• Aucun résultat trouvé

A-infinity GL(N)-equivariant matrix integrals-III. Tree-level calculations and variations of nc-Hodge structure on complex projective manifolds.

N/A
N/A
Protected

Academic year: 2021

Partager "A-infinity GL(N)-equivariant matrix integrals-III. Tree-level calculations and variations of nc-Hodge structure on complex projective manifolds."

Copied!
29
0
0

Texte intégral

(1)

HAL Id: hal-00494633

https://hal.archives-ouvertes.fr/hal-00494633

Submitted on 28 Jul 2010

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

A-infinity GL(N)-equivariant matrix integrals-III.

Tree-level calculations and variations of nc-Hodge

structure on complex projective manifolds.

Serguei Barannikov

To cite this version:

Serguei Barannikov. A-infinity GL(N)-equivariant matrix integrals-III. Tree-level calculations and

variations of nc-Hodge structure on complex projective manifolds.. D-branes, Effective Actions and

Homological Mirror Symmetry, Jun 2010, Vienna, Austria. �hal-00494633�

(2)

A

in…nity GL

(

N

)

equivariant matrix integrals-III.

Tree-level calculations and variations of nc-Hodge

structure on complex projective manifolds.

Serguei Barannikov

IMJ, CNRS

(3)

Tree level BV on complex projective manifold (g=0

calculations)

nc-BV on Symm(Cλ[1+d]), Cλ= ∞j=0(U[1] j) Z/j Z h∆S+1 2fS , Sg =0, S =g

0,i h 2g 1+iS g ,i, Sg ,i 2Symmi(Cλ[1+d]), ,∆ exp(S / h) =0 fS0,1,S0,1g =0, - A∞ CY algebra

(4)

Tree level BV on complex projective manifold (g=0

calculations)

nc-BV on Symm(Cλ[1+d]), Cλ= ∞j=0(U[1] j) Z/j Z h∆S+1 2fS , Sg =0, S =g

0,i h 2g 1+iS g ,i, Sg ,i 2Symmi(Cλ[1+d]), ,∆ exp(S / h) =0 fS0,1,S0,1g =0, - A∞ CY algebra

M- smooth projective/C, c1(TM) =0, ̟02Γ(M, KM),!BV operator on

Ω0, (M, Λ T),

(5)

Tree level BV on complex projective manifold (g=0

calculations)

nc-BV on Symm(Cλ[1+d]), Cλ= ∞j=0(U[1] j) Z/j Z h∆S+1 2fS , Sg =0, S =g

0,i h 2g 1+iS g ,i, Sg ,i 2Symmi(Cλ[1+d]), ,∆ exp(S / h) =0 fS0,1,S0,1g =0, - A∞ CY algebra

M- smooth projective/C, c1(TM) =0, ̟02Γ(M, KM),!BV operator on

Ω0, (M, Λ T),

(∆α) `̟0=(α`̟0)

(tree level) BV equation on Ω0, (M, Λ T)

u∆γ+∂γ+1

2[γ, γ] =0,

(6)

Tree level BV-equation on complex projective manifold

(tree level) BV equation on Ω0, (M, Λ T)

u∆γ+∂γ+1

(7)

Tree level BV-equation on complex projective manifold

(tree level) BV equation on Ω0, (M, Λ T)

u∆γ+∂γ+1

2[γ, γ] =0, the …rst order term γ02Ω0, (M, Λ T)

∂γ0+1

2[γ0,γ0] =0

(8)

Tree level BV-equation on complex projective manifold

(tree level) BV equation on Ω0, (M, Λ T)

u∆γ+∂γ+1

2[γ, γ] =0, the …rst order term γ02Ω0, (M, Λ T)

∂γ0+1 2[γ0,γ0] =0 γ0 A∞-deformations of DbCoh(M) The component γcl0 2Ω0,1(M, T) ∂γcl0 +12[γcl0,γcl

(9)

Noncommutative periods map (B[5])

u∆γ+∂γ+1

2[γ, γ] =0,, (u∆+)exp( 1 uγ) =0

(10)

Noncommutative periods map (B[5])

u∆γ+∂γ+1 2[γ, γ] =0,, (u∆+)exp( 1 uγ) =0 De…ne ru on components of Ω0, (M, Λ T) ruγ=Σp,qu(q p)/2γp,q, γp,q 2Ω0,q(M, ΛpT) (u∆+) !∆+ -local system of(u∆+) cohomology over A1unf0g

(11)

Noncommutative periods map (B[5])

u∆γ+∂γ+1 2[γ, γ] =0,, (u∆+)exp( 1 uγ) =0 De…ne ru on components of Ω0, (M, Λ T) ruγ=Σp,qu(q p)/2γp,q, γp,q 2Ω0,q(M, ΛpT) (u∆+) !∆+ -local system of(u∆+) cohomology over A1unf0g

(t, u) = Z Mruexp( 1 uγ) `̟0 Ω(t, u) 2 HDR(M)((u))bOMΛT t 2 MΛT, T0MΛT =H (M, Λ T)

(12)

Noncommutative periods map and g=0 Gromov-Witten of

the mirror

Ω(t, u) = Z M ruexp( 1 uγ) `̟0

For γW, normalized using a …ltration W opposite to FHodge([B5],1999):

2 ∂ti∂tjΩ W =u 1Ck ij(t) ∂tkΩ W

(13)

Noncommutative periods map and g=0 Gromov-Witten of

the mirror

Ω(t, u) = Z M ruexp( 1 uγ) `̟0

For γW, normalized using a …ltration W opposite to FHodge([B5],1999):

2 ∂ti∂tjΩ W =u 1Ck ij(t) ∂tkΩ W

(14)

Semi-in…nite (Noncommutative) Hodge structures ([B5]).

The class[exp(γW)̟] =Ω(t, u)is obtained as intersection of moving subspace

(t, u) = L(t) \ (A¢ne space(W )) L(t) HDR(M)((u))bOMΛT

(15)

Semi-in…nite (Noncommutative) Hodge structures ([B5]).

The class[exp(γW)̟] =Ω(t, u)is obtained as intersection of moving subspace

(t, u) = L(t) \ (A¢ne space(W )) L(t) HDR(M)((u))bOMΛT

The semi-in…nite subspaceL(t), t 2 MΛT, is de…ned for arbitrary projective

manifold/C

L(γ0): [ru(exp1

uiγ0)(ϕ0+uϕ1+. . .)], ϕi 2ΩDR

(16)

Semi-in…nite (Noncommutative) Hodge structures ([B5]).

The class[exp(γW)̟] =Ω(t, u)is obtained as intersection of moving subspace

(t, u) = L(t) \ (A¢ne space(W )) L(t) HDR(M)((u))bOMΛT

The semi-in…nite subspaceL(t), t 2 MΛT, is de…ned for arbitrary projective

manifold/C L(γ0): [ru(exp1 uiγ0)(ϕ0+uϕ1+. . .)], ϕi 2ΩDR where γ02Ω0, (M, Λ T), ∂γ0+12[γ0,γ0] =0 uL(t) L(t), ∂tL(t) u 1L(t) ∂uL(t) u 2L(t), L(u) L(uj u=u 1)

implies tt equations, remarkablyD

∂u modules over A

1 with similar

properties appeared in 70s in works of Birkho¤, Malgrange, K.Saito and M.Saito

(17)

Semi-in…nite (Noncommutative) Hodge structures ([B5]).

The class[exp(γW)̟] =Ω(t, u)is obtained as intersection of moving subspace

(t, u) = L(t) \ (A¢ne space(W )) L(t) HDR(M)((u))bOMΛT

The semi-in…nite subspaceL(t), t 2 MΛT, is de…ned for arbitrary projective

manifold/C L(γ0): [ru(exp1 uiγ0)(ϕ0+uϕ1+. . .)], ϕi 2ΩDR where γ02Ω0, (M, Λ T), ∂γ0+12[γ0,γ0] =0 uL(t) L(t), ∂tL(t) u 1L(t) ∂uL(t) u 2L(t), L(u) L(uj u=u 1)

implies tt equations, remarkablyD

∂u modules over A

1 with similar

properties appeared in 70s in works of Birkho¤, Malgrange, K.Saito and M.Saito

Over mod space of complex structures it reduces to VHS

(18)

Noncommutative Hodge structures ([B5]), cont’d

L(t)corresponds via HKR and formality isomorphisms for C (A, A)+ k[ξ,∂ξ] module C (A) to

(19)

Noncommutative Hodge structures ([B5]), cont’d

L(t)corresponds via HKR and formality isomorphisms for C (A, A)+ k[ξ,∂ξ] module C (A) to

L(t) =HC (At) HP(At)

(20)

Noncommutative Hodge structures ([B5]), cont’d

L(t)corresponds via HKR and formality isomorphisms for C (A, A)+ k[ξ,∂ξ] module C (A) to

L(t) =HC (At) HP(At)

Recall HP : C (A)((u)), b+uB, HC (A): C (A)[[u]], b+uB Let A be an arbitrary A∞ algebra, the ∞2subspace HC (A) !HP(A),

uHC (A) HC (A) ∂uHC (A) u 2HC (A) ∂tHC (At) u 1HC (A t),

∂t Getzler ‡at connection on HP(At)

where

rkC[[u]]HC (A) =rkC((u))HP

assumed, i.e. the degeneration of nc Hodge -to-De Rham spectral sequence, proven (Kaledin) for A smooth and compact, Z+ graded, then HC HP,

(21)

Noncommutative Hodge structures ([B5]), cont’d

L(t)corresponds via HKR and formality isomorphisms for C (A, A)+ k[ξ,∂ξ] module C (A) to

L(t) =HC (At) HP(At)

Recall HP : C (A)((u)), b+uB, HC (A): C (A)[[u]], b+uB Let A be an arbitrary A∞ algebra, the ∞2subspace HC (A) !HP(A),

uHC (A) HC (A) ∂uHC (A) u 2HC (A) ∂tHC (At) u 1HC (A t),

∂t Getzler ‡at connection on HP(At)

where

rkC[[u]]HC (A) =rkC((u))HP

assumed, i.e. the degeneration of nc Hodge -to-De Rham spectral sequence, proven (Kaledin) for A smooth and compact, Z+ graded, then HC HP,

(22)

Summation over trees, BCOV lagrangian and BV cyclic

operad.

For W =FHodge, γ(t) =Σγ

ata+∆α(t), ∆(γ) =0

(23)

Summation over trees, BCOV lagrangian and BV cyclic

operad.

For W =FHodge, γ(t) =Σγ

ata+∆α(t), ∆(γ) =0

Ckij(t) =3kijFBCOV(t)

FBCOV(t) =

Z 1

2∂α(t) ^∆α(t) + 1

3!γ(t) ^γ(t) ^γ(t) -critical value of the BCOV Kodaira-Spencer lagrangian

(24)

Summation over trees, BCOV lagrangian and BV cyclic

operad.

For W =FHodge, γ(t) =Σγ

ata+∆α(t), ∆(γ) =0

Ckij(t) =3kijFBCOV(t)

FBCOV(t) =

Z 1

2∂α(t) ^∆α(t) + 1

3!γ(t) ^γ(t) ^γ(t) -critical value of the BCOV Kodaira-Spencer lagrangian

(25)

Summation over trees, BCOV lagrangian and BV cyclic

operad.

For W =FHodge, γ(t) =Σγ

ata+∆α(t), ∆(γ) =0

Ckij(t) =3kijFBCOV(t)

FBCOV(t) =

Z 1

2∂α(t) ^∆α(t) + 1

3!γ(t) ^γ(t) ^γ(t) -critical value of the BCOV Kodaira-Spencer lagrangian

FBCOV is equal to the summation over trees with

(26)

Summation over trees, BCOV lagrangian and BV cyclic

operad.

For W =FHodge, γ(t) =Σγ

ata+∆α(t), ∆(γ) =0

Ckij(t) =3kijFBCOV(t)

FBCOV(t) =

Z 1

2∂α(t) ^∆α(t) + 1

3!γ(t) ^γ(t) ^γ(t) -critical value of the BCOV Kodaira-Spencer lagrangian

FBCOV is equal to the summation over trees with

edges!X ="∆ 1"

(27)

Summation over trees, BCOV lagrangian and BV cyclic

operad.

For W =FHodge, γ(t) =Σγ

ata+∆α(t), ∆(γ) =0

Ckij(t) =3kijFBCOV(t)

FBCOV(t) =

Z 1

2∂α(t) ^∆α(t) + 1

3!γ(t) ^γ(t) ^γ(t) -critical value of the BCOV Kodaira-Spencer lagrangian

FBCOV is equal to the summation over trees with

edges!X ="∆ 1"

vertices!product tensor on Ω0, (M, Λ T)

(28)

Summation over trees, BCOV lagrangian and BV cyclic

operad.

For W =FHodge, γ(t) =Σγ

ata+∆α(t), ∆(γ) =0

Ckij(t) =3kijFBCOV(t)

FBCOV(t) =

Z 1

2∂α(t) ^∆α(t) + 1

3!γ(t) ^γ(t) ^γ(t) -critical value of the BCOV Kodaira-Spencer lagrangian

FBCOV is equal to the summation over trees with

edges!X ="∆ 1"

vertices!product tensor on Ω0, (M, Λ T)

legs!elements of H (Λ T)

Meaning of this : the tree-level Feynman transform of the operad of BV algebras / ∆=0= operad of H (M0,n)

(29)

References:

[B1] S.Barannikov, Modular operads and Batalin-Vilkovisky geometry. IMRN, Vol. 2007, article ID rnm075. Preprint Max Planck Institute for Mathematics 2006-48 (04/2006),

[B2] S.Barannikov, Noncommutative Batalin-Vilkovisky geometry and matrix integrals.«Comptes rendus Mathematique», presented for publication by M.Kontsevich in 05/2009, arXiv:0912.5484; Preprint NI06043 Newton Institute (09/2006), Preprint HAL, the electronic CNRS archive, hal-00102085 (09/2006)

[B3] S.Barannikov, Supersymmetry and cohomology of graph complexes. Preprint hal-00429963; (11/2009).

[B4] S.Barannikov, Matrix De Rham complex and quantum A-in…nity algebras. arXiv:1001.5264, Preprint hal-00378776; (04/2009).

[B5] S.Barannikov, Quantum periods - I. Semi-in…nite variations of Hodge structures. Preprint ENS DMA-00-19. arXiv:math/0006193 (06/2000), Intern. Math. Res. Notices. 2001, No. 23

[B6] S.Barannikov, Solving the noncommutative Batalin-Vilkovisky equation. Preprint hal-00464794 (03/2010). arXiv:1004.2253.

Références

Documents relatifs

À partir d’un tore complexe non projectif, on construit une variété kählérienne compacte X qui n’a pas l’anneau de cohomologie rationnelle d’une variété projective lisse..

These functions have a simple geometric interpretation in terms of the moment map and they are real algebraic, in the sense that they are regular functions when M is regarded as a

In the last section we prove Theorem 1.3 ; one of the main ingredient is to prove that if the manifold M satisfies condition (1), then R − satisfies (S-C) if and only if condition

– There exist differentiable families of 2-dimensional compact complex tori parametrized by an interval that are pointwise isomorphic but not locally isomorphic at a given point..

In Section 4, by using the theory of p-adic differential modules, we shall prove the main theorem, first for Hodge-Tate representations and then for de Rham

Another application suggested by Ludmil Kartzarkov, and proved in Section 13, is a generalization of the theorem of Deligne-Griffiths-Morgan-Sullivan (DGMS) on fundamental groups

As a final illustration of the techniques described in this paper, we will give an example of a class of threefolds for which the polarized cohomology ring with its integral and

MANIFOLDS OF SMOOTH MAPS III : THE PRINCIPAL BUNDLE OF EMBEDDINGS OF A NON-COMPACT SMOOTH MANIFOLD.. by