• Aucun résultat trouvé

A density measure in rational approximation St´ephane Fischler Universit´e Paris-Sud (Orsay, France)

N/A
N/A
Protected

Academic year: 2022

Partager "A density measure in rational approximation St´ephane Fischler Universit´e Paris-Sud (Orsay, France)"

Copied!
14
0
0

Texte intégral

(1)

A density measure

in rational approximation

St´ephane Fischler

Universit´e Paris-Sud (Orsay, France)

http://www.math.u-psud.fr/efischler/

I.C.M. (Madrid), August 29th 2006

Joint work with Tanguy Rivoal (Grenoble, France)

(2)

Let ξ ∈ R \ Q. How small can |ξ − pq| (or

|qξ − p|) be in terms of q ? Two exponents:

• the irrationality exponent µ(ξ) measures the precision of rational approximants (clas- sical).

• the density exponent ν(ξ) measures the reg- ularity (or density) of sequences of rational approximants (new).

Throughout the lecture, we assume ξ ∈ R\Q.

(3)

Definition of the irrationality exponent µ(ξ)

The irrationality exponent µ(ξ) ∈ R∪ {+∞}

is such that the following property holds:

Let µ ∈ R. The equation

ξ − p q

< 1

qµ (1)

has

• infinitely many solutions (p, q) if µ < µ(ξ),

• only finitely many solutions (p, q) if µ >

µ(ξ).

Lower bound: µ(ξ) ≥ 2.

ξ is said to be a Liouville number if µ(ξ) = +∞, that is if (1) has infinitely many solutions for any µ ∈ R. For instance:

ξ =

+∞

X

n=1

1 10n!

(4)

Definition of the density exponent ν(ξ)

Let q = (qn)n≥1 be an increasing sequence of positive integers. Let pn be the closest integer to qnξ, and

αξ(q) = lim sup

n→+∞

|qn+1ξ − pn+1|

|qnξ − pn| , β(q) = lim sup

n→+∞

qn+1 qn .

The density exponent ν(ξ) is the infimum of log

q

αξ(q)β(q)

as q runs through the set of all increasing se- quences such that

αξ(q) < 1 and β(q) < +∞. (2) If there is no sequence q satisfying (2), we let ν(ξ) = +∞.

Lower bound: ν(ξ) ≥ 0.

(5)

A glance at irrationality proofs

Many irrationality proofs go by constructing q such that

qnξ − pn → 0 as n → ∞, and qnξ − pn 6= 0 for any n.

Sometimes the stronger property

αξ(q) < 1 and β(q) < +∞

holds (e.g. in Ap´ery’s proof that ζ(3) 6∈ Q).

ν(ξ) < ∞

⇔ there exists q with

αξ(q) < 1 and β(q) < +∞

⇔ there exists a proof that ξ 6∈ Q in which the sequences (qn) and (|qnξ − pn|) have geometrical behaviour

(6)

A simple case, to fix the ideas

Assume there is an increasing sequence q with ν(ξ) = log

q

αξ(q)β(q) and also

αξ(q) = lim

n→+∞

|qn+1ξ − pn+1|

|qnξ − pn| < 1, β(q) = lim

n→+∞

qn+1

qn < +∞.

Then

|qnξ−pn| = (αξ(q)+o(1))n and qn = (β(q)+o(1))n, so that

qn|qnξ−pn| = (αξ(q)β(q)+o(1))n = e(2ν)+o(1))n. In this case, ν(ξ) measures how fast qn|qnξ − pn|

grows with n.

If ν(ξ) > 0 and n is sufficiently large then qn can not be a convergent in the continued fraction expansion of ξ.

Now we come back to the general case

(7)

Generic behaviour

Recall that, for any ξ ∈ R \ Q, 2 ≤ µ(ξ) ≤ +∞, 0 ≤ ν(ξ) ≤ +∞.

Theorem 1 For almost all ξ ∈ R \ Q with respect to Lebesgue measure,

µ(ξ) = 2 and ν(ξ) = 0.

General philosophy: If ξ comes in “natu- rally” (that is, is not constructed on purpose) then it should satisfy

µ(ξ) = 2 and ν(ξ) = 0.

(8)

Liouville numbers

Recall that ξ is a Liouville number if µ(ξ) = +∞, that is if for any µ ∈ R the equation

ξ − p q

< 1 qµ

has infinitely many solutions (p, q).

Theorem 2 If µ(ξ) = +∞ then ν(ξ) = +∞.

So we know that ν(ξ) = +∞ for some numbers ξ, for instance

ξ =

+∞

X

n=1

1 10n!

(9)

Continued fraction expansion

ξ = [a0; a1, a2, . . .] = a0 + 1 a1 + a 1

2+...

Convergents: the most precise rational approx- imants p/q. So µ(ξ) can be easily computed from the sequence (ak).

But the sequence of convergents has not (in general) a geometric growth, so it can not be used to compute ν(ξ). . . except in one case:

Theorem 3 If ak ≤ A for any k, then µ(ξ) = 2,

ν(ξ) ≤ log

A + 1

√A + 2

.

For a quadratic number ξ, the sequence (ak) is ultimately periodic and

ν(ξ) = 0.

So we know that ν(ξ) = 0 for some numbers ξ.

(10)

The number e

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]

µ(e) = 2

We do not know anything on ν(e), except of course

0 ≤ ν(e) ≤ +∞.

Is it finite ? Is it zero ?

(11)

The number ζ(3)

ζ(3) =

+∞

X

n=1

1 n3

Theorem 4 (Ap´ery, 1978) ζ(3) is irrational, and

µ(ζ(3)) < 13.42

Further refinements by various authors. Best known bound (Rhin-Viola, 2001) :

µ(ζ(3)) < 5.52 Conjecture: µ(ζ(3)) = 2.

Ap´ery’s construction yields ν(ζ(3)) ≤ 3

The further refinements yield less precise upper bounds.

Conjecture: ν(ζ(3)) = 0.

(12)

Other hypergeometric constructions

For

ζ(2) = π2 6 =

+∞

X

n=1

1 n2

and for log(2), the situation is the same.

ν(ζ(2)) ≤ 2 ν(log(2)) ≤ 1

The number ζ(5) is not known to be irrational.

ν(π) < 21

(13)

Algebraic numbers

If ξ is algebraic then:

• µ(ξ) ≤ deg(ξ) (Liouville)

• µ(ξ) = 2 (Roth)

Theorem 5 (with Adamczewski) If ξ is algebraic then ν(ξ) is finite.

Conjecture: If ξ is algebraic then ν(ξ) = 0.

(14)

Open questions

Does there exist a number ξ such that 0 < ν(ξ) < +∞ ?

Is it true that for any irrational period ξ we have

ν(ξ) = 0 ?

Références

Documents relatifs

Gopalakrishnan, editors, International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2004), volume 3223 of Lecture Notes in Computer Science, pages

St´ ephane Fischler (Universit´ e Paris-Sud, Orsay) Habilitation ` a Diriger des Recherches.. Cela ne change pas la borne sup.. Math., 2009). Il existe une partie de R , d´ efinie

Dans les d´emonstrations, on doit souvent multiplier des suites de rationnels par une puissance de la fonction d n = ppcm(1, 2,. Constructions hyperg´ eom´ etriques. — Dans

Corollary 1.4 The numbers e and π are transcendental, and so is any nonzero logarithm of an algebraic number (for instance log(2), log(3),.. Such a logarithm exists if, and only if,

Expliquer pourquoi un seul perceptron n’est pas suffisent pour calculer cette fonction.. Question 3: Etant donn´ ees deux fonctions bool´ ennes f et g sur un ensemble de vari- ables X

On peut par exemple supposer que les cellules d’association ne peuvent d´ ependre que d’au plus d cellules de la r´ etine (perceptron ` a “domaine born´ e”) ou, dans un

Appliquer la m´ ethode de model-checking de LTL bas´ ee sur les automates pour montrer que l’´ etat q 0 de M ne satisfait pas ψ 1.. (On ne demande pas d’utiliser l’algorithme

We proposed here a robust and powerful method to compute fundamental state associated to the Schr¨odinger operator with magnetic field and join this method with an adaptative