• Aucun résultat trouvé

On the Controllability of spin-spring quantum systems

N/A
N/A
Protected

Academic year: 2022

Partager "On the Controllability of spin-spring quantum systems"

Copied!
44
0
0

Texte intégral

(1)

On the Controllability of spin-spring quantum systems

Pierre Rouchon École des Mines de Paris, pierre.rouchon@ensmp.fr

Sao Paulo, December 2006

A group around Paris investigating this subject:

Karine Beauchard, Jean-Michel Coron, Claude Le Bris, Mazyar Mirrahimi, Jean-Pierre Puel, Gabriel Turinici, . . .

ACI Simulation Moléculaire 2003-2006 ANR Project CQUID 2007-2009

(2)

Outline

I Non controllability of the quantum harmonic oscillator (spring). (Classical sources generate only quasi-classical light)

I Two-states atom (spin) coupled with a resonant electro-magnetic cavity mode: the controlled Jaynes-Cummings Hamiltonian.

I Similar systems: several trapped ions controlled via lasers;

qubit and quantum gate.

I Quantum Monte-Carlo trajectories, stochastic control and feedback.

(3)

Le système atome-cavité

Spin 1/2 couplé à un

oscillateur harmonique

f(r) e

x2+y2 w2 cos(2πz

λ )

Source: S. Haroche, cours au collège de France.

(4)

9

a+= mω 2x i

2mωp a= mω

2x+ i 2mωp

a,a+

[ ]

=1 H=ωa+a+12

x0 = mω π

1/ 4

e

2x2

Δx=

2mω;Δp= mω

2 → ΔxΔp= 2

n =(a+)n n! 0

Paquet d ’onde gaussien « minimal »

Rappels sur l ’oscillateur harmonique

Opérateurs d ’annihilation et de création de quanta H = p 2/ 2m + mωωωω2x2/ 2

Etat fondamental |||| 0000 >>>>de l ’oscillateur (énergie ω/2)ω/2)ω/2)ω/2)

Etat excité à n quanta (énergie : (n+1/2) ωωωω

Source: S. Haroche, cours au collège de France.

(5)

Quantification of the controlled harmonic oscillator

Classical dynamics: dtd22x=−x+u

d

dtx =p= ∂H

∂p, d

dtp=−x+u=−∂H

∂x withH(x,p,t) = 12(p2+x2)−u(t)x.

Quantification: x 7→X,p7→P=−ı∂x , the Hamiltonian becomes an operator

H= 1

2(P2+X2)−u(t)X =−1 2

2

∂x2 +1

2x2−u(t)x (~=1 here) and the Shrödinger equation

ıd

dtψ=Hψ.

describes the time evolution ofψ, the probability amplitude.

(6)

Quantification of ... (end)

ıd

dtψ=Hψ Probability amplitudeψ(t,x)∈C,R+∞

−∞ |ψ(t,x)|2dx =1 obeys the Shrödinger equation:

ı∂ψ

∂t(x,t) =Hψ=−1 2

2ψ

∂x2(x,t)+x2ψ(x,t)−u(t)xψ(x,t), x ∈R The averaged position:

X¯(t) =hψ|X|ψi= Z +∞

−∞

x|ψ|2dx,

The averaged impulsion:

P(t) =¯ hψ|P|ψi=−ı Z +∞

−∞

ψ∂ψ

∂xdx

(7)

The language of operators

ı∂ψ

∂t = (1

2(P2+X2)−uX)ψ=−1 2

2ψ

∂x2 +x2ψ−uxψ With theannihilationandcreationoperators

a= X+ıP

2 = 1

2

x+ ∂

∂x

, a= X−ıP

2 = 1

2

x− ∂

∂x

we get (u/√ 27→u)

[a,a] =1, H =aa+1

2 −u(a+a).

(8)

The spectral decomposition of a

a

The Hermitian operatoraaadmitsNas non-degenerate spectrum. The eigen-vector associated ton∈Nis denoted|ni (Fock state,nbeing the number of vibration quanta ):

a|ni=√

n|n−1i, a|ni=√

n+1|n+1i and|0i(a|0i=0) corresponds to a Gaussian distribution:

ψ0(x) = 1

π1/4exp(−x2/2) Remember that

a= X +ıP

2 = 1

√ 2

x+ ∂

∂x

, a= X −ıP

2 = 1

√ 2

x − ∂

∂x

(9)

Modal approximation is controllable

(Schirmer et al (2001))

ıd

dtψ= (aa+1/2)−u(a+a)ψ Truncation ofψ=P+∞

n=0cn(t)|nito orderN leads to

ıd dt

0 B B B B B B

@ c0 c1 .. . cN−1

cN 1 C C C C C C A

=

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 0 B B B B B B B B B B

@ 1

2 0 . . . 0

0 32 0

0 52 0

.. . ..

.

... 0

0 . . . 0 2N+12

1 C C C C C C C C C C A

u 0 B B B B B B B B B B B B B B B B

@

0 1 0 . . . 0

1 0

2 ...

.. .

0

2 0

3

.. . ..

.

3

... 0

.. .

...

...

N+1

0 . . . 0

N+1 0

1 C C C C C C C C C C C C C C C C A 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 0 B B B B B B

@ c0 c1 .. . cN−1

cN 1 C C C C C C A

(10)

Infinite dimensional system not controllable

(MR IEEE-AC 2004)

ıd

dtψ=(aa+1/2)−u(a+a)ψ This system reads formallyıdtdψ= (H0+uH1)ψ. Its

controllability is given formally by the Lie algebra spanned by the skew Hermitian operatorsıH0andıH1. Using[a,a] =1, [aa,a+a] =a−a, [aa,a−a] =a+a, [a+a,a−a] =2.

we get a Lie algebra of dimension 4 containing ıaa, ı(a+a), a−a, ıId

(11)

Controllable and un-controllable part

ıd

dtψ= (aa+1/2)−u(a+a)ψ Setα=hψ|a|ψi ∈Cthen

ιd

dtα =hψ|[a,H]|ψi=α−u and consider the unitary operator

T(t) =exp h

α(t)a−α(t)ai .

IfAandBcommute with[A,B](Glauber):

exp(A+B) =exp(A)exp(B)exp(−[A,B]/2), we have T(t)aT(t) =a+α(t), T(t)aT(t) =a(t) Takeφ=T(t)ψ, then

ιd dtφ=

aa+1 2

φ+h

|α|2−u(α+α)i φ

(12)

Decomposition .... (end)

ιd dtφ=

aa+1 2

φ+h

|α|2−u(α+α)i φ

With a global phase changeχ=e(ıR0t[|α|2−u(α+α])φwe obtain the following control free Schrödinger equation:

ι d dtχ=

aa+1 2

χ.

Two parts, a controllable oneα∈C,ıdtdα =α−u, an uncontrollable oneχ, the quantum fluctuations aroundα.

These computations might be extended to an arbitrary number of harmonic oscillators admitting the same controlubut with different frequencies.

(13)

Classical EM fields generated by classical sources

Bounded smooth domainΩ⊂R3, scalar controluassociated to time-varying currents insideΩ. The Maxwell equation reads (perfect mirrors on the boundary,c=1):

2E~

∂t2 (r,t) = ∆E~(r,t)+u(t)~J(r)forr ∈Ω, E~(r,t) =0 forr ∈∂Ω.

Modal decompositionE(r~ ,t) =P+∞

j=0 xj(t)E~j(r)leads to an infinite collection of controlled harmonic oscillators:

d2

dt2xj =−ωj2xj+bju, bj = Z

E~j(r)·~J(r)dr.

(14)

Quantum EM fields generated by classical sources

d2

dt2xj =−ω2jxj+bju Quantification based onaj =

ωjXj+ı

ωjPj

2 we get the following Hamiltonian (~=1):

H=

X

j=0

j(ajaj+1

2)−bju(aj+aj)].

an operator on the "state space"N

jL2(R,C).

(15)

Controllability decomposition

H =

X

j=0

j(ajaj+1/2)−bju[aj+aj].

Setαj =

ψ|aj|ψ then

ιd dtαj =

ψ|[aj,H]|ψ

jαj −bju

TakeT =N

jTj withTj =exph

αjan−αjaji . We haveTajT=ajj. Taking

φ=eı

Rt 0

hP

jωjj|2−bju(αjj)i

T(t)ψ we get:

ıd dtφ=

 X

j

ωj (ajaj+1 2)

φ.

(16)

Controllability decomposition (end)

The electro-magnetic field operator

E(r~ ,t) =X

j

aj+aj pj

→Ej(r)+−→ E(r,t)

is the sum of two terms: the vacuum fluctuation operatorsaj that obey the autonomous dynamicsıdtdajjaj ; the classical field (scalar operators)E(r~ ,t) =P

jαj(t)−→

Ej(r)solution of the classical wave equation

2E~

∂t2 (r,t) = ∆E~(r,t)+u(t)~J(r)for r ∈Ω, E~(r,t) =0for r ∈∂Ω.

Control interpretation of a classical result (MR CDC/ECC 05):

classical motions of charges generate only quasi-classical (coherent) light (see Glauber, CDG2, ...).

(17)

Mode gaussien avec un diamètre de 6mm Grand champ par photon (1,5mV/m) Grande durée de vie du champ (1ms) allongée par l ’anneau autour des miroirs

Accord en fréquence facile Faible champ thermique ( < 0,1 photon )

La Cavité Fabry-Perot supraconductrice

Source: S. Haroche, cours au collège de France.

(18)

Le système atome-cavité

Spin 1/2 couplé à un

oscillateur harmonique

f(r) e

x2+y2 w2 cos(2πz

λ )

Source: S. Haroche, cours au collège de France.

(19)

Two-states quantum systems (

12

-spin)

Ground state|giand excited state|ei:ψ= (ψg, ψe)∈C2à linear superposition of|giand|ei(ω0the Bohr frequency of the transition).

ıd dt

ψe ψg

= ω0

2

1 0 0 −1

ψe ψg

=H0ψ

withH0= ω20(|ei he| − |gi hg|).

Interaction with classical electrical fieldu(t)∈R(µ∈Rdipole coefficient ....):

ıd dt

ψe

ψg

= ω0

2

1 0 0 −1

+µu

0 1 1 0

ψe

ψg

= (H0+u(t)H1

withH1=µ(|ei hg|+|gi he|).

(20)

Two-states system coupled to a resonant cavity mode

State space:L2(R,C)N C2.

Cavity Hamiltonian (an isolated resonant modeω≈ω0driven by a classical controlu):

Hc=ωaa−u(a+a) Two-states Hamiltonian

Ha= ω0

2 (|ei he| − |gi hg|) = ω0

2 σz

Interaction Hamiltonian (ΩRabi vacuum frequencyΩω, ω0) Hint= Ω

2(a+a)(|ei hg|+|gi he|) = Ω

2(a+ax

System Hamiltonian

Hc+Ha+Hint

(21)

The rotating wave approximation (ω = ω

0

)

ıd

dtψ= (Hc+Ha+Hint)ψ Setψ=exp −ıωtaa

exp(−ıωtσz)φ(interaction frame). The Hamiltionian becomes

−u(e−ıωta+eıωta)+Ω

2(e−ıωta+eıωta)(e−ıωt|gi he|+eıωt|ei hg|) because

exp

ıωtaa

aexp

−ıωtaa

=e−ıωta

exp(ıωtσzxexp(−ıωtσz) =e−ıωt|gi he|+eıωt|ei hg|

(22)

The rotating wave approximation (end)

H=−u(e−ıωta+eıωta)+Ω

2(e−ıωta+eıωta)(e−ıωt|gi he|+eıωt|ei hg|) Setu=ve−ıωt +veıωt withva slowly varying complex

amplitude (new controlv∈C) we get neglecting oscillating termse±2ıωt, the controlled Jaynes-Cummings Hamiltonian (in the interaction representation)

HJC= Ω

2(a|ei hg|+a|gi he|)−(va+va)

(23)

PDE behind the Jaynes-Cummings controlled model

ıd

dtψ= Ω

2(a|ei hg|+a|gi he|)ψ−(va+va)ψ Sinceψ∈L2(R,C)N

C2andL2(R,C)N

C2∼(L2(R,C))2we representψby two componentsψgandψeelements of L2(R,C). Up-to some scaling:

ı∂ψg

∂t =

v1x +ıv2

∂x

ψg+

x+ ∂

∂x

ψe

ı∂ψe

∂t =

x− ∂

∂x

ψg+

v1x +ıv2

∂x

ψe

wherev=v1+ıv2∈Cis the control. Remember that

a= 1

√2

x+ ∂

∂x

, a= 1

√2

x− ∂

∂x

(24)

Another form of the control Jaynes-Cummings Hamiltonian

HJC= Ω

2(a|ei hg|+a|gi he|)−(va+va) Setw∈Csuch thatıdtdw=−vand take the unitary transformationT(t) =exp

wa−wa

.ThenHJC becomes THJCT−ıTT˙and up-to a global phase change we get

JC = Ω

2(a+w)|ei hg|+ (a+w)|gi he|)

wherew∈Cis the new control corresponding to the integral of the physical controlv.

(25)

Another PDE formulation

ıd

dtψ= Ω

2[(a+w)|ei hg|+ (a+w)|gi he|)]ψ Up-to some scaling, withψ= (ψge):

ı∂ψg

∂t =

x+w1+ ∂

∂x +ıw2

ψe

ı∂ψe

∂t =

x+w1− ∂

∂x −ıw2

ψg

wherew =w1+ıw2∈Cis the control (time integral of the physical controlv the amplitude and phase modulations).

(26)

Elementary facts relative to controllability

The Jaynes-Cummings systems is equivalent to ıd

dtψ= (H0+w1H1+w2H2)ψ with

H0=Xσx −Pσy, H1x, H2y

and the commutations are

[X,P] =ı, σ2x =1, σxσy =ıσz. . .

The Lie algebra spanned byıH0,ıH1andıH2is infinite dimensional now.

But one can prove that thelinear tangent approximation around any eigen-state ofH0+w1H1+w2H2for any control valuew1andw2isnot controllable.

(27)

Innsbruck linear ion trap

1.0m m

5m m

M H z

5

radial

ω M H z 2 7 . 0

axial

ω

Source: F. Schmidt-Kaler, séminaire au Collège de France en 2004.

(28)

C irac & Zoller gate w ith tw o ions

Source: F. Schmidt-Kaler, séminaire au Collège de France en 2004.

(29)

2-level-atom harm onic trap

Laser coupling

dressed system

„m olecular Franck C ondon“

picture

...

...

dressed system

S n1,

D

n1, n,D n+1,D

S n+1, S

n,

„energy ladder“

picture

S D D

S

Source: F. Schmidt-Kaler, séminaire au Collège de France en 2004.

(30)

A single trapped ion controlled via a laser

H=Ω(aa+1/2) +ω0

2 (|ei he| − |gi hg|) +

h

ueı(ωt−kX)+ue−ı(ωt−kX)i

(|ei hg|+|gi he|) withkX =η(a+a),η 1 Lamb-Dicke parameter,ω≈ω0and the vibration frequencyΩω,u∈Cthe control(amplitude and phase modulations of the laser of frequencyω).

Assumeω=ω0. Inıdtdψ=Hψ, setψ=exp(−ıωtσz/2)φ. Then the Hamiltonian becomes

Ω(aa+1/2)+

h

ueı(ωt−η(a+a))+ue−ı(ωt−η(a+a)) i

e−ıωt|gi he|+eıωt|ei hg|

(31)

Rotating Wave Approximation and PDE formulation

We neglect highly oscillating terms withe±2ıωt and obtain the averaged Hamiltonian:

H˜ = Ω(aa+1/2) +ue−ıη(a+a)|gi he|+ueıη(a+a)|ei hg|

This corresponds to (η7→η√ 2):

ı∂ψg

∂t = Ω 2

x2− ∂2

∂x2

ψg+ue−ıηxψe

ı∂ψe

∂t =ueıηxψg+Ω 2

x2− ∂2

∂x2

ψe whereu∈Cis the control

dtdu

ω|u|andη1,Ωω.

Controllability of this system ?

(32)

Logique quantique avec une chaîne d’ions

Des impulsions laser appliqués séquentiellement aux

ions de la chaîne réalisent des portes à un

bit et des portes à deux bits. La détection par

fluorescence (éventuellement précédée par une rotation du bit) extrait l’information du système.

Beaucoup de problèmes à résoudre pour réaliser un tel dispositif…..

Source: S. Haroche, CdF 2006.

(33)

Quelques chaînes d‘ions (Innsbruck)

Fluorescence spatialement résolue. Détection en quelques millisecondes (voir première leçon) Source: S. Haroche, CdF 2006.

(34)

!z

Mode du CM

Mode «accordéon»

!

z

3

Mode « ciseau » Z1(t)=Z10cos

( )

!zt

Z2(t)=Z20cos

(

!z 3t

)

Z3(t)=Z30cos

(

!z 29 / 5t

)

Les deux premiers modes (centre de masse et accordéon) sont pour tout N ceux de fréquences les plus basses. Leurs fréquences sont indépendantes de N. Ce n’est plus

vrai pour les modes plus élevés.

Visualisation des modes ( N=3)

Source: S. Haroche, CdF 2006.

(35)

temps

position

Mode du centre de masse

Mode

“accodéon“:

élongation proportionnelle à la distance de l‘ion au centre de la chaîne

Les deux premiers modes de vibration sont indépendants du nombre d’ions dans la

chaîne (ici cas de 7 ions)

!z 3

!

z

Source: S. Haroche, CdF 2006.

(36)

Spectre résolu de l’ion interprété en terme de création/annihilation de phonons (Γ < ωz)

g,1 g,2 e,0

e,1 e,2

g,0

Porteuse:

ωLeg Δn=0 g,1

g,2 e,0

e,1 e,2

g,0

1ère bande latérale rouge:

ωL=ωeg−ω ; Δn=-1

e,0 e,1 e,2

g,1 g,2

g,0

1ère bande latérale bleue:

ωLeg+ω ; Δn=+1 Source: S. Haroche, CdF 2006.

(37)

Two trapped ions controlled via two lasers ω ( phonons Ω of the center of mass mode only)

The instantaneous Hamiltionian:

H= Ω(aa+1/2) +ω0

2 (|e1i he1| − |g1i hg1|) +h

u1eı(ωt−k(a+a))+u1e−ı(ωt−k(a+a))i

(|e1i hg1|+|g1i he1|) +ω0

2 (|e2i he2| − |g2i hg2|) +

h

u2eı(ωt−k(a+a))+u2e−ı(ωt−k(a+a))i

(|e2i hg2|+|g2i he2|)

(38)

Two trapped ions controlled via two lasers ω

The averaged Interaction Hamiltonian (RWA) H˜ = Ω(aa+1/2)

+u1e−ıη(a+a)|g1i he1|+u1eıη(a+a)|e1i hg1| +u2e−ıη(a+a)|g2i he2|+u2eıη(a+a)|e2i hg2| with

a= 1

√2

x+ ∂

∂x

, a= 1

√2

x− ∂

∂x

and the wave function (probability amplitudeψµν ∈L2(R,C), µ, ν=e,g):

|ψi=ψgg(x,t)|g1g2i+ψge(x,t)|g1e2i+ψeg(x,t)|e1g2i+ψee(x,t)|e1e2i Qbit notations: |1icorresponds to the ground state|giand|0i

to the excited state|ei.

(39)

Two trapped ions controlled via two lasers ω

The PDE satisfied byψ(x,t) = (ψgg, ψeg, ψge, ψee):

ı∂ψgg

∂t = Ω 2

x2− ∂2

∂x2

ψgg+u1e−ıηxψeg+u2e−ıηxψge

ı∂ψge

∂t = Ω 2

x2− ∂2

∂x2

ψge+u1e−ıηxψee+u2e−ıηxψgg

ı∂ψeg

∂t = Ω 2

x2− ∂2

∂x2

ψeg+u1eıηxψgg+u2e−ıηxψee

ı∂ψee

∂t = Ω 2

x2− ∂2

∂x2

ψee+u1eıηxψge+u2eıηxψeg

whereu1,u2∈Care the two controls, laser amplitudes forion no 1andion no 2

dtdu1,2

ω|u1,2|andη 1,Ωω.

Controllability of this system ?

(40)

Two-levels atom with spontaneous emission from |ei

Coherent (conservative) evolution:

ıdtd |ψi = H|ψi with the controlled Hamilto- nianH:

ω0

2 (|ei he| − |gi hq|) +u(|ei hg|+|gi he|) Spontaneous emission (decoherence, dissipation): stochastic jump from |ei to |gi associated to the jump operator L=√

Γ|gi he|withΓ−1the life-time of|ei.

(41)

Quantum Monte Carlo Trajectories

(Dalibard et al. 1992) Takeτ withτΓτ ω01 (jump operatorL=√

Γ|gi he|).

Compute the transition from|ψ(t)ito|ψ(t+τ)ivia the following stochastic jump process:

I Compute jump probabilityp=τhψ(t)|LL|ψ(t)iand chose σ randomly between[0,1].

I if 0≤σ≤1−pno jump, no photon, no detector click:

|ψ(t+τ)i= 1−ıτH−τ2LL

p1−p |ψ(τ)i

I ifp−1< σ≤1, jump from|eito|gi, spontaneous

emission of one photon producing one photo-detector click:

|ψ(t+τ)i= L|ψ(t)i pp/τ .

(collapse of the wave packet)

(42)

Lindblad master equation

Valid to represent the evolution of theaverage valueof the projector|ψ(t)i hψ(t)|known as thedensity operatorρ, a positive symmetric operator of trace one:

d

dtρ=−ı[H0+uH1, ρ] +LρL−1 2

LLρ+ρLL where

y(t)=trace(ρLL)

is theaverage number of detector clicks per time-unit(the measured output).

Notice that the control appears in the Hamiltonian H=H0+uH1via the coherent laser fieldu.

(43)

Feedback for open quantum systems ...

Probe laser Control law

Filtering equation

Digital control

Magnetic coils Cav

Detector

Such stochastic models are used for feedback on the Caltech experiment of H. Mabuchi (Van Handel et al, IEEE AC 2005) Stochastic Lyapunovtechniques can be used for stabilization:

see the work of M. Mirrahimi and R. Van Handel on Stabilizing feedback controls for quantum systems to appear in SIAM J.

Cont. Opt. (http://arxiv.org/abs/math-ph/0510066).

(44)

References

Recent book.S. Haroche, J-M Raimond. Exploring the quantum:

atoms, cavities and photons. Oxford University Press (Graduate texts), 2006.

Basic books:

C. Cohen-Tannoudji, B. Diu, F. Laloë. Mécanique Quantique.Hermann, Paris 1977 (vol I & II).

R. Feynman. Cours de physique: mécanique quantique. InterEdition, Paris,1979.

A. Aspect, C. Fabre, G. Grynberg. Optique quantique 1 et 2.

Cours de majeure de physique. Ecole Polytechnique (2002).

Other books:

CDG1:C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg. Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, 1989.

(also in french, CNRS editions)

CDG2:C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg.

Atom-Photon interaction: Basic Processes and Applications. Wiley, 1992. (also in French, CNRS editions)

A conference paper:R. W. Brockett, C. Rangan, A.M. Bloch. The Controllability of Infinite Quantum Systems. CDC03.

Références

Documents relatifs

Thus, the objective of the present study was to investigate the transfer of various CLA isomers from a natural dietary CLA source (alpine butter) into the milk of lactating sows and

Eine Fortifikationsanlage als „the public persona of the city“ (S.270): Thema der Dis- sertation von Hendrik Dey ist die Bedeutung der Aurelianischen Mauer für die Stadt Rom in dem

Fujuki and Betts [14], and also Nishimori and Nakan- ishi [15] discussed the disappearance of long-range or- der in the study of quantum spin systems on the trian-

These services have been considered in order to give feedbacks on traditional services (as the rich communication ones), on current proposals of many TelCos (like the cloud

2014 A kinetic equation, which includes the effects of degeneracy, is derived for dilute, polarized systems by the Green’s function method of Kadanoff and Baym.. When

Controllability of finite-dimensional approximations of spin-boson systems have first been obtained in the physics literature, via constructive methods, in [17] and [16].. The

Chapter 3: Given infinitely many bilinear Schr¨ odinger equations, we prove the simultaneous global exact controllability “in projection”.. Chapter 4: We consider the bilinear

Ces 4 souches ont été isolées chez 3 patients tous porteurs de sonde de cystostomie depuis 5 jours chez un sujet porteur d'un cancer de la vessie, depuis 40 jours chez un sujet