• Aucun résultat trouvé

(Article) Fracture of rigid solids: a discrete approach based on damaging interface modelling

N/A
N/A
Protected

Academic year: 2021

Partager "(Article) Fracture of rigid solids: a discrete approach based on damaging interface modelling"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-00199582

https://hal.archives-ouvertes.fr/hal-00199582

Submitted on 30 Jun 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

(Article) Fracture of rigid solids: a discrete approach based on damaging interface modelling

Claire Silvani, Thierry Désoyer, Stéphane Bonelli

To cite this version:

Claire Silvani, Thierry Désoyer, Stéphane Bonelli. (Article) Fracture of rigid solids: a discrete approach

based on damaging interface modelling. Comptes Rendus Mécanique, Elsevier, 2007, 335 (8), pp.455-

460. �10.1016/j.crme.2007.05.023�. �hal-00199582�

(2)

pp. 455-460, 2007 (DOI : 10.1016/j.crme.2007.05.023).

Fracture of rigid solids: a discrete approach based on a damaging

interface modelling.

ClaireSILVANI(silvani@lma.cnrs-mrs.fr),UniversitédeProvence&LMA(UPR7051-CNRS),31

cheminJosephAiguier,13402Marseillecedex20,France.

Thierry DÉSOYER (thierry.desoyer@ec-marseille.fr), EC-Marseille & LMA (UPR 7051-CNRS),

TechnopôledeChâteau-Gombert,38rueJoliotCurie,13451MarseilleCedex20,France.

Stéphane BONELLI (stephane.bonelli@aix.cemagref.fr), Cemagref, 3275 route de Cézanne, CS

40061,13182Aix-en-Provencecedex5,France.

AbstractWedescribetheprogressiveanddelayedfractureofrigidsolidsbyadiscretemodelling.

Each rigid solid is considered as anassembly of particleswith initial cohesive bonds, the latter

decreasingprogressivelyduring theloading. Adamaging interfacemodelisproposedto describe

thisprogressivephenomenon. Themodel hasbeenimplementedinadiscreteelementcode. The

rstillustrativeexample,whichisactuallyaparametricstudy,dealswiththeprogressivedamage

andsuddenfractureofasingleinterfacesubmittedtoanuniaxialtension. Thesecondexampleis

relatedtothecrushingofanassemblyofrigidsolidsi. e. agranularmediumsubmittedtoan

÷dometriccompression.

Keywords: Granularmedium;rigidsolids;interfaces;damage;fracture.

RésuméNousdécrivonslaruptureprogressiveetdiéréedesolidesrigidesparuneapprochediscrète.

Chaquesolide rigideest représentéparune collectiondeparticules, initialement liées par unecohésion

quipeutprogressivementdiminueraucoursduchargement. Unmodèled'endommagementinterfacial est

proposépourdécrirecettedécroissanceprogressive. Implémentédansuncodedecalculparélémentsdis-

crets,cemodèlepermetdesimulerlarupturediéréedecollectionsdesolidesrigides. Lepremierexemple

illustratif,quiestenfaituneétudeparamétrique,estrelatifàl'endommagementprogressifpuislarupture

d'uneuniqueinterfacesoumiseàunetractionsimple. Lesecondexempleportesurlaruptureetl'attrition

d'unecollectiondesolidesrigidesi. e.d'unmilieugranulairesouscompression÷dométrique.

Mots-clés: Milieugranulaire;solidesrigides;interfaces;endommagement;rupture

1 Introduction

The general frame of this study is that of the progressive (nite cracking velocity) and delayed (with

respecttotheloading)fracture ofrigidsolidsinteractingbycontactandfriction. Anillustrativeexample

ofsuchastructuralproblemisthisofarocklldam,whichcangloballysettleduetothelocalfractureof

rockblocksinthetime,seee. g. DeluzarcheandCambou,[1 ];OldecopandAlonso,[2].

Choiceisheremadetogetnumericallyapproximatedsolutionsofthecontact-frictionpartoftheproblem

byusingthediscreteelementmethodproposedbyJeanandMoreau(seee. g. [3 ],[4 ]). However,dueto

thefactthattherigidsolids(orgrains)whichwillbeallassumedofthesamecharacteristicsizeDScan

break,eachofthemisconsideredasanassemblyofrigidparticleswhichwillbealsoallassumedofthe

samecharacteristicsizeDpDS. Theseparticlesareassumedto beinitially 'glued'. Fromanumerical

pointofview,agrain,i. e. anassemblyofrigidparticles,mustthusbeseenasameshoftherigidsolid,

inwhichacrackcaninitiate(resp. propagate)onlyon(resp. through)thecontactzonesbetweenrigid

grains. Consequently,froma physicalpointof view,these contactzones haveto be consideredas rigid

butbreakableinterfaces.

Strongcohesiveforcesaresupposedtoexistinitiallyontheinterfaces(seee. g. Delenneetal,[5 ]),giving

to themtheirinitial tensile strength. Itis thenassumedthat, whenagiveninterface I characteristic

(3)

areaS ≈(Dp)2 issubmittedto asucientlystrongtensileforce, microcracksand/ormicrocavities,i.

e. damage,initiate,growand,eventually,coalesce, thatleadstothefractureoftheinterface (andso,to

theirreversible vanishingofthecohesiveforces).

Section2ofthispaperisdevotedtothepresentationofathermodynamicallyconsistentdamaginginterface

modelwhere, inagreement withthe generalframe of this study, the evolutionof the damage isat the

sametimes progressive and delayed. Twoillustrative examplesare presentedinSection3. Therstone

is that ofa singleinterface betweentwoparticles submittedto anuniaxialtensile force: the analytical

solutionis given,from whichaparametric studyof the damaginginterfacemodelis done. The second

exampleisrelatedtothecrushingofanassemblyoftwo-dimensionalrigidsolidsi.e. atwo-dimensional

granularmediumduetoan÷dometriccompression:theresultsherepresentedhavebeenobtainedusing

anumericalcodeinwhichthedamaginginterfacemodelhasbeenimplemented.

2 A damaging interface modelling

The (thermo)dynamicsystem considered inthis section is aninterface I between two grains. Likethe

grains,I isassumedtoberigid: theareaofthesurfaceS occupied byI isthenconstant,whateverthe

forcesactingonare. Furthermore,thedisplacementjump[u]throughS isassumedtobezerowhenever I isnotdestroyed(i. e. wheneverS isclearlydened);consequently,[u]cannotbeconsideredasastate

variableofI.Actually,onlyone'mechanical'statevariablewillbeconsideredthere,denotedbyd(scalar)

andcharacterizingthedamagebymicrocrackingand/ormicrocavitationoftheconstitutivematerialofI.

Itwillbeassumedthatd∈ 0, m1

wherem >0isamaterialparameterwhosephysicalmeaningwillbe

discussedlateron. Itmustbehereemphasizedthat,assoonasd= 1/m,I isdestroyedandthecontact-

frictioninteractionsbetweenthebothgrainshavetobeconsideredonthebasisoftheSignorini-Coulomb

equations(seee. g.[4 ]),whichwillnotbedetailedinthepresentpaper.

Thedamaging interfacemodelis actuallybasedonprevious worksoncontinuumdamage mechanicsby

Marigo, [6 ], wherethe necessaryandsucient conditionfor theintrinsicdissipation to benon negative

is simplygivenby

d˙ ≥ 0. Denoting by σ thestresses actinginS,assumptionis thenmadethat σ is homogeneous. Onthe otherhand,it isassumedthat, dueto thedamage,the eective toughsurfaceof

I is notS butitsonlyundamaged part(1−md)S. Consequently,the stressesare simplylinkedtothe globalforceF (denedinsuchawaythatFN=F. N>0whenIissubmittedtoatensileforce)by:

F = (1−md)Sσ. N (1)

A damage yield surfaceis nextintroduced. Once more, it is clearly inspired by the works by Marigo,

[6 ]. However,for asakeof consistencybetweenthepresentinterfacialdamage modeland theCoulomb-

Signorinione(seealsoCangemietal,[7 ]),whichmust'merge'inthelatteroneassoonasd= 1/m,the

damageyieldsurfaceishereexpressedasafunctionofFN andFt=F −FNN,i. e.:

gd(FN,Ft, d) = FN + 1

µ|Ft| − F0d(1−md) = 0 (2)

where µ isthe friction coecient between theboth grains whenI is destroyed (d= 1/m), F0d >0the

damageyieldwhend= 0,andm >0a'softening'parameter(thegreaterm,thestrongerthesoftening).

Aspreviouslyindicated, Eqn. (2)reducesto theclassical Coulomb'syieldsurface assoonas d= 1/m.

Asfor the fractureof I,whichcan occur suddenlywhenI is sucientlydamaged, itis controlled by a

fractureyieldsurface,whichreads:

gf(FN,Ft, d) = FN + 1

µ|Ft| − F0f(1−md) = 0 (3)

whereF0f ≥F0d isthemaximaltensileforceI canundergo. Itmustbehereemphasizedthatmechanical

states(FN,Ft, d)suchthatgf(FN,Ft, d)>0cannotbereachedi. e.,assoonasgf(FN,Ft, d) = 0,Iis

destroyedandthat,whateverthereachablemechanicalstate(FN,Ft, d)is,gd(FN,Ft, d)≥gf(FN,Ft, d)

i. e. damage takes place before fracture, apart from the limit case of a perfectly brittle interface

(F0f =F0d),wheredamageandfractureareconcomitant.

Eventually,thedamageevolutionlawisgivenby(ηisacharacteristictime):

d˙ = 1 η

gd(FN,Ft, d) F0d

H(−gf(FN,Ft, d)) + 1

m−d

δ

gf(FN,Ft, d)

(4)

(4)

whereh.idenotestheMacCauleybracketsandHisthemodiedHeavisidefunction(H(0) = 0). The

Diracdistributionδindicatesthat, assoonas gf(FN,Ft, d) = 0,isto beunderstoodas adistribution derivative(i. e.d'jumps'toitsmaximalvalue1/m).

3 Illustrative examples

3.1 Tension

Apart from the friction coecient µ, four materialparameters have to be identiedfor the damaging

interfacemodel(seeSection2)tobefullydened: thesofteningparameterm;thedamageyieldF0d;the

fractureyieldF0f = (1/r)F0d(r≤1);thecharacteristic timeη. Theinuenceofeachoftheseparameters

onthedamageevolutionishere studied,consideringasingleinterface(surfaceS)submittedtoasimple

tensionsuchthatFt = 0andσ˙N= ˙FN/S=cst >0.

Forasakeof convenienceanddueto thefactthat t= (σNσ0)/(σ0σ˙N),wherethedamageyieldstress σ0 isgivenbyσ0=F0d/SdwillbehereconsideredasafunctionofσN0 insteadofthetimet. Thus,

noticing thatgdN, d)>0assoonasσN0 >1−md0,Eqn. (4)canberewritten (denotingby d,N0

therstderivativeofdwithrespecttoσN0):

ησ˙N

σ0

d,N0 −mH(σN

σ0

−1 +md0)d = (σN

σ0

−1)H(σN

σ0

−1 +md0) (5)

with the initial condition d(σN0 = 0) = d0. The exact solution of this equation reads (whenever

gfN, d) =σN−σf(1−md)<0,wherethefractureyieldstressσf isgivenbyσf =F0f/S):

d(σN

σ0

) =d0−H(σN

σ0

−1 +md0)

( ησ˙N

σ0m2) exp m σ0

ησ˙N

N

σ0

−1 +md0)

+ 1

m(1−σN

σ0

)− ησ˙N

σ0m2 −d0

(6)

Dependingondierentvaluesofthematerialparameters,thedierentshapesofthissolutionarepresented

onFig.1. Noticethat,duetothefactthat,inEqn.(6),thematerialparameterηandtheloadingparameter

˙

σNaresystematicallylinkedbytheirproduct,choicehasbeenactuallymadetoconsiderσ˙Nasaparameter

andηasaconstant.

AsshownonFig.1,themainfeaturesofthedamageevolutionare:

theloadingrateσ˙N (or,inanequivalentway,theinverseofthecharacteristic timeη)actsonboth

thepresentdamagedforanarbitrarygivenloadingσN0,thegreaterσ˙N,thesmallerdand

thecriticalvalueofthedamage(dc,suchthatgfN, dc) = 0)thegreaterσ˙N,thesmallerdc,

theinitialdamaged0hasinuenceonboththedamageyield(σN0,suchthatgdN0, d0) = 0)the

greaterd0,thesmallerσN0 anddcthegreaterd0,thegreaterdc,

thesofteningparametermimmediatlygivestheupper-boundofthedamagerange(sinced∈ 0, m1

,

see Section 2) and constrains the present damage d for an arbitrary givenloading σN0, the

greaterm,thegreaterd,

theratior=F0d/F0f0f ≤1actsonlyonthecriticalvalueofthedamagethegreaterr,the

smallerdc.

Anotherinterestingresultconcerns theultimatephaseofthedamageevolution,i. e. thefractureofthe

interface: thelatterisnottriggeredbyacriticalvalueofthedamage,apriori dened,butdependsathe

sametimes onthematerialparametersandonthe loadingparameter. Froma modellingpointofview,

thisisduetothefactthat thedamaging interfacemodelisactuallybasedontwoyieldsurfaces,onefor

thedamage,the otherfor thefracture; fromaphysical pointof view,thisresultsimplymeansthatthe

fractureoftheinterfacecanbeeither'brittle'(smallvaluesofdc)e. g. whensubmittedtohighloading

ratesor'ductile'(greatvaluesofdc)e. g. forsmallvaluesofthesofteningparameter.

3.2 Compression

Wenowconsideranassemblyoftwo-dimensionnalrigidsolids(grains)i.e. atwo-dimensionalgranular

mediumsubmittedtoacompressiveforce|T|in÷dometricconditions(nolateraldisplacements). Inthe initialstate,seeFig.2-a,thesample(initialheigth: H= 42cm;initialwidth: W= 48cm)iscomposedby

75grains(diametersbetween5and6cm),eachofthembeingconstitutedby60to70particles(diameters

Dpbetween5and6mm).Moreprecisely,thenumericalsimulationsinvolve4980particles. TheloadingT

(5)

isdenedbyaramp(timerateT˙ =cst6= 0)followedbyaconstantvalue(T˙= 0),inordertohighlightthe

creeplikeresponseofthegranularmedium.Theaxialstrainisdenedby=|U|/HwhereU istheglobal

displacementinduced byT ;the axialstressis denotedby σ=|T|/eW wheree is the(unit) thickness

ofthesample. Anotherimportantparameter,denotedbyν,is theratiobetweenthe presentnumberof

brokeninterfaces andthe initialnumberofcohesive contacts. Noticealsothat all the simulationswere

performedwiththediscreteelementcodeLMGC90(seee. g. [8 ])andwithµ= 1, m= 1,η= 1sand a

timestep∆t= 5.104s.

Aswehaveatimedependentdamagemodel,theloadingratestronglyinuencesthemechanicalresponse

of the sample. This is clearly shown on Fig.2-b, where t is scaled by the loading characteristic time

tF =F0f/ T˙

. For agivenvalue of σ0, Fig.2-cshows that r inuencesthe kineticsof the creepphase,

while for agivenvalue of σf,seeFig.2-d, this isthe amplitudeofthe axialstrainwhichis modiedby

r. Noticeeventuallythatνandevolvesinthesamewayduringthecreepphase: thekineticsismainly

governedbythefractureoftheinterfaces.

4 Conclusion

Mostofthestructuralfailuresareduetothepre-existenceofvariouskindsofmicro-defects(microcracks

and/or microvoids) in the materials, which propagate and eventually coalesce in a macro-crack. The

modellingof thesepropagationand coalescence isanimportantissue. Thediscrete approachpresented

hereisintendedasasteptowardthisissue. Theproposeddamaginginterfacemodelisbasedonareduced

setof veparameters. Theillustrativeexamplesseem toindicatethat thenumerical codeinwhichthe

damagingmodelhasbeenimplementedisanecienttoolforsimulatingtheinitiationandthepropagation

of macro-cracks inrigidsolids, including thetime eect. Examples of applications clearly includedam

engineering: rockllmaterialischaracterizedbydelayedgrainbreakageunderconstantload. Thisisthe

maincauseofthemajorityof post-constructivedisplacementsobservedinhighrocklldams, whichcan

producepipingorcrackingoftheimperviouselement.

Acknowledgements

ThisprojectwassponsoredbytheRégionProvenceAlpesCôted'Azur

References

[1] R.Deluzarcheand B.Cambou, Discretenumerical modellingofrocklldams,Int.J.Numer.Anal.

Geomech.,30(2006)1075-1096.

[2] L.A. Oldecop and E.E. Alonso, Fundamentals of rockll time-dependent behaviour, in: Juca, de

Campos&Marinho(Eds),UnsaturatedSoils,2002,pp.793-798.

[3] M. Jean,Thenon-smoothcontactdynamicsmethod,ComputerMethodsinAppliedMechanicand

Engineering,177(1999)235-257.

[4] J.-J. Moreau, Unilateral contactand dryfriction innitefreedomanalysis, in: J.J MoreauetP.D

Panagiotopoulos(Eds),NonSmoothMechanicsandApplication,chapterCISMCoursesandLectures,

Vol.302,Springer-Verlag,1988,pp.1-82.

[5] J.-Y.Delenne, M.S.El Youssou, F. Cherblanc, J.-C. Benet, Mechanical behaviour and failureof

cohesivegranularmaterials,Int.J.Numer.Anal.Geomech.,28(2004)1577-1594.

[6] J.-J. Marigo, Formulation d'une loi d'endommagement d'un matériau élastique, C. R. Acad. Sci.

Paris,Ser.II292(1981)1309-1312.

[7] L.Cangemi,M.CocouandM.Raous,Adhesionandfriction modelforthebre/matrixinterfaceof

acomposite, in: A.B.Sabir, C.Bohatier,M.G. Fertis,G.T. Tsatsaronis,R.J.Krane,K.M. Abbott

(Eds),Proc. ThirdBiennalJoint ConferenceonEngineering Systems,Designand Analysis(ESDA

96),Montpellier,Vol.1,1996,pp.157-163.

[8] B.Cambouand M.Jean,Micromécaniquedesmatériaux granulaires,HermèsSciencePublications,

Paris,2001.

(6)

0 0.5 1 1.5

ΣN

€€€€€€€€€€€

Σ0 0

0.2 0.4 0.6 0.8 1

d Influence ofΣ N

0 0.5 1

ΣN

€€€€€€€€€€€

Σ0

0 0.2 0.4 0.6 0.8 1

d Influence of d0

0 0.5 1

ΣN

€€€€€€€€€€€

Σ0 0

0.2 0.4 0.6 0.8 1

d Influence of m

0 0.5 1 1.5

ΣN

€€€€€€€€€€€

Σ0 0

0.2 0.4 0.6 0.8 1

d Influence of r

Figure 1: Simple tensionof asingle interface: inuence of theloadingand material parameters

onthedamageevolution. Noticethatonlytheexponentialpartof eachgraph(endingind=dc)

correspondstoaregulardamageevolution: thelinearpart(endingonthed-axistothemaximum

valueofd,1/m)isonlyanarbitraryrepresentationofthedamagejump[d] = 1/m−dc,whichleads

tothefractureoftheinterface. Beyondσ0= 0.9M P aandη= 0.1s,thereferenceparametersare:

σ˙N = 2.3M P a.s1,d0 = 0,m = 1, r= 0.25 -1a (up-left): inuence of theloadingrate, σ˙N = σ˙N,2 ˙σN,4 ˙σN; the greaterσ˙N, the smallerdc - 1b (up-right): inuence of the initial damage,

d0 = 0,0.2,0.4 - 1c (down-left): inuence of the softening parameter, m = m,2m,4m; the

greaterm,thesmallerdc -1d(down-right): inuenceoftheratior=σ0f,r=r, 0.1r,0.001r;

thegreaterr,thesmallerdc.

Figure 2: 2a(up-left): Samplecomposedbyan assemblyof 75non'glued' grains(initial heigth:

H = 42cm; width: W = 48cm)and submittedto an ÷dometric loading; each of the grainsis

composed of65 particles,initially 'glued' - 2b(up-right): Axialstrain=|U|/H versusdi-

mensionlesstimet/tF for2loadingrates;σ0= 900kP a,r= 0.25 - 2c(bottom-left): Axialstrain

=|U|/Handratiobetweenthepresentnumberofbrokeninterfacesandtheinitialnumberofco-

hesivecontacts,ν,versusdimensionless timet/η; σ0= 900kP a; ˙σ= 2300kP a.s1;r= 0.25or0.5

- 2d(bottom-right): Idem 2capartfromσf = 5500kP a; ˙σ= 180kP a.s1;r= 0.17or0.5

Références

Documents relatifs

Results of the model applied to sample s-RG1 (rounded grains) with the parameters listed in Table 2: (a) macroscopic stress–strain curve, (b) evolution of energy components with

Modelling the implementation process of blown rigid tannin-based foams.. Vincent Nicolas, Alain Celzard,

An original and useful approach to mesh a discrete fracture network Andre Fourno 1, Benoit Noetinger 1, Christian la Borderie2.. 1 research engineer, IFPEN, 1 avenue de bois

Myers * , Aristotelis Panos, Mustafa Cikirikcioglu, Afksendiyos Kalangos Division of Cardiovascular Surgery, Geneva University Hospitals, Geneva, Switzerland Received 23 September

Engineering  &amp;  Medical  Mul/scale  Problems  -­‐  fracture  &amp;   cu8ng.. Surgical simulation

Gerry Gohnson, Kevan scholes, Richard Whittington et Frederic Frery, strategique, 8ed édition, pearson education, Paris, France,2008,p230.. Walt Disney حدبؼع شضوأ

Discrete materials such as 3D printed structures, paper, textiles, foams, or concrete, can be successfully modelled by lattice structures, which are especially suited for

This set represents the forbidden configu- rations at the top-level of K , whereas [b, E b ] corresponds to the forbidden configurations at the lower level (i.e. The idea is that we