• Aucun résultat trouvé

BEAT HEATING IN PLASMAS USING CO2 LASERS

N/A
N/A
Protected

Academic year: 2021

Partager "BEAT HEATING IN PLASMAS USING CO2 LASERS"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219357

https://hal.archives-ouvertes.fr/jpa-00219357

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BEAT HEATING IN PLASMAS USING CO2 LASERS

E. Chu, R. Druce, M. Kristiansen, M. Hagler, R. Bengtson

To cite this version:

E. Chu, R. Druce, M. Kristiansen, M. Hagler, R. Bengtson. BEAT HEATING IN PLAS- MAS USING CO2 LASERS. Journal de Physique Colloques, 1979, 40 (C7), pp.C7-747-C7-748.

�10.1051/jphyscol:19797361�. �jpa-00219357�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, s u p p l e ' m e n t a u n 0 7 , Tome 40, J u i Z Z e t 1979, page C7- 747

E. Chu, R. Druce, M. Kristiansen, M. Hagler and R. ~ e n ~ t s o n * .

c e p a r t m e n t E Z e c t r i c a Z E n g i n e e r i n g , T e x a s T e c h . U n i v e r s i t y , Lubbock, T e x a s , U. S . A. 79409.

D e p a r t m e n t o f P h y s i c s , U n i v e r s i t y o f T e x a s a t A u s t i n , A u s t i n , T e x a s U.S.A. 78712.

I n t r o d u c t i o n

There has been considerable i n t e r e s t i n beat h e a t i n g as a method of h e a t i n g underdense plasmas y2y3. The scheme uses two d i f f e r e n t - f r e q u e n c y ,

high-power l a s e r beams t o e x c i t e ; p a r a m e t r i c a l l ! f , plasma waves i n t h e underdense plasmas. The sub- sequent damping o f t h e waves i s expected t o heat t h e plasma. I n order t o have e f f i c i e n t c o u p l i n g o f l a s e r energy i n t o t h e plasma wave energy, t h e phase matching c o n d i t i o n must be s a t i s f i e d :

where wO,u1 a r e t h e l a s e r frequencies, w2 t h e plasma wave frequency, and

lo, El,

and

a2

a r e t h e corresponding wave vectors.

An experiment u s i n g t h e 9.56 um and 10.28 um r a d i a t i o n s o f a C02 l a s e r and a helium plasma i s reported. Evidence o f beat h e a t i n g has been ob- served. However, beat h e a t i n g i s found t o he small compared t o i n v e r s e bremsstrahlung heating. Poss- i b l e explanations of t h i s observation a r e given.

Experimental Arrangement

A c o l d cathode, electron-beam c o n t r o l l e d C02 l a s e r designed f o r double-sided o p e r a t i o n i s used f o r t h e beat h e a t i n g i n v e s t i g a t i o n s . The pulsed l a s e r i s capable of l a s i n g a t 10.6 um o r simultan- eously a t 9.56 pm and 10.28 um by t h e i n s e r t i o n o f an a b s o r p t i o n c e l l f i l l e d w i t h SF6 i n t h e o s c i l l a - t o r c a v i t y . When r u n a t 70.6 vm t h e l a s e r produces 50 ns FWHM pulses w i t h about 50 J per pulse. I n t h e double-frequency mode, t h e energy per pulse i s reduced by approximately 10%.

The plasma i s produced by a l i n e a r discharge between two s p l i t - r i n g e l e c t r o d e s w i t h an a x i a l magnetic f i e l d o f 2.8 T provided by a f i f t e e n t u r n c o i l around t h e plasma tube, as shown i n Fig. 1.

The r e s u l t i n g plasma column la approximatelv 0.1 m l o n g and 0.05 m i n diameter w i t h a d e n s i t y minimum ---

*

T h i s work was supported by AFOSR Grant 74-2639.

on a x i s . A t r a c e o f t h e plasma c u r r e n t i s shown i n Fig. 2. The c u r r e n t has a peak value o f 125 kA and l a s e r i s focused i n t o t h e plasma a t approximately 5 us a f t e r t h e i n i t i a t i o n o f t h e plasma c u r r e n t . P r i o r t o t h e f i r i n g o f t h e l a s e r , t h e helium plasma has a temperature o f about 4.5 eV and d e n s i t i e s o f 3.9 x

loz2

-6.5 x 10 22 m-3 as t h e f i l l i n g pressure i s v a r i e d from 1.0

-

1.9 T o r r .

The l a s e r i s focused by a 1 m f o c a l l e n g t h copper m i r r o r t o a spot s i z e of approximately 0.0025 m i n diameter i n t h e c e n t e r o f t h e plasma column. A 0.5 m f o c a l l e n g t h m i r r o r a t t h e e x i t end o f t h e plasma source refocuses t h e t r a n s m i t t e d l a s e r beam back t o t h e same focal spot. As a r e - s u l t , opposite wave vectors a r e present a t t h e f o - c a l spot t o a l l o w a n t i p a r a l l e l beam beat h e a t i n g i n v e s t i g a t i o n s .

A diamagnetic l o o p l o c a t e d a t t h e f o c a l spot i s used t o measure t h e temperature change due t o h e a t i n g by t h e l a s e r . The i n t e n s i t i e s o f helium s a t e l l i t e s a r e used t o measure t h e amplitude o f plasma waves i n t h e plasma as a r e s u l t o f o p t i c a l mixing.

Results

The temperature increase as measured by t h e diamagnetic l o o p under v a r i o u s c o n d i t i o n s i s sum- marized i n t h e f o l l o w i n g t a b l e :

F i l l i n g Temp increase Temp increase presslire w i t h s i n g l e w i t h double

frequency beam frequency beam

( T o r r ) (ev) ( e v )

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797361

(3)

The listed figures represent the average of two or more numbers obtained under the same set of con-

.

ditions. The indicated errors are the 50% confi- dence limits obtained by assuming the data follows the "Students" t-distribution

6

. The temperature increase with the single frequency beam which has more energy per pulse is consistently higher than that with the double frequency beam at all filling pressures except at 1.5 Torr. On applying the paired t-test to the data, this observed departure is signigicantly different from the rest of the measurements with a better than 99% confidence 1 eve1 .

As the filling pressure is varied, no signi- ficant satellite emissions associated with the

1 1 1 1

2

P

- 3 P transition and the 2 S - 3 D transition are observed, indicating that no large amplitude plasma waves are present.

Discussion

The density of plasma corresponding to 1.5 Torr filling pressure is 5.3 + .45 x

10 22

m-3 prior

to the laser pulse. As a density of 5.9 x m-3 is required for resonance with the incident 9.56 um and 10.28 um radiations, it is likely that the ob- served additional heating at 1.5 Torr when the laser is running in the double frequency mode is

a

result of beat heating. However, this observed additional heating is insignificant compared to inverse bremsstrahlung, which may appear to be in conflict with theoretical predictions. The appar- ent contradiction may be resolved by the following explanation. At the resonance zone, which has a physical volume of the order of 1 mm3, the elec- trons will start to stream out of the interaction volume as soon as they are heated as a result of beat heating. Therefore, the density at the reson- ance zone drops and detuning from resonance may result.

Conclusion

An experiment investigating beat heating has been conducted. Additional heating at 1.5 Torr filling pressure is observed when the laser beam has both 9.56 vm and 10.28 vm radiation components.

However, this additional heating is insignificant when compared to inverse bremsstrahlung heating.

Absence of any significant satellite emmissions in- dicates that no large amplitude plasma waves are present. This agrees with the small additional

References

1. Capjack, C.E., James, C.R., Can. J. Phys. 48, 1386 (1970).

2. Cohen, B.I., Kaufman, A.M., Watson, K.M., Phys.

Rev. Lett. 2, 581, (1972).

3. Rosenbluth, M.M., Liu, C.S., Phys. Rev. Lett.

29, 701, (1 972).

-

4. Jasper, J., Master Thesis, Dept. of EE, Texas Tech University, 1977.

5. Baranger, M., Mozer, B., Phys. Rev. 123, 25 (1961).

6. Spiegel, M.R., Theory and Problems of Statis- tics, McGraw-Hill Book Company, (1961

) .

Fig. 1.

Experimental Arrangement.

heating observed. Fig.

2.

Plasma

C u r r e n t Trace

(Vert. - 31 kA/div, Horz.- 2 vs/div).

Références

Documents relatifs

[r]

- Cela te permet alors de compléter le carré à gauche au milieu, puisqu’il ne manque plus

[r]

[r]

[r]

La grille ci-après a l’allure d’une grille de sudoku dans laquelle l’objectif est de compléter chacun des neuf carrés 3x3 ainsi que chaque ligne et chaque colonne du carré 9x9

[r]

What we want to do in this talk is firstly to explain when (§1) and why (§2) a presupposition trigger becomes obligatory in the very case where it is redundant, and secondly