• Aucun résultat trouvé

SPATIOTEMPORAL INSTABILITIES IN A SATURABLE HOMOGENEOUSLY BROADENED RING CAVITY

N/A
N/A
Protected

Academic year: 2021

Partager "SPATIOTEMPORAL INSTABILITIES IN A SATURABLE HOMOGENEOUSLY BROADENED RING CAVITY"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00227625

https://hal.archives-ouvertes.fr/jpa-00227625

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SPATIOTEMPORAL INSTABILITIES IN A SATURABLE HOMOGENEOUSLY BROADENED

RING CAVITY

J. Zondy, M. Le Berre, E. Ressayre, A. Tallet

To cite this version:

J. Zondy, M. Le Berre, E. Ressayre, A. Tallet. SPATIOTEMPORAL INSTABILITIES IN A SAT-

URABLE HOMOGENEOUSLY BROADENED RING CAVITY. Journal de Physique Colloques, 1988,

49 (C2), pp.C2-487-C2-490. �10.1051/jphyscol:19882114�. �jpa-00227625�

(2)

SPATIOTEMPORAL INSTABILITIES IN A SATURABLE HOMOGENEOUSLY BROADENED RING CAVITY

J.J. ZONDY, M. LE BERRE, E. RESSAYRE and A. TALLET

Laboratoire de Photophysique MolBculaire, Bdt. 213, universite Paris-Sud. F-91405 Orsay Cedex, France

Resume : L ' i n f l u e n c e des e f f e t s transverses dus a l a d i f f r a c t i o n l i b r e s u r l a dynamique n o n l i n e a i r e d'une c a v i t e haute finesse e s t etudiee dans d i f f e r e n t e s c o n f i g u r a t i o n s optiques. La nature des deux premieres b i f u r c a t i o n s semble e t r e t r e s robuste mais l e s e u i l d ' a p p a r i t i o n du chaos e s t fortement diminue.

A b s t r a c t : The i n f l u e n c e o f transverse e f f e c t s caused by free-space propagation on t h e n o n l i n e a r dynamics o f a h i g h f i n e s s e r i n g c a v i t y i s i n v e s t i g a t e d f o r d i f f e r e n t o p t i c a l c o n f i g u r a t i o n s . The nature o f t h e f i r s t two Hopf b i f u r c a t i o n s i s found t o be r o b u s t a g a i n s t s i g n i f i c a t i v e transverse e f f e c t s b u t t h e t h r e s h o l d f o r chaos i s lowered w i t h r e s p e c t t o t h e plane wave case.

1 - INTRODUCTION

Theoretical s t u d i e s /1/ o f the n o n l i n e a r dynamics o f passive e x t e r n a l l y pumped r i n g c a v i t y ignore transverse e f f e c t s caused by t h e free-space propagation o u t s i d e t h e n o n l i n e a r medium.

These t r a n s v e r s e e f f e c t s can be escaped i n a confocal geometry w i t h lenses o f l a r g e f o c a l l e n g t h placed a t a p p r o p r i a t e s i t e s on the t r a v e l o f t h e beam i n o r d e r t o counteract t h e divergence o f t h e beam and t o focus t h e beam back t o t h e entrance o f t h e c e l l ( F i g . 1 ) :

Fis.l

: Schematic o f t h e r i n g c a v i t y . The i n p u t and output m i r o r s have r e f l e c t i v i t y R

6

1. An example o f confocal geometry c o u l d be p i = p2 = 2 f and Z = 4 f where f i s t h e f o c a l l e n g t h o f the lenses. With l a r g e f t h e r e t u r n e d e l e c t r i c f i e l d Eback(F) a t the medium entrance has the same shape than t h e o u t p u t f i e l d , Eback (F) = E ~ ~ ~ ~ ~ ~ ( - ? ) .

But s l i g h t changes o f t h e lenses s i t e s may cause s i g n i f i c a t i v e transverse e f f e c t s when the n o n l i n e a r i n t e r a c t i o n between t h e l i g h t and medium m o d i f i e s t h e f i e l d phases p r o f i l e s . Free d i f f r a c t i o n on such modified beams leads t o t h e formations o f r i n g s /2/ i f t h e c a v i t y l e n g t h L

= p i

+

p2

+

Z i s s u f f i c i e n t l y l o n g w i t h respect t o the Rayleigh l e n g t h zd o f the i n p u t beam.

Since t h e c a v i t y r o u n d - t r i p t i m e r R = L/C i s o f t h e order o f o r g r e a t e r than t h e medium r e l a x a t i o n time 6-1 f o r t h e r i n g c a v i t y t o e x h i b i t i n s t a b i l i t y , the c o n d i t i o n L >> Zd can be e a s i l y v e r i f i e d . Then t h e r e t u r n e d beam has no more t h e i n j e c t e d beam shape. This note presents r e s u l t s o f numerical s i m u l a t i o n s i n c l u d i n g free-space propagation o f t h e dynamic o f

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19882114

(3)

C2-488 JOURNAL

DE

PHYSIQUE

a high-finess ring cavity in a case where a transition to chaos via a quasi-periodic motion occurs in the plane-wave limit. The main observations are a) weak transverse effects are sufficient to ensure a whole beam dynamic motion and b) the nature of the first two bifurcations appears to be surprisingly robust against significative transverse modifi

-

cations of the intracavity field.

This study does not deal with transverse effects arising from the diffraction inside the medium which have been extensively studied by Moloney et a1 .

/3/.

The length of the two-level medium will be assumed small ltzd in order to neglect diffr-action as a first approximation. In the adiabatic approximation the equations of the ring cavity are for the intracavity electric field,

oll i~

- (1-i~) Q(r9,t

-

7

)

E(r,t)

=

~ ~ ( r )

t R

dr' H(r,r9) e ' E(r,t - -

? R C )

and for the atomic energy s

The calculations are made for primarily dispersive medium with an off-resonance absorption coefficient a1

=

0.1. a is the detuning of the laser from the resonance in units of the

-. -.

resonance half-width. H(r, r') accounts for free-space propagation. The transmitted input -. 2

beam is a Gaussian sO(r)

=

EO e-r /uO2 with its waist located at the medium entrance.

i~

is equal to 8-1.

In the plane wave limit, with these set of parameters the lower branch of the stationary hysterisis loop is unstable, moreover a transition to chaos via a quasi -periodic motion occurs for a very large range of detuning . The critical value Eth for the first Hopf bifurcation and the period

T

at threshold of the periodic solution are very sensitive to the

1

inear refractive index

4 = alb /

2. The table

1

resumes the main characteristics for the first two Hopf bifurcations for +

=

7n/2 and 4n.

Table

:

Plane wave threshold values of the input field amp1 itude for the 1 imit cycle (CL) and quasi-periodicity (lip), T label the periods.

-

o =

7n/2

LC ELC = 0.26 TLC

r

3

i~

QP Eqp

1

0.32

T l r i ~ T2

= 2.5

* R

chaos ECH

a

0.42

4 = 4n

ELC

c

0.07 TLC

c 1 1 i~

Epp

E

0.11

T l = i ~

Tp =

7 * R

ECH

o

0.35

i

(4)

( c o n f i g u r a t i o n A) w i t h f = 27 zd, p l = f

-

2.25 zd, p2 = f

+

2.25 zd and z = 4 f ( c f F i g . 1). The o t h e r c o n f i g u r a t i o n ( c o n f i g u r a t i o n B)

,

a1 so n e a r l y confocal w i t h f = 9 zd, p i = p2 = f

+

0.225 zd and z = 198 zd corresponds t o s l i g h t l y s t r o n g e r transverse e f f e c t s .

The case 4 = 4n has been simulated w i t h d i f f e r e n t o p t i c s : p e r f e c t a1 ignement between t h e i n p u t f i e l d and t h e lenses, s l i g h t misalignement and f i n a l l y a Gaussian i n p u t f i e l d w i t h a weak i r r e g u l a r i t y on t h e edge. It was always observed two successive Hopf b i f u r c a t i o n s b e f o r e t h e c h a o t i c regime. For t h e c o n f i g u r a t i o n A, the r o l e o f t h e weak transverse e f f e c t s i s m a i n l y t o a l l o w whole beam o s c i l l a t i o n s ( F i g . 2 ) .

Fiq. 2 : Quasiconfocal o p t i c s ( 4 = 4n) : t h e l i m i t c y c l e a t Eo = 0.07 has a p e r i o d P 11 i~

I n the case B, t h e d e s t a b i l i z a t i o n o f t h e f i x e d p o i n t (Fig. 3 ) occurs f o r Eo

--

0.155 f o r a l l t h e geometries t r i e d . As i n t h e plane wave case t h e p e r i o d i c signal i s slow i t corresponds t o an o s c i l l a t i o n between a c e n t r a l spot and a doughnut ( F i g . 4 ) .

f i q .

3

: C o n f i g u r a t i o n B (o = 4n) : a) I n t e n s i t y p r o f i l e a f t e r an i n t e g r a t i o n over one f R ; b) o f t h e s t a t i o n a r y s t a t e a t

E,

= 0.15

F i a . 4 : C o n f i g u r a t i o n B, L i m i t c y c l e f o r c y l i n d r i c a l geometry (Eo=0.155, 4 = 4n). a) I n t e n s i t y t i m e t r a c e f o r t h e r a d i u s = 0 ; b) f o r t h e r a d i u s i n d i c a t e d by t h e arrow i n Fig. 3. c ) ,

d ) ,

e) i n t e n s i t y p r o f i l e s a t o , p, 8 r e s p e c t i v e l y .

(5)

C2-490 JOURNAL DE PHYSIQUE

The q u a s i p e r i o d i c regime appears a t Eo n 0.162 and chaos a t Eo

-

0.2. The main e f f e c t o f t h e m i s a l ignement i s t o g i v e r i s e t o a frequency l o c k i n g , w i t h a t r a n s v e r s e r i n g d i v i d e d i n t o few s t r o n g peaks ( F i g . 5 ) .

-

In

(t) ( T V , Y )

-. r _

F i q . 5 : C o n f i g u r a t i o n B, a) q u a s i - p e r i o d i c s i g n a l a t Eo = 0.162; 4 = 4n w i t h TI = 12 T R T2 =

1.6 T R i n t h e c y l i n c l r i c a l symmetry ; b) frequency l o c k i n g i n t h e case o f s l i g h t

-

misalignement ; c ) i n t e n s i t y p r o f i l e a t 460 rR. An arrow i n d i c a t e s t h e l o c a t i o n Ro o f t h e

-

gaussian i n p u t . The c e n t r a l s p o t i s i n a1 ignement w i t h t h e l e n s e s . O p p o s i t e t o Ro, t h e r i n g e x h i b i t s t h r e e s p i k e s .

The f i x e d p o i n t f o r 4 = 7n/2 i n c y l i n d r i c a l symmetry has a doughnut s p a t i a l p r o f i l e . T h i s shape seems t o be l e s s s t a b l e t h a n t h e f i x e d p o i n t i n F i g . 3, s i n c e l i m i t c y c l e and chaos appear f o r s m a l l i n p u t (ELC = 0.06, Echaos

=

0.08). The 1 im i t c y c l e has a p e r i o d T n 3 f R o f t h e o r d e r o f t h e p l a n e wave p e r i o d .

REFERENCES

1 ) K . Ikeda, Opt. Comm.

30,

257 (1979) ; see H.M. Gibbs, O p t i c a l B i s t a b i l i t y C o n t r o l 1 i n g L i g h t w i t h L i g h t (Academic, New York, 1986) and r e f e r e n c e s t h e r e i n ; M. Le B e r r e e t a1

. ,

Phys. Rev.

L e t t .

56,

278 (1986).

2) M. Le Berre, E. Ressa,yre, A. T a l l e t , K. T a i , H.M. Gibbs, H.C. R u s h f o r d and N. Peyghambarian, JOSA B,

1,

591 (1984).

3) J. Moloney, H. Adachihara, D.W. MacLaughin and A.C. Newell, i n Chaos, N o i s e and F r a c t a l s , Ed. E.R. P i k e and L.A. L u g i a t o , Adam H i l g e r , B r i s t o : , 1987 and r e f e r e n c e s t h e r e i n .

The a u t h o r s acknow'ledge NATO g r a n t n' 8 5 4 7 3 4 .

Références

Documents relatifs

We have considered the spectral and statistical properties in the fluorescence field from N two-level atoms interacting with an intense cavity mode. It has been shown

2014 The classical Lorentz field in a spherical cavity of 403C0 Ms/3 does not occur in a ferromagnetic material which has reached technical saturation.. This effect

A tweezers operation performed with the atom initially in g and an empty cavity leads to a partially transparent EC (the initial state has a component on |−, 0i, which is not

Abstract Stability analysis of an arbitrary finesse ring cavity containing a Kerr medium reveals an absolute minimum threshold for the driving intensity necessary for

These are: (i) forn~ulat~ion of a set of ordinary differential equations for the cletuned case, by illearis of the uniform field approximation; (ii) an

At small Reynolds numbers, before the flow transition from convective to absolute instability, fluctuations start rising at the edge, within a region where the flow is no longer

Figure 3 plots the time behavior of the Reynolds number divided by the steady-state value for four Rayleigh numbers larger than the critical value in an enclosure of aspect ratio

At small Reynolds numbers, before the flow transition from convective to absolute instability, fluctuations start rising at the edge, within a region where the flow is no longer