• Aucun résultat trouvé

Outils pour la Biologie de synthèse :Micro et Milli fluidique!

N/A
N/A
Protected

Academic year: 2022

Partager "Outils pour la Biologie de synthèse :Micro et Milli fluidique!"

Copied!
42
0
0

Texte intégral

(1)

Outils pour la Biologie de synthèse :Micro et Milli fluidique !

Jérôme  Bibe+e

Laboratoire  Colloïdes  et  Matériaux  Divisés

ESPCI  ParisTech

(2)

Must be suitable for micro organism growth: example of yeast growth.!

t = 0 t = 17 h

1 mm

(3)

Croissance d’amas cellulaires!

collaboration avec l’Institut Curie (ANR CAPCELL)

Cellules ct26 (cellules cancéreuses de souris)

(4)

!   Study  over  numerous  cells:  sta2s2cal  power  

RDT-­‐  Confiden2al  

10X  

4X  

2X  

(5)

!  

Collander (1954) !

Glucose, salts!

(6)

!  

Overtonʼs rule!

A!

low solubility! high solubility!

(7)

‣ 

Osmotic contraction while growing S. cerevisiae

(8)

Requirements

At the time scale of the experiment (A few hours)

1) Nutrients (salts, carbohydrates) must not permeate

2)Products of the bioactivity (CO2, Ethanol, etc) must permeate almost instantaneously, or get trapped or degraded into cells (ATP) 3)Relaxation of osmotic missmatch must be governed by water permeation only

HOW TO MAKE SUCH SYSTEM? And

make it extremely sensitive and quantitative

(9)

‣ 

cell encapsulation

CELL COMPARTEMENTALIZATION

λ=1/10 λ=1/5 λ=1/2

(10)

Confined  2d  Droplet  Array  

100  µm  

x  

y   x   y  

100  µm   4  cm  

40  µm  

10  

(11)

Limiting factor Exponential growth

Constant yield

‣ 

Monodʼs teachings

(12)

‣ 

Modelisation of droplet shrinkage in the exponential phase

~600 colonies

time (min) V (pL)

: substrat quantity

time (min)

Y=0.15g(biomasse)/gglucose ; τ =120 min.

(13)

‣ 

Non-glucose limited

V/V0

time (min)

(14)

‣ 

Modelisation of droplet shrinkage in the stationnary phase

For time (min)

V (pL)

time (min)

Slope is conserved Volume follows substrat consumption

: substrat quantity

68

(15)

V/V0

Time (min)

~ single cell glucose consumption

Single cell bloked in G1 phase

(16)

‣ 

Single cell metabolism: auxotrophic decoupling

95

(17)
(18)

‣ 

Identifying the best performing individuals

Strain Growth Ethanol

Turbo yeast 48 +++ ++

CEN PK ++ +/-

TMB 3001 + +/-

C5 + -

Y55 +/- ++

CLIB 413 Agregats -

YJM 454 - ++

CLIB 192 - +++

(Batch experiment, Raphaël Calbrix)

102

(19)

‣ 

Identifying the best performing individuals

Strain Growth Ethanol

Turbo yeast 48 +++ ++

CEN PK ++ +/-

TMB 3001 + +/-

C5 + -

Y55 +/- ++

CLIB 413 Agregats -

YJM 454 - ++

CLIB 192 - +++

(Batch experiment, Raphaël Calbrix)

time (min) V*

103

(20)

‣ 

Identifying the best performing individuals

Strain Growth Ethanol

Turbo yeast 48 +++ ++

CEN PK ++ +/-

TMB 3001 + +/-

C5 + -

Y55 +/- ++

CLIB 413 Agregats -

YJM 454 - ++

CLIB 192 - +++

(Batch experiment, Raphaël Calbrix)

time (min) V*

104

(21)

‣ 

Identifying the best performing individuals

Strain Growth Ethanol

Turbo yeast 48 +++ ++

CEN PK ++ +/-

TMB 3001 + +/-

C5 + -

Y55 +/- ++

CLIB 413 Agregats -

YJM 454 - ++

CLIB 192 - +++

(Batch experiment, Raphaël Calbrix)

time (min) V*

105

(22)

‣ 

Identifying the best performing individuals

Strain Growth Ethanol

Turbo yeast 48 +++ ++

CEN PK ++ +/-

TMB 3001 + +/-

C5 + -

Y55 +/- ++

CLIB 413 Agregats -

YJM 454 - ++

CLIB 192 - +++

(Batch experiment, Raphaël Calbrix)

time (min) V*

106

(23)

‣ 

Selecting indivuduals on aptitute to metabolize certain substrates criterion: growth vs no growth = shrink vs no shrink

glucose

(maize, beet, sugar canne, starch...)

fermentation

ETHANOL 1st generation bioethanol:

2nd generation bioethanol: cellulose & lignocellulose

(forests, wastes, miscanthus...)

saccharification

sugar (C6+C5)

fermentation

ETHANOL enzymes

NEW STRAINS

116

(24)

‣ 

Screening for xylose metabolizing strains

117

V*

time (min)

Strain Growth Ethanol

Turbo yeast 48 +++ ++

CEN PK ++ +/-

TMB 3001 + +/-

C5 + -

Y55 +/- ++

CLIB 413 Agregats -

YJM 454 - ++

CLIB 192 - +++

25g/L glucose - 25g/L xylose

(25)

LCMD-ESPCI

Laurent Boitard Denis Cottinet Nicolas Bremond

Enric Santanach-Carreras Leslie Rolland (PhD)

Hugo Doméjean (PhD) Institut Curie-UMR 168

Pierre Nassoy

Christophe Lamaze Kévin Alessandri(PhD) Bibhu-Ranji Sarangi

THANKS

(26)

Co-extrusion dans l’air!

Fragmentation

Cœur hydrophobe : liquides non mouillants

Cœur aqueux : liquides miscibles

Gélification

(27)

Goutte d’eau!

(28)

Goutte d’eau + SDS!

La précipitation du SDS à l’interface inhibe

le mélange avec le bain de gélification.

(29)

Cœur aqueux , alginate + tensioactif (SDS)!

membrane fine, h ~ 50 µ m

(30)
(31)

Growth Mechanics, HTS against

therapeutic candidates

(32)
(33)
(34)

Capsules sub-millimétriques!

Forçage de la déstabilisation capillaire d’un jet composé de 2 liquides

d

jet

= 200 µ m f = 1.5 kHz

Capsules:

(35)
(36)
(37)

Supplementary Figure 4

Growth of spheroids inside alginate capsules and after capsules bursting.

(a) Representative plots showing the time evolution of the spheroid’s radius RMCS normalized to the initial inner capsule radius R0 for different CT26 spheroids grown in thin capsules. Time t=0 is taken at confluency. The steep increase of RMCS in the later stages corresponds to capsule bursting. The spheroid grows freely at a rate similar to that observed in the very early stages following encapsulation. (b) Typical sequence of phase contrast images showing the different stages of MCS growth, before confluency, after confluency, and after capsule bursting. Scale bar, 100 µm.

(38)

Croissance d’amas cellulaires!

collaboration avec l’Institut Curie (ANR CAPCELL)

-  Mesure de la pression exercée par la croissance d’un agrégat

-  Trafic intra-cellulaire au sein d’un tissu confiné

(39)
(40)
(41)
(42)

Références

Documents relatifs

The occupied set is given by the union of independent Wiener sausages with radius r running up to time t and whose initial points are distributed according to a homogeneous

The etymology of the word irle is from the Greek, kirkos, from the base ker- whih means..

— We recast the notion of joint spectral radius in the setting of groups acting by isometries on non-positively curved spaces and give geometric versions of results of Berger–Wang

Reconstruction of brainstem sections (15 sections analysed from rostral to caudal, ‘A’ to ‘O’) representing the distribution of reticulospinal neurons on the ipsilateral (red) and

Ros, “Optimization of the second order autoregressive model AR(2) for Rayleigh-Jakes flat fading channel estimation with Kalman filter,” in Digital Signal Processing.. London,

In section 4 we show that the problem is equivalent to a certain estimate for integral means of derivatives of conformal maps, and use this connection to prove (1.5) and to

In order to prove the main Theorem 2.1, we recall the following results about the local existence and uniqueness of H k -solution of the inviscid Boussinesq equations (1.1) which is

The observed discrepancy may arise from a computational mistake of the energy levels in µp or H, or a fundamental problem in bound-state QED, an unknown effect related to the proton