• Aucun résultat trouvé

Modeling collective axon growth from in vivo data reveals the importance of physical axon-axon interactions

N/A
N/A
Protected

Academic year: 2021

Partager "Modeling collective axon growth from in vivo data reveals the importance of physical axon-axon interactions"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-01483505

https://hal.archives-ouvertes.fr/hal-01483505

Submitted on 6 Mar 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Modeling collective axon growth from in vivo data

reveals the importance of physical axon-axon

interactions

Agustina Razetti, Caroline Medioni, Grégoire Malandain, Florence Besse,

Xavier Descombes

To cite this version:

Agustina Razetti, Caroline Medioni, Grégoire Malandain, Florence Besse, Xavier Descombes. Model-ing collective axon growth from in vivo data reveals the importance of physical axon-axon interactions. Cell biology of the neuron: Polarity, plasticity and regeneration, EMBO, May 2017, Heraklion, Greece. �hal-01483505�

(2)

1

Modeling collective axon growth from in vivo data reveals the

importance of physical axon-axon interactions

Agustina Razetti

1

, Caroline Medioni

2

, Grégoire Malandain

3

, Florence Besse

2

and

Xavier Descombes

3*

1

. Université Côte d’Azur (UCA), University of Nice Sophia Antipolis (UNS), , France.

2

. Université Côte d’Azur (UCA), Institute of Biology Valrose (IBV), Centre National de la Recherche Scientifique (CNRS)-Unité Mixte de Recherche (UMR) 7277, Institut National de la Santé et de la Recherche Médicale (INSERM)-UMR1091, Nice, France.

3

. Université Côte d’Azur (UCA), INRIA, France.

*All the authors belong to the Morpheme Team INRIA I3S IBV

Neurite extension is essential to establish complex neuronal circuits during brain development. In particular, neurons extend long cytoplasmic projections, the axons, in a crowded environment to reach target territories and connect to specific partners. Much work has been performed on cultured isolated neurons, focusing on the response of axon growing ends to chemical guidance cues. However, the cellular mechanisms involved in the growth of axon groups in their natural physical environment (here, the brain), are still poorly understood. Our objective is to shed light on collective axon growth and branching processes in a complex environment, with the help of mathematical modeling.

To study these mechanisms in the context of a living organism, we use Drosophila mushroom body gamma neurons as a paradigm. This population of neurons represents a good model for collective axon growth, as their adult axonal processes grow synchronously, in a relatively short time scale (around 15-20 hours), in a constraint environment (i.e. medial lobe of the Mushroom body inside the central brain). To feed our mathematical model we use an average pattern of medial lobe obtained from biological samples, and a database composed of confocal images of individual wild-type and mutants gamma neurons labeled with GFP.

Growth of individual axons is modeled by a Gaussian Markov chain in a 3D space, which depends on two main parameters estimated from real data: i- axon rigidity and ii- attraction to the target field. Furthermore, we hypothesize that axon tips pause when encountering a mechanical obstacle (i.e. other neurons or the lobe limits), and associate this behavior with the birth of long terminal branches. We show that the proposed mechanistic branch generation process is plausible. More importantly, our model predicts that branch formation in response to mechanical interactions enhances the probability that axons reach their final destination at the population level, and that axon density influences arborization patterns. Indeed, about 40% of simulated axons do not grow properly in the absence of branching in a wild-type environment, a result that is validated by biological data obtained with mutant neurons, in which axon growth defects are associated with defective branching.

(3)

2 To further validate the model hypotheses concerning branch formation, we are currently collecting and analyzing live-imaging data sets from brains with GFP-labeled growing axons.

We hope that combining cell biology, imaging and mathematical modeling will help us better understand the process of axon growth at the population level, in both normal and pathological contexts.

Références

Documents relatifs

To determine whether the occurrence, or the number, of axonal swellings correlated with a dose effect of wild-type spastin allele, semi-thin sections of spinal cord from

des éléments variables de rému- nération des éléments variables de rémunération n’ayant pas le caractère de salaire l’épargne salariale autres Total Heures

Comparison of microtubule polymerization durations (mean 6 SE) in COS cells (A) or in DRG growth cones (B) expressing EB3-GFP alone or with different forms of CRMP2 from a

show that an axoglial adhesion complex drives domain formation at nodes of Ranvier by organizing the axon cytoskeleton at the boundary between converging glial processes and

In this paper, we propose new algorithms for computing the maximal Lyapunov exponent of continuous-time linear switching systems with fixed or guaranteed mode-dependent dwell

B1: growth cone GC interacts with the shaft of another axon, B2: small incidence angle allows incoming GC to adhere and follow the shaft, B3: the two shafts zipper, increasing

In the supplementary information we provide an analysis showing why a basket cell action potential in the ‘basket’—the axon apposed to the Purkinje cell soma—is not expected

Consistently, while pHluoTM fluorescence was depleted in and around the cell body but could still be detected in distal neurites 60 min after the onset of photobleaching (t 0 + 60