• Aucun résultat trouvé

Stability in Gagliardo-Nirenberg inequalities

N/A
N/A
Protected

Academic year: 2022

Partager "Stability in Gagliardo-Nirenberg inequalities"

Copied!
46
0
0

Texte intégral

(1)

Jean Dolbeault

http://www.ceremade.dauphine.fr/dolbeaul

Ceremade, Université Paris-Dauphine July 7, 2020

OWPDE seminar

(2)

Outline

Introduction

B(almost) a firstconstructive resulton thestability of Gagliardo-Nirenberg inequalities

Thefast diffusion flowandentropy methods

BRényi entropy powers:a word on thecarré du champmethod Btheentropy-entropy production inequality

Bspectral gap: theasymptotic time layer

Btheinitial time layer, a backward nonlinear estimate Bthethreshold time

Theuniform convergence in relative error

Bfrom local to global estimates: a quantitative version of Harnack’s inequality and Hölder regularity

Bthe stability result in the entropy framework

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(3)

Main results of this lecture have been obtained in collaboration with

Matteo Bonforte

BUniversidad Autónoma de Madrid and ICMAT

Bruno Nazaret

BUniversité Paris 1 Panthéon-Sorbonne and Mokaplan team

Nikita Simonov

BCeremade, Université Paris-Dauphine (PSL)

(4)

Introduction

A special family of Gagliardo-Nirenberg inequalities Optimal functions

A stability result

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(5)

Gagliardo-Nirenberg inequalities

For any smoothf onRd with compact support

k∇fkθ2kfk1p+θ1CGNkfk2p (1) [Gagliardo, 1958] [Nirenberg, 1959] θ=p(d+d2(pp(d1)2))

ifd3, the exponentpis in the range1<pdd2 and

2p=d2d2=2=:2pis the critical Sobolev exponent, corresponding to Sobolev’s inequalitywith (θ=1)[Rodemich, 1968] [Aubin & Talenti, 1976]

k∇fk22Sdkfk22

Bifd=1or2, the exponentpis in the range1<p< +∞ =:p

the limit case asp1+isEuclidean logarithmic Sobolev inequality in scale invariant form[Blachman, 1965] [Stam, 1959] [Weissler, 1978]

d 2 log

µ 2 πd e

Z

Rd|∇f|2dx

≥ Z

Rd|f|2log|f|2dx for any functionf H1(Rd, dx)such thatkfk2=1

(6)

Optimal functions and scalings

k∇fkθ2kfk1p+θ1CGNkfk2p (1) [del Pino, JD, 2002]Equality is achieved by theAubin-Talentitype function

g(x)=³1+ |x|2´

p−11

∀xRd

By homogeneity, translation, scalings, equality is also achieved by gλ,µ,y(x) :=µ λ2pd g³xy

λ

´

(λ,µ,y)(0,+∞)×R×Rd

BA non-scale invariant form of the inequality ak∇fk22+bkfkpp++11KGNkfk22ppγ

a=12(p1)2,b=2dpp(d+12),KGN= kgk22p(1p γ)andγ=d+d2pp(d(d4)2) Ifp=1: standardEuclidean logarithmic Sobolev inequality[Gross, 1975]

Z

Rd|∇f|2dx1 2 Z

Rd|v|2log Ã|f|2

kfk22

! dx+d

4 log(2πe2)kfk22

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(7)

The stability issue

What kind of distance to the manifoldMof the Aubin-Talenti type functions is measured by thedeficit functionalδ?

δ[f] :=ak∇fk22+bkfkpp++11−KGNkfk22ppγ Some (not completely satisfactory) answers:

BIn the critical casep=d/(d2),d3,[Bianchi, Egnell, 1991]: there is a positive constantC such that

k∇fk22Sdkfk22C inf

Mk∇f− ∇gk22

B[JD, Jankowiak]Assume thatd3and letq=dd+22. There exists a constantC with1<C 1+4d such that

k∇fk22Sdkfk22 C Sdkfk2(22 2)

µ Sd

°

°fq°° 2

2d d+2

Z

Rd|f|q(∆)1|f|qdx

B[Blanchet, Bonforte, JD, Grillo, Vázquez] [JD, Toscani]... various improvements based on entropy methods and fast diffusion flows

(8)

A stability result

Therelative entropy E[f] := 2p 1p

Z

Rd

³|f|p+1gp+112p+pg1p³|f|2pg2p´´dx

Theorem

Letd1,p(1,p),A>0andG>0. There is a C>0such that δ[f]C E[f]

for anyfW :=©fL1(Rd,(1+ |x|)2dx) :fL2(Rd, dx)ªsuch that Z

Rd|f|2pdx= Z

Rd|g|2pdx, Z

Rdx|f|2pdx=0 sup

r>0

rd−p(d−

4) p−1

Z

|x|>r|f|2pdxA and E[f]G Reminder:δ[f] :=ak∇fk22+bkfkpp++11KGNkfk22ppγ

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(9)

Some comments

BThe constantC is explicit

BA Csiszár-Kullback inequality. There exists a constantCp>0such that

°

°°|f|2pg2p°°°

L1(Rd)≤Cp

qE[f] if kfkL2p(Rd)= kgkL2p(Rd)

BLiterature on stability of Sobolev type inequalities is huge:

– Weak L2/2-remainder term in bounded domains[Brezis, Lieb, 1985]

– Fractional versions and(∆)s[Lu, Wei, 2000] [Gazzola, Grunau, 2001]

[Bartsch, Weth, Willem, 2003] [Chen, Frank, Weth, 2013]

– Inverse stereographic projection (eigenvalues):[Ding, 1986] [Beckner, 1993] [Morpurgo, 2002] [Bartsch, Schneider, Weth, 2004]

– Symmetrization[Cianchi, Fusco, Maggi, Pratelli, 2009]and[Figalli, Maggi, Pratelli, 2010]

... to be continued

(10)

BOn stability and flows (continued)

– Many other papers by Figalli and his collaborators, among which (most recent ones):[Figalli, Neumayer, 2018] [Neumayer, 2020] [Figalli, Zhang, 2020] [Figalli, Glaudo, 2020]

– Stability for Gagliardo-Nirenberg inequalities[Carlen, Figalli, 2013]

[Seuffert, 2017] [Nguyen, 2019]

– Gradient flow issues[Otto, 2001]and many subsequent papers

– Carré du champ applied to the fast diffusion equation[Carrillo, Toscani, 2000] [Carrillo and Vázquez, 2003] [CJMTU, 2001] [Jüngel, 2016]

– Spectral gap properties[Scheffer, 2001] [Denzler, McCann, 2003 & 2005]

BOn entropy methods

– Carré du champ: the semi-group and Markov precesses point of view [Bakry, Gentil, Ledoux, 2014]

– The PDE point of view (+ some applications to numerical analysis) [Jüngel, 2016]

BGlobal Harnack principle:[Vázquez, 2003] [Bonforte, Vázquez, 2006]

[Vázquez, 2006] [Bonforte, Simonov, 2020]

=⇒Our tool: the fast diffusion equation

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(11)

The fast diffusion equation

u

t =um (2)

The Rényi entropy powers and the Gagliardo-Nirenberg inequalities Self-similar solutions and the entropy-entropy production method Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

(12)

The fast diffusion equation in original variables

Consider thefast diffusionequation inRd,d1,m(0,1)

u

t =um (2)

with initial datumu(t=0,x)=u0(x)0such that Z

Rdu0dx=M>0 and Z

Rd|x|2u0dx< +∞

The large time behavior is governed bythe self-similar Barenblatt solutions

U(t,x) := 1

¡κt1/µ¢d B µ x

κt1/µ

whereµ:=2+d(m1),κ:=

¯

¯

¯ 2µm m1

¯

¯

¯ 1/µ

andBis the Barenblatt profile B(x) :=¡C+ |x|2¢

1 1−m

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(13)

The Rényi entropy power F

Theentropyis defined by

E:= Z

Rdumdx and theFisher informationby

I:= Z

Rdu|∇P|2dx with P= m

m1um1is thepressure variable Ifusolves the fast diffusion equation, then

E0=(1m)I TheRényi entropy power

F:=Eσ with σ=2 d

1 1m1

applied to self-similar Barenblatt solutions has a linear growth int

(14)

The variation of the Fisher information

Lemma

Ifu solves ut =∆umwith dd1=:m1m<1, then

I0= d dt

Z

Rdu|∇P|2dx=2 Z

Rdum µ°

°

°D2Pd1∆PId°

°

°

2+(mm1) (∆P)2

¶ dx

BThis is where the limitationmm1:=dd1 appears .... there are no boundary terms in the integrations by parts ?

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(15)

The concavity property

Theorem

[Toscani, Savaré, 2014]Assume that m1m<1ifd>1andm>1/2if d=1. ThenF(t)is increasing,(1m)F00(t)0 and

t→+∞lim 1

tF(t)=(1m)σ lim

t→+∞Eσ1I [Dolbeault, Toscani, 2016]The inequality

Eσ1IE[B]σ1I[B] is equivalent to the Gagliardo-Nirenberg inequality

k∇fkθ2kfk1p+θ1CGNkfk2p (1)

um1/2=kffk

2p andp=2m11(1,p)⇐⇒max©12,m1ª<m<1

(16)

Self-similar variables: entropy-entropy production method

The fast diffusion equation

u

t =um has a self-similar solution

U(t,x) := 1 κd(µt)d/µB

à x

κ(µt)1/µ

!

where B(x) :=¡1+ |x|2¢

1 1m

A time-dependent rescaling based onself-similar variables u(t,x)= 1

κdRdv³τ, x κR

´ where dR

dt =R1µ, τ(t) :=12log µR(t)

R0

Then the functionvsolvesa Fokker-Planck type equation

v

∂τ+ ∇ ·h

v³um12x´ i=0 withsame initial datumv0=u0ifR0=R(0)=1

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(17)

Free energy and Fisher information

The functionvandB(same mass) solve the Fokker-Planck type equation

v

t + ∇ · h

v³vm12x´ i=0 (3) A Lyapunov functional[Ralston, Newman, 1984]

Generalized entropyorFree energy F[v] := −1

m Z

Rd

³

vm−BmmBm1(v−B)´dx

Entropy production is measured by theGeneralized Fisher information

d

dtF[v]= −I[v], I[v] := Z

Rdv¯¯¯∇vm1+2x¯¯¯2dx

(18)

The entropy - entropy production inequality

B(x) :=¡1+ |x|2¢

1−m1

Theorem

[del Pino, JD, 2002]d3,m[m1,1),m>12, RRdv0dx=RRdBdx Z

Rdv

¯

¯¯∇vm1+2x

¯

¯

¯

2dx=I[v]4F[v]=4 Z

Rd

µBm m

vm

m + |x|2(v−B)

¶ dx

p=2m11,v=f2p

k∇fkθ2kfk1p+θ1CGNkfk2p⇐⇒δ[f]=I[v]4F[v]0

Corollary

[del Pino, JD, 2002]A solutionv of (3)with initial datav0L1+(Rd)such that|x|2v0L1(Rd),v0mL1(Rd)satisfies

F[v(t)]F[v0]e4t

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(19)

A computation on a large ball, with boundary terms

Carré du champ method[Carrillo, Toscani] [Carrillo, Vázquez]

[Carrillo, Jüngel, Toscani, Markowich, Unterreiter]

u

t + ∇ · h

v³vm12x´ i=0 t>0, xBR

³∇vm12x´· x

|x|=0 t>0, xBR d

dt Z

BR

v|∇vm12x|2dx+4 Z

BR

v|∇vm12x|2dx

+21mm Z

BR

vm µ°

°

°D2(vm1Bm1)

°

°

°

2−(1m)

¯

¯

¯∆(vm1Bm1)

¯

¯

¯ 2

dx

= Z

BR

vm³ω· ∇|(vm1Bm1)|2´dσ≤0(by Grisvard’s lemma)

Improvement:∃φsuch thatφ00>0,φ(0)=0andφ0(0)=4[Toscani, JD]

I[v|Bσ]φ(F[v|Bσ]) ⇐= idea: dI

dt +4I≤ −I F2

(20)

Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datumv0 (H1

C0+ |x|2¢

1

1−m≤v0¡C1+ |x|2¢

1 1−m

(H2)ifd3andmm:=dd42, then(v0B)is integrable

Theorem

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]Ifm<1andm6=m, then F[v(t,·)]C e2γ(m)t t0, γ(m) :=(1m)Λα,d

whereΛα,d>0 is the best constant in the Hardy–Poincaré inequality

Λα,d Z

Rd|f|2α1≤ Z

Rd|∇f|2α ∀f H1(dµα), Z

Rdfdµα1=0 withα:=m11<0,dµα:=hαdx, hα(x) :=(1+ |x|2)α

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(21)

Spectral gap and the asymptotic time layer

mc=d−2d 0

m1=d−1d m2=d+1d+2

! m2:=d+4d+6

m 1

2 4

Case 1 Case 2 Case 3

γ(m)

(d= 5)

! m1:=d+2d

F[v(t,·)]C e2γ(m)t t0

[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2015]

(22)

Spectral gap and improvements... the details

BAsymptotic time layer[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2015]

Corollary

Assume thatv solves (3): tv+ ∇ ·hv¡vm12x¢i=0 with initial datumv00 such thatRRdv0dx=RRdBdx

(i) there is a constantC1>0such that F[v(t,·)]C1e2γ(m)t with γ(m)=2 ifm1m<1

(ii) ifm1m<1andRRdx v0dx=0, there is a constantC2>0such that F[v(t)]C2e2γ(m)t withγ(m)=42d(1m)

(iii) Assume that dd++12m<1andRRdx v0dx=0and let Bσ:=σd2B(x/pσ)

be such that RRd|x|2u(t,x)dx=RRd|x|2Bσ(x)dx. Then there is a constant C3>0such that F[v(t,·)|Bσ]C3e4t

BInitial time layerI[v|Bσ]φ(F[v|Bσ])faster decay fort0

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(23)

The asymptotic time layer improvement

Linearized free energyandlinearized Fisher information F[g] :=m

2 Z

Rd|g|2B2mdx and I[g] :=m(1m) Z

Rd|∇g|2Bdx Hardy-Poincaré inequality. Letd1,m(m1,1)andgL2(Rd,B2mdx) such that∇gL2(Rd,Bdx),R

RdgB2mdx=0andR

Rdx gB2mdx=0 I[g]4αF[g] where α=2d(1m)

Proposition

Letm(m1,1)ifd2,m(1/3,1)ifd=1,η=2d(mm1)and χ=m/(266+56m). IfRRdvdx=M,RRdx vdx=0and

(1ε)Bv(1+ε)B for someε∈(0,χ η), then

Q[v]4

(24)

The initial time layer improvement: backward estimate

Rephrasing thecarré du champmethod,Q[v] :=I[v]

F[v]is such that

dQ

dt Q(Q4)

Lemma

Assume thatm>m1 andv is a solution to (3)with nonnegative initial datumv0. If for someη>0 andT>0, we haveQ[v(T,·)]4+η, then

Q[v(t)]4+ 4ηe4T

4+η−ηe4T t[0,T]

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(25)

The fast diffusion equation Regularity and stability Proof

Back to entropy-entropy production inequalities

Regularity and stability

Our strategy

Regularity and stability

Our strategy

Choose">0, small enough

Get a threshold timet?(")

0 t?(") t

Backward estimate by entropy methods

Forward estimate based on a spectral gap

E s

#

Initial time layer Asymptotic time layer

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(26)

Uniform convergence in relative error: statement

Theorem

Assume thatm(m1,1)ifd2,m(1/3,1)ifd=1 and letε∈(0,1/2), small enough,A>0, andG>0 be given. There exists an explicit time t?0 such that, ifu is a solution of

u

t =um (2)

with nonnegative initial datumu0L1(Rd)satisfying

sup

r>0

r

d(m−mc) (1−m)

Z

|x|>r

u dxA< ∞ (HA)

R

Rdu0dx=RRdBdx=M andF[u0]G, then

sup

x∈Rd

¯

¯

¯

¯ u(t,x) B(t,x)1

¯

¯

¯

¯≤ε ∀tt?

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(27)

Interpolation inequalities

Our regularity theory relies on the inequality kfk2

Lpm(B)≤K ³ k∇fk2

L2(B)+ kfk2

L2(B)

´

whereBRdis the unit ball

pm K q β

d3 d2d2 π2Γ(d2+1)2/d d2 α d=2 4 0.0564922...<2/p2π≈1.12838 2 2(α1) d=1 m4 21+m2 max³2(2mπm)2 ,14´

2 2m

2m 2m

(28)

Local estimates (1/2): a Herrero-Pierre type lemma

Lemma

For all(t,R)(0,+∞)2, any solutionuof (2)satisfies

sup

yBR/2(x)

u(t,y)κ Ã 1

td/α µZ

BR(x)

u0(y)dy

2/α

+ µ t

R2

1−m1 !

κ=kK 2qβ kβ=¡β4+β2¢β¡β4+2¢2π8(q+1)e8

P

j=0log(j+1)(q+1q )j212mm(1+aωd)2b ωd:= |Sd1| = 2πd/2

Γ(d/2)

a=3(16(d+1) (3+m))

1 1m

(2m) (1m)1−mm +2

d−m(d+1) 1−m

3dd and b= 382(q+1)

¡1(2/3)

β

4(q+1)¢4(q+1)

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(29)

Local estimates (2/2)

Lemma

For allR>0, any solutionuof (2)satisfies

|xinfx0|≤Ru(t,x)κ³ R2t´

1 1m

if tκ?ku0k1L1(Bm

R(x0))Rα=:2t

κ?=23α+2dα and κ=α ωd

à (1m)4

238d4π16(1m)ακα2(1m)

! 2

(1−m)2αd

(30)

Global Harnack Principle

Proposition

Any solutionuof (2)satisfies

u(t,x)B¡t+tα1,x;M¢ (t,x)[t,+∞)×Rd u(t,x)B¡tt1α,x;M¢ (t,x)[2t,+∞)×Rd

c:=max©1,25mκ1mbαª, t:=c t0A1m M:=2

α

2(1m)κα2 (1+c)d2 bd2αM2 M:=min

(

2d/2³κ bd

´α/2

, κ

(d(1m))d/2α

α 2(1−m)

) κ

1 1−m

? M2

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(31)

The outer estimates

Corollary

For anyε∈(0,ε), any solutionuof (2)satisfies

u(t,x)(1ε)B(t,x) if |x| ≥R(t)ρ(ε) and tT(ε) u(t,x)(1+ε)B(t,x) if |x| ≥R(t)ρ(ε) and tT(ε)

(32)

The inner estimate

Proposition

There exist a numerical constantK>0and an exponentϑ∈(0,1)such that, for anyε∈(0,εm,d)and for anyt4T(ε), any solutionuof (2) satisfies

¯

¯

¯

¯ u(t,x) B(t,x)1

¯

¯

¯

¯≤ K ε11m

Ã1 t+

pG R(t)

!ϑ

if |x| ≤2ρ(ε)R(t)

K:=2

3d

α+α(1−m)3+ +ϑ+10 (α+M)ϑ mϑ(1m)2(1+ϑ)+1−m2

×

"

1+bdCd,ν,1 õ

κMα2 2ν 2ν1+c

d+νd +µ2d

αdα Md+νd

!#

bandcare numerical constants,ϑ=ν/(d+ν)andνis a Hölder regularity exponent which arises from Harnack’s inequality in J. Moser’s proof

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(33)

An L

p

-C

ν

interpolation

LetbucCν():=supx,y x6=y

|u(x)u(y)|

|xy|ν

Lemma

Letp1andν∈(0,1)

kukL(Rd)≤Cd,ν,pbuc

d d+pν

Cν(Rd)kuk

d+pν

Lp(Rd) ∀uLp(Rd)Cν(Rd)

Cd,ν,p=2

(p−1)(d+pν)+dp p(d+pν) ³

1+ωd

d

´1p µ

1+³pdν´

1 pd+pdνµ

³d pν

´

d+pν

pν d

¢d+pdν

1/p

(34)

The threshold time

Proposition

Letm(m1,1)ifd2,m(1/3,1)ifd=1,ε∈(0,εm,d),A>0andG>0

t?=c?

1+A1m+Gα2 εa wherea=αϑ21mm andϑ=ν/(d+ν)

c?=c?(m,d)= sup

ε(0m,d)

max©ε κ1(ε,m),εaκ2(ε,m),ε κ3(ε,m)ª

κ1(ε,m) :=maxn 8c (1+ε)1m1,

23mκ?

1(1ε)1m o

κ2(ε,m) :=(4α)α1Kαϑ ε2−m1mαϑ

and κ3(ε,m) := 8α1 1(1ε)1m

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(35)

Improved entropy-entropy production inequality

Theorem

Letm(m1,1)ifd2,m(1/2,1)ifd=1,A>0andG>0. Then there is a positive numberζsuch that

I[v](4+ζ)F[v]

for any nonnegative functionvL1(Rd)such thatF[v]=G, R

Rdvdx=M, RRdx vdx=0andv satisfies (HA) We have theasymptotic time layer estimate

ε∈(0,2ε?), ε?:=1

2min©εm,d,χ ηª

with T=1

2logR(t?) (1−ε)Bv(t)(1+ε)B tT

and, as a consequence, theinitial time layer estimate

I[v(t,.)](4+ζ)F[v(t,.)] t[0,T], where ζ= 4ηe4T 4ηe4T

(36)

Two consequences

ζ=Z¡A,F[u0]¢, Z(A,G) := ζ?

1+A(1m)α2+G, ζ? := 4η

4+η µ εa?

2αc?

α2 cα

BImproved decay rate for the fast diffusion equation in rescaled variables Corollary

Letm(m1,1)ifd2,m(1/2,1)ifd=1,A>0andG>0. Ifv is a solution of (3) with nonnegative initial datumv0L1(Rd)such that F[v0]=G,RRdv0dx=M, RRdx v0dx=0 andv0 satisfies (HA), then

F[v(t,.)]F[v0]e(4+ζ)t t0 BThe stability in the entropy - entropy production estimate I[v]4F[v]ζF[v]also holds in a stronger sense

I[v]4F[v] ζ 4+ζI[v]

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(37)

A general stability result

λ[f] :=

µ2dκ[f]p−1 p21

kfkp+p+11 k∇fk22

2p d−p(d−4)

A[f] := M

λ[f]

d−p(d−4) p−1 kfk22pp

supr>0rd−p(d−

4) p−1 R

|x|>r|f(x+xf)|2pdx

E[f] :=12ppRRd

Ã

κ[f]p+1 λ[f]d

p1

2p |f|p+1gp+112+ppg1p µκ[f]2p

λ[f]2 |f|2pg2p

¶! dx S[f]:=M

p−1 2p

p21 1

C(p,d)Z(A[f],E[f]) Theorem

Letd1andp(1,p). For anyfW, we have

³k∇fkθ2kfk1p+θ1´2pγ(CGNkfk2p)2pγS[f]kfk22ppγE[f]

(38)

References

M. Bonforte, J. Dolbeault, B. Nazaret, and N. Simonov.Stability in Gagliardo-Nirenberg inequalities.

Preprinthttps://hal.archives-ouvertes.fr/hal-02887010

M. Bonforte, J. Dolbeault, B. Nazaret, and N. Simonov.Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation(supplementary material).

Preprinthttps://hal.archives-ouvertes.fr/hal-02887013

http://www.ceremade.dauphine.fr/∼dolbeaul (temporary links from the home page)

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(39)
(40)

These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/

BLectures The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/

BPreprints and papers

For final versions, useDolbeaultas login andJeanas password

E-mail:dolbeault@ceremade.dauphine.fr

Thank you for your attention !

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(41)

Appendix: linear tools and

corresponding constants

(42)

Linear parabolic equations

v

t = ∇ ·

¡A(t,x)v¢ (4)

onΩT:=(0,T)×Ω, whereΩis an open domain,A(t,x)is a real symmetric matrix such that

λ0|ξ|2d X

i,j=1

Ai,j(t,x)ξiξjλ1|ξ|2 ∀(t,x)R+×T×Rd

for some positive constantsλ0andλ1

DR+(t0,x0) :=(t0+34R2,t0+R2)×BR/2(x0) DR(t0,x0) :=³t034R2,t014R2´×BR/2(x0) h:=exp

"

2d+43dd+c0322(d+2)+3 Ã

1+ 2d+2 (p21)2(d+2)

! σ

#

c0=3d22(d+2) (3d

2+18d+24)+13 2d

à (2+d)1+

4 d2

d1+

2 d2

!(d+1)(d+2) K 2d+d4 σ=P

j=0

³3 4

´j¡

(2+j) (1+j)¢2d+4

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(43)

Harnack inequality (Moser)

Theorem

LetT>0,R(0,p

T), and take(t0,x0)(0,T)×Ωsuch that

¡t0R2,t0+R2¢×B2R(x0)T. Ifu is a weak solution of (4), then sup

DR(t0,x0)

vh inf

D+

R(t0,x0)v

withh:=hλ1+1/λ0

This Harnack inequality goes back to[Moser, 1964] [Moser1971]

The dependence of the constant onλ0andλ1is optimal[Moser, 1971]

The dependence ofhondis pointed out in[Gutierrez, Wheeden, 1990]

To our knowledge, this is the first explicit expression ofh

(44)

Harnack inequality implies Hölder continuity

LetΩ1⊂Ω2⊂Rdtwo bounded domains and let us consider

Q1:=(T2,T3)×1⊂(T1,T4)×2=:Q2, where0T1<T2<T3<T<4 We define theparabolic distancebetweenQ1andQ2as

d(Q1,Q2) := inf

(t,x)Q1

(s,y)[T1,T4]×∂Ω2{T1,T4}×2

|xy| + |ts|12

Theorem

Ifv is a nonnegative solution of (4) onQ2, then

sup

(t,x),(s,y)Q1

|v(t,x)v(s,y)|

¡|xy| + |ts|1/2¢ν 2

µ 128

d(Q1,Q2)

ν

kvkL(Q2)

whereν:=log4³ h

h1

´

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

(45)

Appendix: still another

interpolation inequality

Références

Documents relatifs

The fast diffusion equation determines the family of inequalities, which in- cludes Sobolev’s inequality as an endpoint, and dictates the functional setting and the strategy,

There is a also notion of gradient flow for a well-chosen notion of distance (which is not, in general, Wasserstein’s distance), that is studied in Section 6.2 and for which

Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation (supplementary material).

B Stability in a weaker norm but with explicit constants B From duality to improved estimates based on Yamabe’s flow.. Dolbeault Stability in

We find a new sharp trace Gagliardo-Nirenberg-Sobolev inequality on convex cones, as well as a sharp weighted trace Sobolev inequality on epigraphs of convex functions... With

One is to establish an abstract convex Sobolev type inequality using mass transport, and the other one is to establish a new functional Brunn-Minkowski type inequality on R n + ,

N = 1, Ω = R.. The proof consists of a tedious analysis of all possibilities. Apply Corollary 3.1. Here we use again reiteration. There is nothing to prove! Case 9.. This follows

[2] for equiva- lent statements on heat kernel functional inequalities; see also [8,3,7] for a parabolic Harnack inequality using the dimension–curvature condition by shifting