• Aucun résultat trouvé

Stability in Gagliardo-Nirenberg inequalities

N/A
N/A
Protected

Academic year: 2022

Partager "Stability in Gagliardo-Nirenberg inequalities"

Copied!
51
0
0

Texte intégral

(1)

Jean Dolbeault

http://www.ceremade.dauphine.fr/dolbeaul

Ceremade, Université Paris-Dauphine October 28, 2020

Online analysis and PDE seminar (Spain)

(2)
(3)

The stability result of G. Bianchi and H. Egnell

A question:[Brezis, Lieb (1985)]Is there a natural way to bound Sdk∇uk2L2(

Rd)− kuk2

L2∗(Rd)

from below in terms of a “distance” to the set of optimal [Aubin-Talenti]

functionswhend3?

B[Bianchi, Egnell (1991)]There is a positive constantαsuch that Sdk∇uk2

L2(Rd)− kuk2

L2∗(Rd)α inf

ϕ∈Mk∇u− ∇ϕk2L2(Rd)

BVarious improvements,e.g.,[Cianchi, Fusco, Maggi, Pratelli (2009)]

there are constantsαandκandu7→λ(u)such that Sdk∇uk2L2(

Rd)≥(1+κ λ(u)α)kuk2

L2∗(Rd)

The question ofconstructiveestimates is still widely open

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(4)

From the carré du champ method to stability results

I[u]ΛF[u]

Carré du champ method(D. Bakry and M. Emery) From

u

t =Lum(typically), dI

dt ≤ −ΛI deduce thatI−ΛFis monotone non-increasing with limit0 BImproved constantmeansstability

Under some restrictions on the functions, there is someΛ?≥Λsuch that I−ΛF≥(Λ?−Λ)F

BImproved entropy – entropy production inequality I≥Λψ(F)

for someψsuch thatψ(0)=0,ψ0(0)=1andψ00>0 I−ΛF≥Λ(ψ(F)−F)0

(5)

Outline

Part I:Two examples of stability results by entropy methods BSobolev and Hardy-Littlewood-Sobolev inequalities

joint work with G. Jankowiak

BSubcritical interpolation inequalities on the sphere joint work with M.J. Esteban and M. Loss

Part II:A constructive result based on entropy and parabolic regularity joint work with M. Bonforte, B. Nazaret and N. Simonov

Thefast diffusion flowandentropy methods

BRényi entropy powers:a word on thecarré du champmethod Btheentropy-entropy production inequality

Bspectral gap: theasymptotic time layer

Btheinitial time layer, a backward nonlinear estimate Theuniform convergence in relative error

Bthethreshold time

Ba quantitative global Harnack principle and Hölder regularity Bthe stability result in the entropy framework

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(6)

Part I

Two examples of stability

results by entropy methods

(7)

Example 1

Sobolev and Hardy-Littlewood-Sobolev inequalities

BStability in a weaker norm but with explicit constants BFrom duality to improved estimates based on Yamabe’s flow

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(8)

Sobolev and HLS

As it has been noticed byE. Lieb (1983)Sobolev’s inequality inRd,d3, kuk2

L2(Rd)≤Sdk∇uk2

L2(Rd) ∀uD1,2(Rd) and the Hardy-Littlewood-Sobolev inequality

Sdkvk2

Ld+22d(Rd)≥ Z

Rdv(−∆)1vdx vLd+2d2(Rd)

aredualof each other. HereSdis the Aubin-Talenti constant and2=d2d2

(9)

The first step in the entropy method

Proposition

Assume thatd3andm=dd+22. Ifv is a solution the Yamabe flow

v

t =vm t>0, xRd, m=d2 d+2 with nonnegative initial datum inL2d/(d+2)(Rd), then

1 2

d dt

"

Z

Rdv(∆)1vdxSdkvk2

Ld2d+2(Rd)

#

= µZ

Rdvm+1dx

2d h

Sdk∇uk2

L2(Rd)− kuk2

L2∗(Rd) i≥0

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(10)

An improvement

Jd[v] := Z

Rdvd2d+2dx and Hd[v] := Z

Rdv(∆)1vdxSdkvk2

Ld+22d (Rd)

Theorem (J.D., G. Jankowiak) Assume thatd3. Then we have

0Hd[v]+SdJd[v]1+2dψ³

Jd[v]2d1hSdk∇uk2

L2(Rd)− kuk2

L2∗(Rd)

∀uD,v=ud+d−22 whereψ(x) :=pC2+2CxC for anyx0,withC=1

(11)

... and a consequence: C = 1 is not optimal

Theorem

[JD, G. Jankowiak]In the inequality Sdkwqk2

Ld+2d2(Rd)− Z

Rdwq(∆)1wqdx

≤CdSdkwk

8 d2 L2∗(Rd)

hk∇wk2

L2(Rd)−Sdkwk2

L2∗(Rd) i

we have

d

d+4Cd<1

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(12)

Example 2

Improved interpolation inequalities on the sphere

(13)

The interpolation inequalities on S

d

On thed-dimensional sphere, let us consider the interpolation inequality k∇uk2

L2(Sd)+ d p2kuk2

L2(Sd)≥ d p2kuk2

Lp(Sd) ∀uH1(Sd,dµ)

where the measuredµis the uniform probability measure onSd⊂Rd+1 corresponding to the measure induced by the Lebesgue measure onRd+1, and the exposantp1,p6=2, is such that

p2:= 2d d2

ifd3. We adopt the convention that2= ∞ifd=1ord=2. The case p=2corresponds to the logarithmic Sobolev inequality

k∇uk2L2(

Sd)≥d 2

Z

Sd|u|2log

|u|2 kuk2

L2(Sd)

dµ ∀uH1(Sd,dµ)\ {0}

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(14)

me #M¥0*197esN

two two

-on

#etog oq n

Ça ton:# T

(15)

The Bakry-Emery method

Entropy functional

Fp[ρ] :=p12hRSdρ2p dµ−(RSdρdµ)2pi if p6=2

F2[ρ] :=RSdρlog

µ ρ

kρkL1(Sd)

¶ dµ Fisher informationfunctional

Ip[ρ] :=RSd|∇ρ1p|2dµ

Bakry-Emery (carré du champ) method: use the heat flow

∂ρ

t =∆ρ

and computedtd Fp[ρ]= −Ip[ρ]anddtdIp[ρ]≤ −dIp[ρ]to get d

dt(Ip[ρ]dFp[ρ])0 =⇒ Ip[ρ]dFp[ρ]

withρ= |u|p, ifp2#:=2d2+1

(d1)2

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(16)

A refined interpolation inequality on the sphere

Theorem Assume that

p6=2, and 1p2# if d2, p1 if d=1 γ=

µd1 d+2

2

(p1) (2#p) if d2, γ=p1

3 if d=1 Then for anyuH1(Sd),

k∇uk2

L2(Sd)≥ d 2pγ

µ kuk2

L2(Sd)− kuk2

2p Lp(Sd)kuk

2p L2(Sd)

ifγ6=2p

k∇uk2

L2(Sd)≥ 2d p2kuk2

L2(Sd)log

 kuk2

L2(Sd) kuk2

Lp(Sd)

 ∀uH1(Sd)

(17)

Improved interpolation inequalities on the sphere

λ? := inf vH1+(Sd,dµ)

R

Sdv dµ=1 R

Sdx|v|pdµ=0 R

Sd(∆v)2dµ R

Sd|∇v|2νdµ>d

For anyf H1(Sd,dµ)s.t.R

Sdx|f|pdµ=0, consider the inequality Z

Sd|∇f|2νdµ+ λ

p2kfk22 λ p2kfk2p

Proposition

Ifp(2,2#), the inequality holds with

λ≥d+ (d1)2

d(d+2)(2#p) (λ?−d)

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(18)

p = 2: the logarithmic Sobolev case

λ?=d+ 2(d+2)

2(d+3)+p2(d+3) (2d+3)

Proposition

Letd2. For anyuH1(Sd,dµ)\{0}such thatRSdx|u|2dµ=0, we have Z

Sd|∇u|2dµδ 2 Z

Sd|u|2log Ã|u|2

kuk22

! dµ

withδ:=d+d2 4d1

2(d+3)+p

2(d+3) (2d+3)

(19)

The evolution under the fast diffusion flow

To overcome the limitationp2#, one can consider a nonlinear diffusion of fast diffusion / porous medium type

∂ρ

t =∆ρ

m. (1)

[Demange],[JD, Esteban, Kowalczyk, Loss]: for anyp[1,2] Kp[ρ] := d

dt

³Ip[ρ]dFp[ρ]´0

1.0 1.5 2.5 3.0

0.0 0.5 1.5 2.0

(p,m)admissible region,d=5

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(20)

Stability under antipodal symmetry

With the additional restriction ofantipodal symmetry, that is u(x)=u(x) xSd

Theorem

Ifp(1,2)(2,2), we have Z

Sd|∇u|2dµ≥ d p2

"

1+(d24) (2p) d(d+2)+p1

#

³kuk2Lp(

Sd)− kuk2L2(

Sd)

´

for anyuH1(Sd,dµ)with antipodal symmetry. The limit casep=2 corresponds to the improved logarithmic Sobolev inequality

Z

Sd|∇u|2dµ≥d 2

(d+3)2 (d+1)2 Z

Sd|u|2log

 |u|2 kuk2

L2(Sd)

dµ

(21)

The optimal constant in the antipodal framework

æ

æ æ

æ æ

1.5 2.0 2.5 3.0

6 7 8 9 10 11 12

Numerical computation of the optimal constant whend=5and 1p10/33.33. The limiting value of the constant is numerically found

to be equal toλ?=212/pd6.59754withd=5andp=10/3

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(22)

Part II

A constructive result of stability based on entropy

and parabolic regularity

BAn introduction

BThe fast diffusion equation BRegularity and stability

(23)

Main results (part II) have been obtained in collaboration with

Matteo Bonforte

BUniversidad Autónoma de Madrid and ICMAT

Bruno Nazaret

BUniversité Paris 1 Panthéon-Sorbonne and Mokaplan team

Nikita Simonov

BCeremade, Université Paris-Dauphine (PSL)

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(24)

Introduction

A special family of Gagliardo-Nirenberg inequalities Optimal functions

A stability result

(25)

Gagliardo-Nirenberg inequalities

For any smoothf onRd with compact support

k∇fkθ2kfk1p+θ1CGNkfk2p (2) [Gagliardo, 1958] [Nirenberg, 1959] θ=p(d+d2(pp(d1)2))

ifd3, the exponentpis in the range1<pdd2 and

2p=d2d2=2=:2pis the critical Sobolev exponent, corresponding to Sobolev’s inequalitywith (θ=1)[Rodemich, 1968] [Aubin & Talenti, 1976]

k∇fk22Sdkfk22

Bifd=1or2, the exponentpis in the range1<p< +∞ =:p

the limit case asp1+isEuclidean logarithmic Sobolev inequality in scale invariant form[Blachman, 1965] [Stam, 1959] [Weissler, 1978]

d 2 log

µ 2 πd e

Z

Rd|∇f|2dx

≥ Z

Rd|f|2log|f|2dx for any functionf H1(Rd, dx)such thatkfk2=1

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(26)

Optimal functions and scalings

k∇fkθ2kfk1p+θ1CGNkfk2p (1) [del Pino, JD, 2002]Equality is achieved by theAubin-Talentitype function

g(x)=³1+ |x|2´

p−11

∀xRd

By homogeneity, translation, scalings, equality is also achieved by gλ,µ,y(x) :=µ λ2pd g³xy

λ

´

(λ,µ,y)(0,+∞)×R×Rd

BA non-scale invariant form of the inequality ak∇fk22+bkfkpp++11KGNkfk22ppγ

a=12(p1)2,b=2dpp(d+12),KGN= kgk22p(1p γ)andγ=d+d2pp(d(d4)2) Ifp=1: standardEuclidean logarithmic Sobolev inequality[Gross, 1975]

Z

|∇f|2dx1 2 Z

|v|2log Ã|f|2

2

! dx+d

4 log(2πe2)kfk22

(27)

The stability issue

What kind of distance to the manifoldMof the Aubin-Talenti type functions is measured by thedeficit functionalδ?

δ[f] :=ak∇fk22+bkfkpp++11−KGNkfk22ppγ Some (not completely satisfactory) answers:

BIn the critical casep=d/(d2),d3,[Bianchi, Egnell, 1991]: there is a positive constantC such that

k∇fk22Sdkfk22C inf

Mk∇f− ∇gk22

B[JD, Jankowiak]Assume thatd3and letq=dd+22. There exists a constantC with1<C 1+4d such that

k∇fk22Sdkfk22 C Sdkfk2(22 2)

µ Sd

°

°fq°° 2

2d d+2

Z

Rd|f|q(∆)1|f|qdx

B[Blanchet, Bonforte, JD, Grillo, Vázquez] [JD, Toscani]... various improvements based on entropy methods and fast diffusion flows

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(28)

A stability result

Therelative entropy F[f] :=12ppRRd

³|f|p+1gp+112p+pg1p¡|f|2pg2p¢´dx Thedeficit functional

δ[f] :=ak∇fk22+bkfkp+1

p+1−KGNkfk22pγ

p ≥0 Theorem

Letd1,p(1,p),A>0andG>0. There is a C>0such that δ[f]C F[f]

for anyfW :=©fL1(Rd,(1+ |x|)2dx) :fL2(Rd, dx)ªsuch that Z

Rd|f|2pdx= Z

Rd|g|2pdx, Z

Rdx|f|2pdx=0 sup

r>0

rd−p(d−4)p−1 Z

|x|>r|f|2pdxA and F[f]G

(29)

Some comments

BThe constantC is explicit

BA Csiszár-Kullback inequality. There exists a constantCp>0such that

°

°°|f|2pg2p°°°

L1(Rd)≤Cp

qF[f] if kfkL2p(Rd)= kgkL2p(Rd)

BLiterature on stability of Sobolev type inequalities is huge:

– Weak L2/2-remainder term in bounded domains[Brezis, Lieb, 1985]

– Fractional versions and(∆)s[Lu, Wei, 2000] [Gazzola, Grunau, 2001]

[Bartsch, Weth, Willem, 2003] [Chen, Frank, Weth, 2013]

– Inverse stereographic projection (eigenvalues):[Ding, 1986] [Beckner, 1993] [Morpurgo, 2002] [Bartsch, Schneider, Weth, 2004]

– Symmetrization[Cianchi, Fusco, Maggi, Pratelli, 2009]and[Figalli, Maggi, Pratelli, 2010]

... to be continued

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(30)

BOn stability and flows (continued)

– Many other papers by Figalli and his collaborators, among which (most recent ones):[Figalli, Neumayer, 2018] [Neumayer, 2020] [Figalli, Zhang, 2020] [Figalli, Glaudo, 2020]

– Stability for Gagliardo-Nirenberg inequalities[Carlen, Figalli, 2013]

[Seuffert, 2017] [Nguyen, 2019]

– Gradient flow issues[Otto, 2001]and many subsequent papers

– Carré du champ applied to the fast diffusion equation[Carrillo, Toscani, 2000] [Carrillo and Vázquez, 2003] [CJMTU, 2001] [Jüngel, 2016]

– Spectral gap properties[Scheffer, 2001] [Denzler, McCann, 2003 & 2005]

BOn entropy methods

– Carré du champ: the semi-group and Markov precesses point of view [Bakry, Gentil, Ledoux, 2014]

– The PDE point of view (+ some applications to numerical analysis) [Jüngel, 2016]

BGlobal Harnack principle:[Vázquez, 2003] [Bonforte, Vázquez, 2006]

[Vázquez, 2006] [Bonforte, Simonov, 2020]

=⇒Our tool: the fast diffusion equation

(31)

The fast diffusion equation

u

t =um (3)

The Rényi entropy powers and the Gagliardo-Nirenberg inequalities Self-similar solutions and the entropy-entropy production method Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(32)

The fast diffusion equation in original variables

Consider thefast diffusionequation inRd,d1,m(0,1)

u

t =um (2)

with initial datumu(t=0,x)=u0(x)0such that Z

Rdu0dx=M>0 and Z

Rd|x|2u0dx< +∞

The large time behavior is governed bythe self-similar Barenblatt solutions

U(t,x) := 1

¡κt1/µ¢d B µ x

κt1/µ

whereµ:=2+d(m1),κ:=

¯

¯

¯ 2µm m1

¯

¯

¯ 1/µ

andBis the Barenblatt profile B(x) :=¡C+ |x|2¢

1 1−m

(33)

The Rényi entropy power F

Theentropyis defined by

E:= Z

Rdumdx and theFisher informationby

I:= Z

Rdu|∇P|2dx with P= m

m1um1is thepressure variable Ifusolves the fast diffusion equation, then

E0=(1m)I TheRényi entropy power

F:=Eσ= µZ

Rdumdx

σ

with σ=2 d

1 1m1 applied to self-similar Barenblatt solutions has a linear growth int

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(34)

The concavity property

Theorem

[Toscani, Savaré, 2014]Assume that m1m<1ifd>1andm>1/2if d=1. ThenF(t)isconcave, increasing, and

t→+∞lim F0(t)=(1m)σ lim

t→+∞Eσ1I [Dolbeault, Toscani, 2016]The inequality

Eσ1IE[B]σ1I[B] is equivalent to the Gagliardo-Nirenberg inequality

k∇fkθ2kfk1p+θ1CGNkfk2p (1) um1/2=kffk

2p andp=2m11(1,p)⇐⇒max©12,m1ª<m<1

(35)

Self-similar variables: entropy-entropy production method

The fast diffusion equation

u

t =um has a self-similar solution

U(t,x) := 1 κd(µt)d/µB

à x

κ(µt)1/µ

!

where B(x) :=¡1+ |x|2¢

1 1m

A time-dependent rescaling based onself-similar variables u(t,x)= 1

κdRdv³τ, x κR

´ where dR

dt =R1µ, τ(t) :=12log µR(t)

R0

Then the functionvsolvesa Fokker-Planck type equation

v

∂τ+ ∇ ·h

v³um12x´ i=0 withsame initial datumv0=u0ifR0=R(0)=1

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(36)

Free energy and Fisher information

The functionvandB(same mass) solve the Fokker-Planck type equation

v

t + ∇ · h

v³vm12x´ i=0 (4) A Lyapunov functional[Ralston, Newman, 1984]

Generalized entropyorFree energy F[v] := −1

m Z

Rd

³

vm−BmmBm1(v−B)´dx

Entropy production is measured by theGeneralized Fisher information

d

dtF[v]= −I[v], I[v] := Z

Rdv¯¯¯∇vm1+2x¯¯¯2dx

(37)

The entropy - entropy production inequality

B(x) :=¡1+ |x|2¢

1−m1

Theorem

[del Pino, JD, 2002]d3,m[m1,1),m>12, RRdv0dx=RRdBdx Z

Rdv

¯

¯¯∇vm1+2x

¯

¯

¯

2dx=I[v]4F[v]=4 Z

Rd

µBm m

vm

m + |x|2(v−B)

¶ dx

p=2m11,v=f2p

k∇fkθ2kfk1p+θ1CGNkfk2p⇐⇒δ[f]=I[v]4F[v]0

Corollary

[del Pino, JD, 2002]A solutionv of (4)with initial datav0L1+(Rd)such that|x|2v0L1(Rd),v0mL1(Rd)satisfies

F[v(t)]F[v0]e4t

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(38)

A computation on a large ball, with boundary terms

Carré du champ method[Carrillo, Toscani] [Carrillo, Vázquez]

[Carrillo, Jüngel, Toscani, Markowich, Unterreiter]

u

t + ∇ · h

v³vm12x´ i=0 t>0, xBR

³∇vm12x´· x

|x|=0 t>0, xBR d

dt Z

BR

v|∇vm12x|2dx+4 Z

BR

v|∇vm12x|2dx +21mm

Z BR

vm µ°

°

°D2(vm1Bm1)

°

°

°

2−(1m)

¯

¯

¯∆(vm1Bm1)

¯

¯

¯ 2

dx

= Z

BR

vm³ω· ∇|(vm1Bm1)|2´dσ≤0(by Grisvard’s lemma)

Improvement:∃φsuch thatφ00>0,φ(0)=0andφ0(0)=4[Toscani, JD]

I[v|Bσ]φ(F[v|Bσ]) ⇐= idea: dI

dt +4I.−I F2

(39)

Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datumv0 (H1

C0+ |x|2¢

1

1−m≤v0¡C1+ |x|2¢

1 1−m

(H2)ifd3andmm:=dd42, then(v0B)is integrable

Theorem

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]Ifm<1andm6=m, then F[v(t,·)]C e2γ(m)t t0, γ(m) :=(1m)Λα,d

whereΛα,d>0 is the best constant in the Hardy–Poincaré inequality

Λα,d Z

Rd|f|2α1≤ Z

Rd|∇f|2α ∀f H1(dµα), Z

Rdfdµα1=0 withα:=m11<0,dµα:=hαdx, hα(x) :=(1+ |x|2)α

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(40)

Spectral gap and the asymptotic time layer

mc=d−2d 0

m1=d−1d m2=d+1d+2

! m2:=d+4d+6

m 1

2 4

Case 1 Case 2 Case 3

γ(m)

(d= 5)

! m1:=d+2d

F[v(t,·)]C e2γ(m)t t0

(41)

Spectral gap and improvements... the details

BAsymptotic time layer[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2015]

Corollary

Assume thatv solves (4): tv+ ∇ ·hv¡vm12x¢i=0 with initial datumv00 such thatRRdv0dx=RRdBdx

(i) there is a constantC1>0such that F[v(t,·)]C1e2γ(m)t with γ(m)=2 ifm1m<1

(ii) ifm1m<1andRRdx v0dx=0, there is a constantC2>0such that F[v(t)]C2e2γ(m)t withγ(m)=42d(1m)

(iii) Assume that dd++12m<1andRRdx v0dx=0and let Bσ:=σd2B(x/pσ)

be such that RRd|x|2u(t,x)dx=RRd|x|2Bσ(x)dx. Then there is a constant C3>0such that F[v(t,·)|Bσ]C3e4t

BInitial time layerI[v|Bσ]φ(F[v|Bσ])faster decay fort0

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(42)

The asymptotic time layer improvement

Linearized free energyandlinearized Fisher information F[g] :=m

2 Z

Rd|g|2B2mdx and I[g] :=m(1m) Z

Rd|∇g|2Bdx Hardy-Poincaré inequality. Letd1,m(m1,1)andgL2(Rd,B2mdx) such that∇gL2(Rd,Bdx),R

RdgB2mdx=0andR

Rdx gB2mdx=0 I[g]4αF[g] where α=2d(1m)

Proposition

Letm(m1,1)ifd2,m(1/3,1)ifd=1,η=2d(mm1)and χ=m/(266+56m). IfRRdvdx=M,RRdx vdx=0and

(1ε)Bv(1+ε)B

for someε∈(0,χ η), then

Q[v] :=I[v] F[v]4+η

(43)

The initial time layer improvement: backward estimate

Rephrasing thecarré du champmethod,Q[v] :=I[v]

F[v]is such that

dQ

dt Q(Q4)

Lemma

Assume thatm>m1 andv is a solution to (4)with nonnegative initial datumv0. If for someη>0 andT>0, we haveQ[v(T,·)]4+η, then

Q[v(t)]4+ 4ηe4T

4+η−ηe4T t[0,T]

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(44)

The fast diffusion equation

Regularity and stability Back to entropy-entropy production inequalities

Regularity and stability

Our strategy

Regularity and stability

Our strategy

Choose">0, small enough

Get a threshold timet?(")

0 t?(") t

Backward estimate by entropy methods

Forward estimate based on a spectral gap

E s

#

Initial time layer Asymptotic time layer

(45)

Uniform convergence in relative error: statement

Theorem

Assume thatm(m1,1)ifd2,m(1/3,1)ifd=1 and letε∈(0,1/2), small enough,A>0, andG>0 be given. There exists an explicit time t?0 such that, ifu is a solution of

u

t =um (2)

with nonnegative initial datumu0L1(Rd)satisfying

sup

r>0

r

d(m−mc) (1−m)

Z

|x|>r

u dxA< ∞ (HA)

R

Rdu0dx=RRdBdx=M andF[u0]G, then

sup

x∈Rd

¯

¯

¯

¯ u(t,x) B(t,x)1

¯

¯

¯

¯≤ε ∀tt?

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(46)

The threshold time

Proposition

Letm(m1,1)ifd2,m(1/3,1)ifd=1,ε∈(0,εm,d),A>0andG>0

t?=c?

1+A1m+Gα2 εa wherea=αϑ21mm andϑ=ν/(d+ν)

c?=c?(m,d)= sup

ε(0m,d)

max©ε κ1(ε,m),εaκ2(ε,m),ε κ3(ε,m)ª

κ1(ε,m) :=maxn 8c (1+ε)1m1,

23mκ?

1(1ε)1m o

κ2(ε,m) :=(4α)α1Kαϑ ε2−m1mα

and κ3(ε,m) := 8α1 1(1ε)1m

(47)

Improved entropy-entropy production inequality

Theorem

Letm(m1,1)ifd2,m(1/2,1)ifd=1,A>0andG>0. Then there is a positive numberζsuch that

I[v](4+ζ)F[v]

for any nonnegative functionvL1(Rd)such thatF[v]=G, R

Rdvdx=M, RRdx vdx=0andv satisfies (HA) We have theasymptotic time layer estimate

ε∈(0,2ε?), ε?:=1

2min©εm,d,χ ηª

with T=1

2logR(t?) (1−ε)Bv(t)(1+ε)B tT

and, as a consequence, theinitial time layer estimate

I[v(t,.)](4+ζ)F[v(t,.)] t[0,T], where ζ= 4ηe4T 4ηe4T

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(48)

Two consequences

ζ=Z¡A,F[u0]¢, Z(A,G) := ζ?

1+A(1m)α2+G, ζ? := 4η

4+η µ εa?

2αc?

α2 cα

BImproved decay rate for the fast diffusion equation in rescaled variables Corollary

Letm(m1,1)ifd2,m(1/2,1)ifd=1,A>0andG>0. Ifv is a solution of (4) with nonnegative initial datumv0L1(Rd)such that F[v0]=G,RRdv0dx=M, RRdx v0dx=0 andv0 satisfies (HA), then

F[v(t,.)]F[v0]e(4+ζ)t t0 BThe stability in the entropy - entropy production estimate I[v]4F[v]ζF[v]also holds in a stronger sense

I[v]4F[v] ζ 4+ζI[v]

Références

Documents relatifs

Sobolev spaces of fractional order, Nemytskij operators, and nonlin- ear partial differential equations, volume 3 of de Gruyter Series in Nonlinear Analysis and Applications.

We find a new sharp trace Gagliardo-Nirenberg-Sobolev inequality on convex cones, as well as a sharp weighted trace Sobolev inequality on epigraphs of convex functions... With

One is to establish an abstract convex Sobolev type inequality using mass transport, and the other one is to establish a new functional Brunn-Minkowski type inequality on R n + ,

N = 1, Ω = R.. The proof consists of a tedious analysis of all possibilities. Apply Corollary 3.1. Here we use again reiteration. There is nothing to prove! Case 9.. This follows

The fast diffusion equation determines the family of inequalities, which in- cludes Sobolev’s inequality as an endpoint, and dictates the functional setting and the strategy,

There is a also notion of gradient flow for a well-chosen notion of distance (which is not, in general, Wasserstein’s distance), that is studied in Section 6.2 and for which

Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation (supplementary material).

Une fois que l’on dispose de la d´ecomposition de Littlewood-Paley pour le groupe Z 2 , nous pouvons donner des normes ´equivalentes pour les espaces fonctionnels dont nous...