidingwiththe axisofthebeampipe.Thex-axispointsfromtheinteractionpointtothecentreof theLHCring,andthey-axispointsupward.Thepseudorapidityisdefinedinterms ofthepolarangleθasη= −ln tan(θ/2),andφistheazimuthalanglearoundthe beampipe withrespecttothe x-axis. Theangulardistance isdefinedas R= ( η)2+( φ)2.Thetransversemomentumisdefinedrelativetothebeamaxis.
The dominant background, photon-induced single-dissociative (S-diss) dimuon production (Fig. 1 (b)), was simulated using Lpair 4.0 with the Brasse [21] and Suri–Yennie [22] structure functions for proton dissociation. For photon virtualities Q2 <
5 GeV2 andmassesofthe dissociating systemmN <2 GeV, low- multiplicitystatesfromtheproductionanddecaysof resonances are usuallycreated.Forhigher Q2 ormN,thesystemdecaysinto avarietyofresonances,whichproducealargenumberofforward particles. The Lpair package was interfaced to JetSet 7.408 [23], wheretheLund[24]fragmentationmodelisimplemented.
The Herwig and Lpair generators do not include any correc- tions toaccountforprotonabsorptiveeffects.Hence thenormali- sationoftheseMCsamplesisfurtherconstrainedbyadata-driven procedure,asdescribedinSection6.
Fordouble-dissociative(D-diss)reactions,Pythia8.175[25]was used withthe NNPDF2.3QED[26]set ofpartondistributionfunc- tions(PDF).TheNNPDF2.3QEDsetusesLOQEDandnext-to-next- to-leading-order (NNLO) perturbative QCD (pQCD) calculations to construct the photon PDF, starting from the initial scale Q02 = 2 GeV2. Additionally,two alternativePDF sets, CT14QED[27]and LUXqed17 [28] are considered. Depending on the multiplicity of thedissociating system,thedefaultPythia8stringormini-string fragmentationmodelwasusedforprotondissociation.Theabsorp- tive effects inD-dissMC eventsare takenintoaccount usingthe defaultmulti-partoninteractionsmodelinPythia8[29].
The NLO pQCD Powheg-Box v2 [30–33] event generator was used with the CT10 [34] PDF to generate both the Drell–Yan (DY) Z/γ∗→μ+μ−and Z/γ∗→τ+τ−events.Itwasinterfaced to Pythia 8.210 [25] applying the AZNLO [35] set of generator- parametervalues(tune)forthemodellingofnon-perturbativeef- fects, includingtheCTEQ6L1[36] PDF set.The productionoftop- quark pair (t¯t) events was also modelled using Powheg-Box,in- terfacedtoPythia6.428 [37].Theeventgeneratorsusedtomodel Z/γ∗→μ+μ−, Z/γ∗→τ+τ− andtt¯ reactions were interfaced toPhotos3.52[38,39]tosimulateQEDfinal-stateradiation(FSR) corrections.
Multiple pp interactionsperbunch crossing(pile-up)wereac- countedforbyoverlayingsimulatedminimum-biasevents,gener- ated with Pythia 8.210 using the A2 tune [40], and reweighting the distribution oftheaverage numberof interactions per bunch crossing inMC simulation tothat observed indata.Furthermore, the simulated samples were weighted such that the z-position distribution of reconstructed pp interaction vertices matches the distribution observed in data. The ATLAS detector response was modelled using the GEANT4 toolkit [41,42] and the same event reconstructionasthatusedfordataisperformed.
The measured distributionof theexclusive γ γ →μ+μ− pro- cess is compared with two models of absorptive corrections in Section8.
Inthefinite-sizeparameterisationapproach[11],theabsorptive effectsareembeddedintheevaluationofthe γ γ luminosity,tak- ingthephotonenergyandimpactparameterdependenceintoac-