• Aucun résultat trouvé

Absorption of radiation by gases from low to high pressures. II. Measurements and calculations of CO infrared spectra

N/A
N/A
Protected

Academic year: 2021

Partager "Absorption of radiation by gases from low to high pressures. II. Measurements and calculations of CO infrared spectra"

Copied!
19
0
0

Texte intégral

(1)

HAL Id: jpa-00248112

https://hal.archives-ouvertes.fr/jpa-00248112

Submitted on 1 Jan 1994

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Absorption of radiation by gases from low to high pressures. II. Measurements and calculations of CO

infrared spectra

C. Brodbeck, J. Bouanich, Nguyen-Van-Thanh, J. Hartmann, B. Khalil, R. Le Doucen

To cite this version:

C. Brodbeck, J. Bouanich, Nguyen-Van-Thanh, J. Hartmann, B. Khalil, et al.. Absorption of radiation

by gases from low to high pressures. II. Measurements and calculations of CO infrared spectra. Journal

de Physique II, EDP Sciences, 1994, 4 (12), pp.2101-2118. �10.1051/jp2:1994249�. �jpa-00248112�

(2)

Classification Physic-s Abstiacts

44.40 33.20E 33.70W

Absorption of radiation by gases from low to high pressures.

II. Measurements and calculations of CO infrared spectra

C. Brodbeck ('), J. P. Bouanich ('), Nguyen-Van-Thanh ('), J. M. Hartmann(', 2),

B. Khalil (3) and R. Le Doucen (3)

(') Laboratoire de Physique Moldculaire

et

Applications (*), Universitd de Paris Sud, Campus d'orsay, Bit. 350, 91405 Orsay Cedex, France

(2) Laboratoire d'Energdtique Moldculaire

et

Macroscopique-Combustion (**), Ecole Centrale Paris, 92295 Chatenay-Malabry Cedex, France

(~l D6partement de Physique Atomique

et

Mo16culaire (***), Universitd de Rennes I, Campus de Beaulieu. 35042 Rennes Cedex. France

(Ret cried

?

./unt> /994, jet.eii,ed

iii

Iwo' li)1tli 25 Auqu.it /994, a<.<.opted 3/ Au,qu.it /994)

Rksumd. Cet article pr6sente de~ applications de~ moddles ddvelopp6s dans

une

prem16re publication [J. Phys. II France 1(1991) 739]

au

calcul de spectres infrarouge de CO. Des

mesures

nouvelles h tempdrature

et

pression dlevdes

sont

aussi prdsentdes. Les rdsultats expdrimentaux

et

thdoriques confirment l'imprdcision de l'approche Lorentz ainsi que des mod61es statistiques basse densitd lorsque les effets d'interfdrence

entre

raies

et

(es ailes lointaines contribuent notablement h

l'absorption. En revanche, [es moddles empiriques corrigds proposds dans l'article I donnent des rd~ultats satisfaisants. Des tables de parambtres adaptds pour le modble de bande g6ndralisd, qui

sont

donnde~ dans le prdsent travail, permettent, pour des applications pratiques,

un

calcul facile

et

rapide.

Abstract. This paper presents

tests

of the models developed in

a

first paper [J. Phys. II Franc-e

1

(1991) 739] when applied

to

CO infrared spectra. New

measurements at

high densities and temperatures

are

presented. Comparisons between experimental and calculated results confirm the

inaccuracy of the Lorentz and low density statistical approaches when line-mixing and far line-

wings make significant contributions

to

absorption. On the other hand, the empirical models proposed in paper I lead

to a

satisfactory agreement with the values measured. Tabulations of data

suitable for the Generalized Narrow Band Statistical Model

are

given, which enable easy and quick computations for practical applications.

'

1. Introduction.

Many applications involve the need for

accurate

computations of infrared absorptionlemission

of radiation by gas mixtures. Since, in

most

practical cases,

a

very large number of spectra

(*) CNRS (UPR 136).

(*±) CNRS (UPR 288).

(***) CNRS (URA 1203).

@Les Editions de Physique 1994

(3)

must

be computed, low computer

cost

models

are

required and

use

of line-by-line type approaches is intractable. For this reason, much theoretical attention has been given

to

approximate and efficient models which predict spectrally-averaged absorption properties of gases

at

densities

near

the ambient (reviews

are

given in Refs. [1, 2]). Among these, the

most

widely used

are

the

«

Narrow Band Statistical Models

»

which have been proposed for various

molecules and the Voigt line-shape (including the Doppler and Lorentz limits). These

approaches

are

limited

to

moderate densities, when line-mixing and far wing contributions

remain negligible. In reference [3] (referred

to

hereafter

as

I),

we

have proposed

a

generalization of the statistical approach first suggested by Goody [4]

to

the

case

of high

densities.

The present paper is

a

test of the models presented in when applied

to

the computation of

CO infrared absorption. New

measurements at

high temperatures

are

also presented. The

theoretical approaches and data used

are

described in section 2. The experimental

set

up and data used

are

described in section 3. Measured and calculated spectra

are

compared and

discussed in section 4.

2. Models and data used.

2, MODELS. The models used in the present work have been presented in detail in paper1

[3] and only the final equations

are

thus recalled here. In the following,

we

consider the

case

of

a

uniform and isothermal mixture of g

=

1, ii~ gases with mole fractions f~ under total density

D and temperature T (modifications, when nonuniform paths

are

considered,

are

described in

Appendix D of I). We

assume

that species g

=

is the only absorbing gas

at

the considered

wave

number

«

(Appendix C of I explains how mixtures of absorbing species

are to

be

treated).

2.1,I The line-by-line lorentz (LBLL) approach. Within this well-known approach, the

absorption coefficient

cv at wave

number

«

in the infrared (') is then given by (Eq. (3) of I, where line-shifts, which

are

of negligible influence

on

medium resolution spectra, have been neglected)

:

a~~~~(a, f,, f2,

,

f,,, D, T)

=

jj ~~ ~~'~~~ ~'~~" ~~' '~""' ~' ~~

(l)

~

Jiil<nc,> lT

[(W W, )~

+

y, ~fj, f2, f,,, D, T)~]

°' gJ'# ' '

where S, (T) and «,

are

the integrated intensity and position of line

r

of the absorbing species.

y, Vi, f~, f,,~, D, T) is the pressure-broadened half-width (HWHM) of line

r

under the considered thermodynamical conditions.

2.1.2 The line-by-line cfiiiected (LBLC) apprr)ach. This approach

was

introduced in I in order

to correct

for the failure of the Loreqtz model in the line-wings and

near

band-centers

at

high density. The absorption coefficient

cv

in the infrared I') is then given by (Eq. (6) of I)

:

a

~~~~(a, fi, f2,

f,,~, D, T)

=

jj ~~ ~'~~j~ ~'~" ~~' '~"#' ~' ~~

~

~

h~.~ yin<nc,>

«

I(« a, )

+

Y, lfi, f2, f,,,,, D, T)-j

~ ~~

~ ~~

~~' ~~

~

~~~~ ~~ ~ ~~ ~'~ ~~~ ~~~

~~~~ ~~ ~~ ~~~

(') For small

wave

numbers (millimeter and microwave regions)

a

term, similar

to

the following but

where

«

«, is replaced by

" +

ir, should be added

to a.

(4)

The empirical line-shape correction factor X (a «~, f,, f~, f,,~, T) has been introduced

in order

to

correct for the failure of the Lorentzian shape in the line-wings.

( (« «,, fj, f~, f,,~, D, T) is

a

near-wing, high-density normalization correction function whose expression is [3]

:

~ ~

«, )2 ~~~

~ ~" ~~' '~""'

'

«, )~

+

Y~~lfi, f2, f,i~, D, T)~

~

where y~~ is

an

average,

over

all lines, of the collisional half-width. The unknown parameter A is calculated by using equations (2), (3) and the identity

I+

m cv

(«,

j, ,, , ,,,

D, T) da

=

DS, (T). (4)

f f- f

;

~ f

~ Jii i<nc, al gJ,g

Let

us

recall that the parameters

y

and x in

a

mixture of g

=

I,

...,

ii~ gases

can

be computed

from those associated with the elementary g collisions by using equations (C.2), (C.3) of

Appendix C of I. Note that correction of the Lorentzian profile through the introduction of the x and ( functions is strictly empirical and only roughly models the physical mechanisms.

2.1.3 The low density

fiario~,

band statistic-al model (LDNBSM). This approach [3, 4]

enables computation of the transmissivity averaged

over

the [« ha,

« +

Am spectral

interval. This quantity, denoted by T~", is then given by (Eq. (18) of Ii

T~"~~~~~~

=

eXp K~"(T) Lfj/

+

~~~~~ ~~~~~~ ~~~

l, (5)

~ ~,, ~fj, f2'

'

f,,' l~, l~)

where L is the gas column length and the parameters

K,

r and

are

given by

Kj"(T)

=

£ ~, (~)j /~~

,r e (<r 3rr + 3,r

~3,,~ f f f J~j

<r 1, 2,

«~'

"

i ~< (T)

Y<

Vi, f~,

,

f,,,, D, T)j /jD Am Kj<~(T)j

,

(6)

,, ~ i,, >,, + >,,

&j"(T)

=

[D Am

2

K)"(T) r)"~fj, f~,

,

f~, )]I(

£ US, (T) y,~fj, f~,

...,

f~, D, )j ,

g g

«, ~ (« ~«. « + a«,

in which the summations

are over

all lines

r

centred within the [« ha,

a +

ha interval. In

the

case

of nonuniform gas columns, the parameters D, &,

K

and r should be replaced by

optical path averaged values

as

explained in Appendix Dl of1.

(5)

2.1.4 The ~qeneialized

iiarro~>

band statistic-al model (GNBSM ). This approach, which

was

developed in I, is valid from low

to

high densities and extends the previous

one.

The averaged transmissivity is given by (Eq. (29) of I)

Tj"~~~~~

=

xp1- (

"

~'~~ ~"~~ ~~ ~'~~

~

~, ~

la

+

p Am ) smh («

+

p ha ) hc/2 bT]

~

~ i P A«, f,,

,

/,,, ~,

/, DL«11,,

~,,

~T~

~,

~

«xi<~,,~~, S<,< ~p) ~~>

with

S("(p>

=

1 -~~~~ (arctg

[6(- p +1/2)> arctg [6(- p -1/2)>)

+

2

A(D) 6(- p -1/2) 6(- p +1/2)

~

2 1+ 6(-p-1/2)~

+

6(- p

+

1/2>~

'

~~~ If> «l'l

p A,,

(T) &?'I,,A<,(T) L

" ~" ~" ~

4 rl'l,,

i,,

Vi,

,

f,,~, T)

and

6 p

+

1/2

=

~

~~ (

~

~~' ~"

DX,,~

,, &,,

f,,~~

,, ~,,

~/

l, ,

/,,

,

T

g

and the band model parameters

«,

r and

are

given by equation (6). Note that equation (7>

reduces

to

equation (5)

at

low densities (2).

2.2 DATA USEDT- The absorption line parameters «,, S, and y,

are

involved in the line-by-

line approach (Eqs. (1), (2))

as

well

as

the definition of the band model parameters (Eq. (6)>. In order

to

model CO absorption up

to

high temperatures,

we

have retained the following

:

the

energies of the rovibrational levels and line positions «, have been computed by using

reference [5> whereas the line intensities S, have been deduced from the data of reference [6>.

This procedure is preferable

to a

direct

use

of international databases of spectroscopic

Table I. Correction functions

X

lo>- CO line-w>ings.

ha

ha

<

is

cm- I

1.70 0.0353 hoi

<Aa<10cm-1 1. 1.

10

cm- I<

ha

<

20 cm-1 3.39

20 cm-I

<

ha 0.57 0.0331

(2) Indeed,

X

(0, f,, f,, T) and A (D

-

0 and

9

1/2

- ± oJ, so

that St'~>

- ar

8~_

~,

when D

-

0.

~

(6)

1

cm-I Am-I

o-1

0.01 P branch

~

R branch 0.001

0.0001

2000 2070 2140 2210

a<cm-')

2280

Fig. I. Binary absorption coefficients (cm~

'

Am~ ~) in the wings of the 1-0 CO band for pure CO.

(.) experimental results from reference [I I]

;

) calculated from equation (2) and the data of table1.

parameters [7, 8> since the latter

are

insufficient for high temperatures. References [9, 10]

provide half-widths and their temperature dependences for CO lines. No line-wing correction factor X has,

to our

knowledge, been published in the

case

of CO. We have thus adjusted them

on

the experimental data of reference [I ii by using equation (2). The results

are

given in table I. Comparisons between experimental and computed values

are

plotted (3) in figure in the

case

of pure CO (the agreement is similar in the

case

of CO-N~). Note that the values in table I

are

for 292 K

;

nevertheless,

as

is shown in section 4, neglecting the temperature dependence of X leads

to

results

accurate

enough for

most

practical applications.

The band model parameters

«,

and r have been computed by using equation (6) and the

above mentioned data. In the following comparisons with measurement, ha

=

5 cm~'

was

retained. For tabulations, ha

=

25 cm~' (which is

a

widely used value, sufficient (or heat transfer applications)

was

retained and the 150-3 000 K temperature range

was

considered. In

doing this, only the broadening of CO lines by N~

was

considered, leading

to

the values of table IIa-IIC. The Appendix

at

the end of this paper gives practical information

on

how

to use

the band model data.

3. Experimental.

Relatively few

recent

experimental studies deal with medium resolution

measurements

of CO infrared absorption

at

high densities [1?-20]. The

most

extensive

ones

have been carried

out

by

Bouanich

et

al. [17-19] but,

to our

knowledge,

no measurements

have yet been made

at

high temperatures.

Some spectra

were

recorded in Orsay with the help of

a

Bruker IFS 66V FT spectrometer with

a

re~olution of 0.5

cm~ '

full width

at

half ma~imum (FWHM). We u;ed

an

optical filter

to

work in the frequency range from 2 000

to

6 000 cm~' The spectrometer

wa~

accurately

(~) The quantity plotted

is

the absorption coefficient divided by the square of the total density. Note

that since the absorption in the far wings is jroportional

to

the square of the total density (eas>ly ~hown

from

E~. j~l

when ~ (, »

y,), this normalized quantity

is

density independent.

(7)

Table IIa. Band model parameter

«

(cm~

'

Am~')

i>s.

tempeiatu>.e.

O

lla(Tl (cm~l Am~ll

cm~l

lS0 K 150 K 200 K 300 K K K K

I-O Band

1600 0.831D-77 0.247D-57 0.717D-38 0.705D-25 o.766D-17 0,171D-10 0,141D-06 0.383D-04

1625 0.682D-71 0,671D-53 0.643D-35 0.644D-23 0.170D-15 0.126D-09 0.533D-06 0.975D-04

1650 0.343D-65 0.126D-48 0.452D-32 0.500D-21 0.336D-14 0.835D-09 0,181D-05 0.219D-03

1675 0,105D-59 0,164D-44 0.248D-29 0.330D-19 0.596D-13 0.517D-08 0.580D-05 0.462D-03

1700 0.983D-56 0,156D-41 0.244D-27 0.733D-18 0.531D-12 0.221D-07 o.154D-04 0.900D-03

1725 0.215D-49 0.881D-37 o.351D-24 0.886D-16 0,137D-10 0,169D-06 0.560D-04 0.205D-02

1750 o.142D-44 0.362D-33 0.906D-22 o.368D-14 0.187D-09 0.957D-06 0.181D-03 0.459D-02

1775 0.553D-40 o.looD-29 0.177D-19 o,121D-12 o.203D-08 0.420D-05 0.448D-03 o.789D-02 0.362D-01

1800 0.126D-35 0,185D-26 0.265D-17 0.337D-11 0,197D-07 0.178D-04 0.l14D-02 0.146D-01 0.556D-01

1825 o.168D-31 0.229D-23 o.308D-15

0.823D-lo'o.188D-06

0.807D-04 0.322D-02 0.298D-ol 0.933D-ol

1850 o.l12D-26 o.944D-20 o.780D-13 o.318D-08 o.222D-05 o.370D-03 o.815D-02 o.519D-ol

1875 0.434D-23 0.462D-17 0.481D-11 0.488D-07 0.145D-04 0.122D-02 0,175D-01 0.842D-01

1900 0.606D-19 o.592D-14 o.567D-09 o.l16D-05 o.1250-03 o.467D-02 o.404D-01 0.142D+00

1925 o.666D-16 o,l12D-11 o.184D-07 o.l14D-04 o.588D-03 0.124D-ol o.760D-ol o.213D+oo

1950 o,190D-12 0.438D-09 o.988D-06 0,164D-03 0.375D-02 o.405D-01 0,160D+00 0.331D+oo

0.221D-09 0.868D-07 0.332D-04 o,167D-02 o,180D-01o,lo6D+oo o.289D+oo 0.473D+00

0.lo4D-06 o.874D-05 o.709D-03 0,125D-01 0.705D-01o.249D+00 0.480D+00 o.616D+oo

0.507D-04 0.905D-03 0.156D-01 0.980D-01 0.285D+00 0.578D+00 0.770D+00 0.777D+00

o.318D-02 o,196D-01 0,l14D+00 o.336D+00 0.605D+00 o.838D+00 0.885D+oo 0.766D+00

0,137D+00 0.326D+00 0.726D+00 0,l12D+01 0.134D+01 0,130D+01 0,107D+01 0.773D+00

0.145D+01 o,180D+ol o.202D+01 0,195D+01 o,171D+010.127D+ol o.871D+00 0.585D+00

0.306D+ol o.263D+ol 0.202D~ol o,148D+ol o,lloD+01o.731D+oo o.508D+oo o.425D+oo

o.272D+01o.214D+ol o,149D+ol 0,lo3D+ol o.761D+00 o.580D+00 o.535D+00 o.552D+oo

o.339D+01 o.345D+01 0.318D+ol o.267D+ol 0.217D+01 o.161D+01 0,125D+01 0,103D+ol

o.408D+oo 0.768D+00 o,136D+ol o,180D+ol o.195D+01 o.176D+01 o.148D+ol o.124D+01

o.756D-02 0.401D-ol o.209D+00 0.598D+00 0.107D+01 0.143D+01 0.146D+01 0.131D+01

o.315D-05 o.l180-03 o.438D-02 0.480D-01 0.202D+00 o.540D+00 o.833D+oo o.943D+oo

o,174D-lo 0.136D-07 o.lo5D-04 0.879D-03 o.132D-ol o.984D-01 o.286D+00 o.473D+00

o.455D-18 o.283D-13 o.174D-08 o.268D-05 o.245D-03 o.784D-02 0.577D-ol 0.169D+oo

o.215D-32 o.522D-24 o.124D-15 o.468D-lo o,126D-06 o.583D-04 o.229D-02 o.200D-ol

2-0 Band

o.516D-71 0.229D-53 0.lllD-35 o.783D-24 o.174D-16 o.l12D-lo 0.418D-07 o.667D-05 o

3625 o.231D-67 0.lo3D-50 o.585D-34 o,lloD-22 o.lloD-15 0.372D-10 0.940D-07 0.l18D-04 0

3650 0.296D-63 0,l13D-47 0.516D-32 o,179D-21 0.657D-15 o,106D-09 o,175D-06 o,171D-04 0

3675 0.227D-60 0.208D-45 o.211D-30 0.241D-20 o.415D-14 0.355D-09 0.394D-06 0.300D-04 o

o,152D-56 0,136D-42 o,131D-28 o.316D-19 o.217D-13 0.937D-09 o.697D-06 0.416D-04 o

3725 o.860D-53 0.829D-40 o.873D-27 0.479D-18 o.132D-12 o.282D-08 0.138D-05 o.641D-04 o

o.357D-49 0.369D-37 o.419D-25 o.571D-17 o.720D-12 o.852D-08 o.290D-05 o.107D-03 o.

3775 0.899D-47 0.252D-35 0.809D-24 0.457D-16 0.308D-11 o.207D-07 o.488D-05 o,143D-03 o

3800 o.256D-43 o.944D-33 o.392D-22 o.573D-15 o.173D-lo o.636D-07 o.lo2D-04 o.233D-03 o.

3825 0.613D-40 0.353D-30 0.223D-20 0.842D-14 o.104D-09 0.183D-06 o.188D-04 0.324D-03

3850 o.922D-37 0.806D-28 0.780D-19 0.872D-13 o.517D-09 o.513D-06 0.365D-04 0.495D-03 o

3875 o.102D-32 0.791D-25 o.634D-17 o.132D-11 0.287D-08 0.136D-05 0.638D-04 0.682D-03

3900 0.807D-30 0.120D-22 0,187D-15 0,132D-10 0,145D-07 o.386D-05 o,123D-03 0,102D-02 o.

3925 0.463D-27 0,138D-20 o.424D-14 o.986D-lo o.545D-07 0.855D-05 0.198D-03 o,135D-02 0

3950 0,197D-24 o,131D-18 0.918D-13 0.791D-09 0.227D-06 0.202D-04 0.321D-03 o.172D-02 0.

3975 o.381D-21 0.373D-16 0.365D-11 0.812D-08 0,lolD-05 0.478D-04 o.527D-03 0.227D-02 o.

4000 0.769D-19 o,198D-14 o.507D-10 o.464D-07 0.342D-05 o,lo8D-03 o.909D-03 o.319D-02

4025 0.559D-16 0.278D-12 0.137D-08 0.408D-06 0,145D-04 0.247D-03 0.140D-02 0.398D-02 0.

4050 0.229D-13 0.252D-10 0.271D-07 0.283D-05 0.518D-04 0.525D-03 0.218D-02 0.497D-02 0.

4075 0.528D-11 0.149D-08 0.406D-06 0.169D-04 0,173D-03 0,l10D-02 0.333D-02 0.639D-02

4100 0.682D-09 0.567D-07 0.449D-05 0.790D-04 0.461D-03 0.180D-02 0.398D-02 0.617D-02 0.

4125 o.492D-07 o,139D-05 o.371D-04 o.312D-03 o.l14D-02 o.30%D-02 0.549D-02 o.788D-02 o.

o.460D-05 o.421D-04 o.365D-03 o.143D-02 o.322D-02 o.567D-02 0.753D-02 o.886D-02 o.

4175 0.16%D-03 0.614D-03 0.20%D-02 o.42%D-02 0.624D-02 o.75%D-02 o.%17D-02 o.916D-02

4200 o.23%D-02 o.431D-02 o.713D-02 o.%%9D-02 o.924D-02 0.%26D-02 o.751D-02 0.%55D-02

4225 o.163D-ol 0.173D-ol 0,166D-01 o,143D-ol o,120D-010.940D-02 o.%72D-02 o.lolD-ol

0.159D-01 o,129D-01 0.935D-02 0.666D-02 0.532D-02 0.543D-02 o.719D-02 0.lo7D-ol

o.293D-ol o.241D-ol o,177D-01 o.126D-01 o.950D-02 o.%12D-02 0.960D-02 0.109D-01

o,1%2D-01 0.220D-Dl 0.250D-ol 0.245D-01o.221D-010,174D-ol o.152D-ol o.170D-ol

4325 0.417D-03 o.137D-02 o.442D-02 0.934D-02 o,140D-01o,165D-ol o.149D-ol o,lloD-ol o.764D-02

o.660D-02

(8)

Table IIb. Band model parameter (cm~')

i>s.

temperature.

ba(Tl (Cm~~l

K 3000 K

~~O

~~~ ~ 300 K 450 65° K ~~~~

l-o Band

0.170D+02 o,129D+02 o.754D+ol 0.399D+01 o.230D+010,138D+ol o.lo2D+ol o.%92D+oo 0

1625 o.167D+02 o,129D+02 0.767D+01 o.405D+01 o.228D+ol o.130D+ol o.893D+oo o.729D+oo o

1650 o,165D+02 o.128D+02 o.784D+01 o.428D+ol o.2430+ol o,136D+ol o.899D+oo o.702D+oo o

1675 0.161D+02 0,126D+02 0.795D+01 o.450D+01 0.262D+01o,147D+ol 0.959D+00 0.730D~00 o

1700 o.154D+02 0.l17D+02 0.720D+ol o.419D+01 o.255D+ol 0.149D+ol 0.978D+oo o.743D+00

1725 o,153D+02 o.l19D+02 0.763D+01 0.445D+01 o.266D+ol o,152D+ol 0.978D+00 o.732D+00

1750 o.146D+02 o,lllD+02 o.695D+ol 0.406D+01 o.248D~ol o,146D+01 o.958D+oo 0.714D+00

1775 o,142D+02 o.lloD+02 o.713D+ol 0.441D+ol o.283D+ol o,171D+01 o.lloD+ol o.798D+oo

1800 0.138D+02 o,lo8D+02 o.718D+ol o.453D+01 o.291D+010,174D+01 o,l12D+ol 0.806D+oo

1825 0,130D+02 o.989D+ol o.633D+ol o.392D+01 o.254D+01o.157D+ol 0.lo5D+ol o.771D+oo

1850 0.125D+02 o.972D+ol o.656D+01 0.423D+ol o.280D+010,175D+ol o,l16D+ol o.833D+oo

1875 0,120D+02 0.948D+01 o.657D+01 o.434D+01 o.293D+ol 0,185D+01 o,122D+01 o.870D+oo

1900 0.lllD+02 0.880D+01 o.631D+01 o.439D+ol 0.303D+01o.190D+ol 0.124D+01 o.886D+oo

1925 o.108D+02 0.883D+01 0.659D+ol 0.460D+01 0.311D+ol 0,192D+01 0.127D+01 0.921D+00 0.

1950 0.963D~01 o.777D+ol 0.577D+01 0.415D+01 0.295D+01 0,194D+ol o.133D+ol 0.975D+00

1975 o.883D+01 o.726D+ol 0.563D+ol 0.420D+ol o.302D+ol o,196D+01 o,134D+ol 0.977D+00 o.

2000 o.803D+01 o.673D+ol o.535D+01 0.406D+ol 0.299D+ol o.205D+ol o.147D+ol o.lo8D+01o

2025 0.671D+01 o.566D+ol o.465D+ol o.379D+ol o.298D+ol o.212D+ol o.150D+ol o,lo7D+ol o

2050 o.645D+ol o.580D+ol o.511D+ol o.427D+01 o.333D+01o.235D+01 o.166D+ol 0,l13D+01D.

2075 o.511D+ol o.468D+ol o.426D+ol o.375D+ol 0.312D+01o.234D+ol o,166D+ol o,lo7D+01

2100 0.448D+01 o.432D+01 0.414D+01 0.385D+ol o.336D+01 0.255D+ol o,169D+ol 0.962D+oo

2125 o.418D+ol o.419D+ol o.416D+ol o.393D+ol o.337D+ol 0.230D+ol 0.128D+ol o.720D+oo 0

2150 o.439D+01 0.441D+01 o.434D+01 0.385D+01 0.290D+01 0,177D+ol o,109D+ol o.728D+00

2175 0.374D+ol 0.364D+ol 0.355D+ol o.331D+ol o.278D+ol o,192D+ol o.123D+01 o.812D+00

2200 o.445D+ol o.405D+ol 0.375D+01 o.347D+01 0.299D+01 o.214D+ol o.139D+01 o.895D+00

2225 o.516D+01 o.423D+ol o.345D+ol 0.301D+01 o.264D+ol 0.204D+ol 0.142D+ol o.949D+oo

2250 o.683D+01 o.535D+ol o.396D+ol o.316D+ol o.268D+ol o.210D+ol o,151D+ol o.lo4D+ol

2275 D.877D+ol o.679D+01 0.478D+01 0.354D+ol 0.285D+010.224D+01 o.165D+01 0,l15D+01

2300 0.lo8D+02 o.838D+ol 0.580D+ol o.401D+ol o.295D+ol o.217D+01 o,166D+01 0.123D+ol o.91

2325 0.134D+02 o,lo6D+02 0.736D+01 0.506D+01 0.359D+01 o.241D+01 0.167D+01 o.120D+Dl o.934D+oo

2-o Band

3600 o.671D+01 o.458D+ol o.269D+ol o.172D+ol o.129D+ol o,lo7D+ol 0.lolD+01 o.lo2D+ol

3625 o.739D+ol 0.437D+ol 0.242D+01 0,160D+ol 0.121D+01 0.992D+00 0.922D+00 0.915D+00

3650 0.947D+01 0.572D+01 o.300D+ol 0,182D+ol 0,131D+ol o.104D+ol o.955D+00 0.946D+oo

3675 o.613D+ol 0.435D+ol o.274D+ol 0,181D+ol o.130D+01o.988D+oo o.872D+oo o.843D+oo

3700 o.787D+ol o.554D+ol o.329D+ol o.203D+ol o,142D+ol o,lo7D+01 o.945D+00 o.913D+oo

3725 o.873D+01 o.607D+ol o.358D+ol 0.217D+01 o.147D+010.lo6D+01 0.905D+00 o.856D+00

3750 o,124D+02 o.793D+ol 0.392D+01 o.214D+01 o.142D+010.lo2D+ol 0.849D+00 o.790D+oo o.

3775 0.976D+01 o.631D+01 0.361D+01 0.231D+ol o.162D+ol 0.l16D+ol o.944D+00 o.859D+oo o.834D+oo

3800 0.lo3D+02 o.656D+01 o.348D+01 0.209D+01 o.146D+ol 0.lo6D+01 o.879D+00 o.797D+oo o.768D+oo

3825 o.823D+ol 0.576D+01 0.360D+01 0.232D+01 0,162D+01 0.l15D+01 0.927D+00 0.823D+00 0.782D+00

3850 o.904D+01 o.610D+ol 0.364D+ol o.231D+ol o.163D+ol o,l17D+ol o.938D+00 o.824D+oo o.775D+oo

3875 o.l19D+02 0.834D+01 0.471D+01 0.270D+01 o,177D+01 o,122D+01 0.947D+00 0.800D+00 0.727D+00

3900 o.lo9D+02 0.760D+ol 0.441D+ol 0.265D+ol o,179D+01 0.126D+ol o.959D+00 0.763D+00

3925 0.l13D+02 0.819D+ol o.488D+01 o.294D+ol o.197D+ol 0.136D+01 o.998D+oo o.703D+oo

3950 0.102D+02 0.725D+ol o.454D+ol 0.299D+ol o.212D+01 0,147D+01 0.l10D+01 0.848D+oo 0.

3975 0.lo8D+02 o.816D+ol o.525D+01 0.331D+01 0.224D+01 o,152D+01 0.109D+01 0.718D+00

4000 0,109D+02 o.837D+ol o.529D+ol 0.321D+01 o.215D+01o.150D+ol 0.l14D+ol 0.900D+00 0.74

4025 o.994D+ol o.769D+ol 0.511D+01o.332D+01 0.232D+01 o.161D+ol o,lllD+ol o.684D+oo 0.446D+00

4050 o.958D+ol o.771D+ol 0.541D+01 o.356D+ol o.243D+01 0.166D+01 o,122D+ol 0.934D+oo

4075 o.904D+ol 0.738D+01 o.526D+01 o.352D+ol o.246D+01o.169D+ol 0.l14D+ol o.692D+00

4100 o.861D+ol o.734D+ol 0.570D+ol 0.413D+ol o.301D+ol 0.211D+01 o.149D+ol o,104D+ol

4125 o.812D+ol o.708D+ol 0.563D+ol o.410D+ol o.294D+ol o.195D+ol 0.123D+ol 0.749D+00

4150 0.670D+01 o.586D+ol 0.481D+ol o.370D+ol 0.282D+01 0.199D+ol o.130D+01 o.797D+00 o.562D+00

4175 0.609D+01 0.556D+01 0.490D+01 0.404D+ol 0.312D+ol o.207D+01 0.125D+01 o.814D+00

4200 o.557D+01 o.529D+ol 0.500D+01 o.457D+ol o.383D+01 o.250D+ol 0.133D+ol o.711D+00

4225 0.433D+ol o.423D+01 0.408D+ol o.368D+01 o.296D+ol o,185D+01 0.l12D+01 0.877D+00

4250 o.513D+ol o.516D+ol 0.501D+01 0.409D+01 o.271D+01 o.162D+01 o.996D+00 0.644D+00

4275 o.367D+ol o.370D+ol 0.371D+01 o.343D+01 o.259D+ol o.161D+ol o.133D+ol o.127D+ol

4300 0.327D+ol o.3030+01 0.286D+ol o.277D+01 o.255D+ol 0.178D+01 o.974D+oo o.625D+oo

4325 o.446D+ol 0.362D+ol 0.290D+01 o.254D+01 o.238D+ol o.230D+ol 0.224D+ol 0.207D+ol 0,180D+ol

4350 0.658D+ol o.508D+01

(9)

Table IIC. Band model parameter r for CO-N~ (cm~ Am~ )

vs.

temperature.

O

rn(N~,Tl (cm~l Am~ll

650 K K K

I-O Band

0.624D-02 0.794D-02 0,l12D-ol o,158D-ol 0.217D-01o.321D-01 o.468D-01 o.664D-ol 0

o.679D-02 o.861D-02 o,120D-01o,169D-ol o.232D-ol o.341D-ol o.494D-ol o.702D-ol 0

0.739D-02 o.934D-02 o.130D-ol o,181D-ol 0.247D-ol o.361D-ol 0.521D-ol 0.738D-ol o

0.805D-02 o,lolD-01O,140D-01 0,195D-ol o.264D-ol 0.381D-ol 0.546D-ol 0.770D-01o

O.858D-02 O.l08D-Ol O.149D-ol O.207D-ol o.281D-01 0.406D-ol o.579D-ol o.811D-01o

0.955D-02 O,l19D-01 O,164D-Ol O.224D-Ol O.300D-01 0.426D-Ol O.601D-01 0.836D-010

o,lo4D-ol o,130D-ol o.177D-01 o.242D-Ol O.323D-Ol o.457D-ol 0.639D-Ol o.877D-Ol

o,l14D-01 0.141D-ol o,191D-ol 0.259D-01o.344D-010.483D-ol o.670D-01 o.915D-ol

o,124D-01 o,153D-ol o.206D-ol 0.277D-01 0.365D-010.510D-ol o.702D-01 o.952D-01 o.

o,136D-ol o,167D-ol o.222D-ol o.299D-ol o.392D-ol o.543D-01 o.740D-01 o.990D-ol o.

o,152D-ol 0,185D-ol o.244D-ol 0.323D-ol o.418D-01o.571D-01 o.771D-01 o,lo2D+oo 0.

o,166D-ol o.201D-01 o.264D-ol 0.347D-ol 0.447D-ol 0.606D-01 o.809D-01o,106D+00 0

1900 o,186D-ol o.224D-ol o.290D-01 0.375D-ol o.477D-ol o.638D-ol 0.842D-ol o,lo9D+oo 0.

1925 0.204D-01o.244D-ol 0.313D-ol o.403D-ol 0,509D-01o.675D-01 o.882D-ol o,l13D+00 o.

1950 o.229D-01 o.271D-01 0.343D-ol o.436D-01 0.544D-ol o.710D-ol o.914D-ol o,l15D+oo o.

1975 O.258D-ol O.302D-01 O.377D-ol O.472D-ol 0.582D-ol 0.749D-ol 0.950D-01 0,l18D+00 o.

2000 O.290D-01 O.336D-01 0.414D-Ol O.512D-Ol O.623D-Ol 0.789D-Ol O.984D-Ol 0.120D+00 O.

2025 O.335D-Ol O.383D-Ol O.462D-Ol O.560D-Ol O.669D-Ol 0.828D-Ol 0,lOlD+OO O.122D+00 O.

2050 O.379D-Ol O.427D-Ol O.5080-ol o.607D-ol o.715D-ol o.869D-ol o,lo4D+00 o,123D~00 O.

2075 o.438D-Ol O.486D-Ol O.565D-01 O.660D-Ol O.762D-01 O.906D-ol O,l06D+00 O,123D~00 O.

2100 0.505D-Ol 0.552D-Ol o.629D-01 o.719D-01 o.813D-01o.942D-01 o,108D+oo O,123D+OO o.

2125 O.578D-Ol 0.624D-Ol 0.696D-01 O.778D-Ol O.862D-Ol O.972D-01 O.109D+oo O,122D+OO O.

2150 o.615D-01 0.660D-ol 0.729D-01 o.806D-01 O.881D-ol O.976D-ol O,108D+00 O,122D+Oo O.

2175 0.539D-ol o.584D-01 0.658D-Ol 0.744D-ol O.833D-Ol O.949D-Ol O.lo8D+00 o,122D+oo 0.

2200 0.458D-01 0.505D-01 o.583D-01 0.676D-ol 0.774D-ol o.908D-ol 0,lo5D+00 o.122D+oo

2225 0.387D-Ol O.435D-01 O.512D-Ol O.606D-Ol o.710D-ol o.856D-01O,102D+00 0,121D+OO 0.

2250 o.312D-ol 0.358D-ol o.436D-01o.530D-01 0.635D-01 0.788D-ol o.967D-ol o,l17D+00 o.

2275 O.246D-Ol O.289D-Ol O.362D-01 O.454D-01 O.557D-01 0.710D-01 0.895D-01 0,lllD+00 0.

2300 O,190D-01 O.228D-Ol O.295D-01 O.380D-01 0.477D-01 0.623D-01 0.803D-Ol 0.l02D+00 O.

2325 0,133D-01 O,163D-Ol 0.218D-01 O.290D-01 O.376D-01 O.507D-Ol 0.672D-01 O.873D-01 0.

2-0 Band

3600 0.771D-02 0.983D-02 0.141D-01 O.206D-01 O.293D-01O.445D-01 0.645D-01 0.890D-01

3625 o.753D-02 0.982D-02 O,146D-01 O.216D-010.308D-01O.463D-Ol o.666D-Ol o.914D-Ol O.

3650 O.794D-02 o.lo2D-Ol o,147D-01 o.216D-ol o.308D-ol O.468D-ol o.679D-01 O.935D-Ol O.

3675 o.873D-02 o.l13D-ol 0,161D-01 o.233D-ol 0.326D-ol o.486D-ol o.699D-ol o.958D-ol o.

3700 O.905D-02 0,l15D-01 0.163D-01 0.235D-01 0.331D-010.498D-Ol 0.716D-01 0.978D-Ol O.

3725 o.953D-02 o.121D-ol o.170D-01 o.242D-ol o.338D-ol o.505D-ol o.726D-ol O.994D-Ol

3750 0.999D-02 o.125D-01 o.176D-ol 0.253D-Ol 0.356D-Ol O.528D-01 o.751D-ol o,102D+oo

3775 0,lo5D-ol o,133D-01 o.189D-01 o.270D-ol 0.373D-ol 0.545D-01 o.770D-ol o,lo4D+oo

3800 0,l12D-ol 0.140D-ol o,196D-01 0.279D-ol 0.386D-ol 0.563D-ol o.787D-01 0,lo5D+00

3825 0,121D-01 0,152D-ol o.210D-01 0.292D-ol 0.396D-ol o.570D-01 0.795D-01 0,106D+00

3850 0,128D-ol o,160D-ol o.221D-01 o.308D-ol 0.417D-ol 0.595D-01 o.818D-ol 0,lo8D+00

3875 0,139D-01 0,170D-ol o.229D-01 o.313D-ol 0.422D-01 0.605D-ol o.834D-01 0,lloD+00 0,134D+00

3900 0,149D-01 o,182D-01 0.245D-01 o.335D-ol 0.448D-01 o.628D-01 0.852D-01 0,lllD+00 o,135D+00

3925 0,159D-01 o,194D-ol o.258D-01 o.351D-01 0.467D-01 o.653D-01 o.879D-01 o,l13D~00

3950 O,170D-01 O.207D-Ol O.276D-01 O.371D-Ol O.487D-01 O.669D-01 0.893D-01 O.l14D~OO

3975 0.186D-01 O.224D-Ol O.292D-Ol O.384D-01 O.SOOD-01O.684D-01 O.907D-01 O,l15D+00

4000 O.200D-01 O.239D-Ol 0.311D-Ol O.410D-01 O.532D-Ol O.719D-01 O.936D-01O,l17D+OO

4025 O.219D-01 0.260D-Ol 0.333D-Ol O.431D-Ol O.550D-Ol O.733D-Ol o.948D-Ol o,l18D+OO

4050 o.240D-ol 0.283D-ol 0.358D-ol o.457D-ol o.577D-ol o.760D-ol 0.971D-01 o,120D+oo

4075 o.264D-ol o.309D-ol 0.386D-ol 0.488D-ol o.608D-ol o.788D-01 0.991D-ol 0.120D+oo

4100 o.291D-ol 0.337D-ol o.416D-ol 0.517D-ol 0.635D-01 0.810D-ol 0.lolD+00 o.121D+oo

0.320D-01 o.368D-01 o.448D-ol o.550D-ol 0.668D-ol o.840D-01 o.lo3D+00 o.122D+00

4150 0.361D-ol o.409D-01 o.490D-ol o.591D-ol 0.704D-01 0.866D-ol o,lo4D+00 o.122D+00

4175 0.408D-ol 0.457D-ol o.537D-ol o.636D-01o.744D-ol 0.896D-ol o,106D+00 o,122D+00

4200 o.461D-ol o.510D-01 o.589D-01 o.683D-ol o.784D-01o.921D-01 o,lo7D+00 0.121D+00

4225 0.530D-01 0.576D-ol o.652D-01 0.739D-01 0.831D-01o.952D-01 o,lo7D+00 o,122D~00

4250 O.597D-ol O.643D-Ol O.714D-Ol O.793D-01 0.866D-01 0.956D-01 0,106D~o0 O,ll9D~oo

O.596D-Ol 0.640D-Ol 0.711D-Ol O.790D-ol O.866D-ol O.946D-Ol O,105D+00 O,122D+OO

O.512D-Ol 0.556D-Ol 0.629D-Ol O.716D-Ol O.808D-Ol O.930D-Ol O,104D+00 O,l18D+00

0.416D-01 O.463D-01 0.538D-01 0.629D-Ol 0.730D-Ol O.874D-Ol 0,104D+00 O,123D+00

0.536D-Ol 0.637D-Ol

(10)

calibrated with lines of CO in the fundamental band. Thirty-two

scans were

superimposed

to

yield each interferogram and

we

used

a

four-term Blackmann-Harris apodization function.

CO-N~ high-temperature spectra

were

recorded in Rennes by using

a

Bruker IFS 120 HR FT spectrometer with

a

resolution of 0.2

cm~

full width

at

half maximum (FWHM). A liquid nitrogen cooled Insb detector

was

used and the spectral range

was

limited by

an

optical filter from 800

to

2 600 cm~'. Spectra

were

obtained by addition of 40 interferograms.

The pressures

were

measured with

a

0-160 bar strain-gage type pressure transducer

(accuracy 0. §b full scale)

as

previously described [2 ii. For given pressure P and temperature T the densities of CO and N~ in Amagats units (4) have been computed by using the data of

references [22] and [23], respectively. In the present work, three absorption cells have been used. These

are a

300.8

cm

long, high pressure (up

to

500 bar) room-temperature cell and

two

(7. and 19.9

cm

long) high pressure (up

to

100 bar) high temperature (up

to

800 K) cells.

The transmission coefficient (or transmittance) r,,

at

wavenumber

«

is obtained from the ratio of

two

measurements, I-e-

r~

=

I,,(D)/I~(0), (8)

where I~(0) and I~(D)

are

transmitted intensities obtained with

an

empty and

a

pressurized

cell, respectively. In order

to

eliminate data affected by any slow drift of the

source

intensity,

we

accepted only such measurements for which the empty-cell spectra recorded before and after the sample spectrum

were

the

same.

Let

us note

that when r,, takes significant values in the spectral range studied

(r,,

not too

small),

one

may deduce the absorption coefficient (or absorbance) cr~ and its normalized value cr~°~~ from knowledge of the cell length L and

:

cr~

=

In [r~]/L and

cr

)°'~~

=

cr~/ Abs cr~ da. (9)

region

When

measurements are

made under strong absorption conditions (large Ii DL), absorption by

the very intense v~ band of CO~

traces

in the gas mixture is significant in the 2 300-2 400

cm '

range. This penurbation is larger

at

high temperatures, since iron and/or nickel carbonyls, present

as

traces in the steel cylinder containing CO, may catalyse carbon monoxide

recombination leading

to

carbon dioxide. In order

to correct

for this absorption, C02

contribution

was

computed and subtracted from measured spectra by using equations (2), (4) and the data for CO~-N~ given in reference [24].

4. Results.

The band-center and band-wing regions

are

the

most

interesting for the test of high density

models. Then the central part of the P and R branches show

a

greater absorption than predicted by Lorentzian line-shapes

on

the other hand, the latter strongly overestimate absorption in the

wings.

4,I BAND-CENTER

REGIONS.

Room temperature results in the 2-0

overtone

band for pure

CO and CO-N~,

are

given in figures 2 and 3. They show that the LBLL and LDNBSM

are

very inaccurate in the central part of the band whereas the LBLC and GNBSM give satisfactory

results.

(4) Since the ideal gas law may

not

be valid

at

elevated densities the usual

atm or

bar units

cannot

be used. The density D(P, T) in Amagat (Am) units is defined by DIP, T)

= v

(I atm, 273.15 K)/

v(P, T) where v(P, T) is the molar volume

at

P and T. For

an

ideal gas D(P, T)

=

P(atm)

x

[273.15/T(K)].

(11)

0.014

aNorm (cmi

0.012 it

ii

0.01

0.008

0.006

0.004

0.002

'

a<cm.ii

0

4150 4200 4250 4300 4350

Fig. 2. Normalized absorption coefficients for pure CO

at

94.5 Am (105 bar) and 297 K. (.)

;

experimental results from reference [17] calculated by using the models

:

(... GNBSM,

LBLC, (- -) LDNBSM, (- -) LBLL.

0.012

«Norm (cmj

0.01 jl

~

j1

.

0.008

0.006

-,-j-'1"' "',

~

0.004

0.002 "~

i 0

4130 4190 4250 4310 a(cm.ll 4370

Fig. 3. Normalized absorption coefficients for CO-N~

at

453 Am (970 bar) and 297 K. (.);

experimental results from reference [18] calculated by using the models

:

(... GNBSM,

LBLC, (- -) LDNBSM, (- -) LBLL.

The inaccuracy of the Lorentzian approach results from the neglecting of line-mixing effects which redistribute the intensity within the band, moving absorption from the less absorbing

to

the

more

absorbing regions. These effects

are

significant under the conditions of figures 2 and 3 since the line half-widths

are

of the order of,

or

greater than, the separation between adjacent

lines (the values of y

are

about 7.5 and 36

cm~ '

in Figs. 2 and 3, respectively, whereas the line

separation is 4

cni~

').

The inaccuracy of the LDNBSM results from

two

approximations [3, 4]. The first is the

use

of the Lorentzian model and the second is that computations

are

made in the

[« ha,

« +

ha interval by assuming that lines outside this interval

are

similar

to

those

inside. Let

us note

that the second approximation tends

to

compensate the underestimation of

(12)

absorption resulting from the

use

of the Lorentzian shape

near

the maxima of the R and P branches.

Discrepancies between predictions of the LBLC and GNBSM models and

measurements are

partly due to the neglect of pressure induced line-shifts nevertheless,

most

of the inaccuracy

results from the very rough modelling of line-mixing effects through the introduction of the ( correction function. Note that the

use

of energy corrected sudden scaling laws which

correctly account for these effects enables

a

satisfactory agreement with experiments [25].

The influence of temperature is illustrated by the results in figures 4 and 5. Those

at

low temperatures confirm the conclusions of figures 2, 3. Furthermore, all models lead

to

similar and satisfactory results in figure 5 since the density is quite low and line-mixing effects

are

small.

o.ois

«Norm jcm) .

o.oi

O

0

4150

190

(13)

4,2 BAND-wiNG

REGIONS,

Pure CO transmissivitie~ in the 1-0 band

at two

temperatures

are

plotted in figures 6a and 6b. They confirm the well-known inaccuracy of the Lorentzian shape

when far line-wings

are

considered. The LDNBSM underestimates absorption, due

to

the fact that lines outside the considered [« ha,

« +

ha interval

are

assumed

to

be similar

to

those inside [3, 4] indeed when this interval contains

no

significant lines, absorption predicted by

the LDNBSM is then

zero

whereas wings of outside lines may be significant. The LBLC and GNBSM approaches lead

to

practically identical results in

a

good agreement with

measure-

ments

; this is expected since absorption is then governed by the

X

factor which has been fitted

to

measurements.

Note that discrepancies in the high frequency wing

are

due

to

the uncertainty

of the correction for CO~ absorption.

Results for CO-N~ mixtures, which

are

plotted in figures 7a and 7b, lead to similar

conclusions. The importance of CO~ absorption is illustrated in figure 7b, where uncorrected

experimental results have been plotted.

~

0.8

0.6

0.4

0.2

a<cm-11

0

1900 2000 2100 2200 2300 2400

a)

~

0.8

0.6

0.4

~~

~,,'

0.2

,~ ,~"

,,~'~

jam.ij

0

'

1900 2000 2100 2200 2300 2400

b)

Fig. 6. Transmissivities (L 7.[

cm

for pure CO. (...)

;

experimental results from thi~ work

calculated by using the models GNBSM and LBLC (similar), (- -) LDNBSM,

(---) LBLL. a) 63.7 Am (70 bar) and 297 K b) 26.4 Am (70 bar) and 691 K.

(14)

1 '

/

08 '

0.6

0.4 ,,~_ ~,,"

0.2 ~',,~ ,,"~'

"~, "~

a<cm.ii

~

l 900 2000 2100 2200 2300 2400

a)

0.8

~,

, ,

, ,'

, ,

0.6

', ,'

, ,

, ,

, ,

, j

0.4

,

, ,

0.2

~

jam.ij 0

1900 2000 2100 2200 2300 2400

b)

Fig. 7. Transmissivities for CO-N~. (...); experimental results from this work;

calculated by using the models ( )GNBSM and LBLC (similar), (-.-.-)LDNBSM,

(---) LBLL. a) 46 Am (51 bar), 1.05 % CO, 7. I

cm

and 297 K b) 23 Am (53 bar). 8 % CO, 19.9

cm

and 601K.

4.3 EQUIVALENT

wiDTHs.

The equivalent width of

a

band W(«~,~, «~~,), defined by

"M,,

W("M<n. "Max)

~

II T<,> d"

,

M<,> ('0)

enables interesting

tests

of models when heat transfer applications

are

involved indeed, the intensity emitted by the gas column in the [«~,~, «~~~> interval is given by equation (10) in which the blackbody intensity is inserted in the integrand.

Comparisons between measured and computed equivalent widths in the 2-0 band of pure CO

at room

temperature

are

plotted in figure 8. They confirm the accuracy of the LBLC model,

whereas the GNBSM, which gives satisfactory results

at

low and high densities, understimates

absorption

at

intermediate pressures. This discrepancy is illustrated

on

the spectrum in figure 9

(15)

240

W<cm.'1

,,

200 "'

160 j

120

~

~ ~

~

/

~

80 1'

4o

P <aim)

0

0 20 40 60 80 100 120

Fig. 8. Equivalent widths for pure CO

at room

temperature in the 2-0 band («~,~

=

3 500 cm~'

«Max 5 000

cm ~'

for

L

5.02

cm.

Experimental values from

:

(.) Reference [20]. (o) reference [17]

;

calculated by using the models

:

(... ) GNBSM, ) LBLC, (- -) LDNBSM, (- -)

LBLL.

0.8

0.6

~~

0.4 ~-"~

"

a<cm-11

0.2

4150 4200 4250 4300 4350

Fig. 9. Transmissivities of pure CO

at room

temperature and 9.I Am (10 bars). (.) Experimental

values from reference [20], calculated with the model ( LBLC, (... ) GNBSM. (- )

LBLL in the weak absorption regime (X

I

in Eq. (7)).

and results from the

use

of the exponential inverse intensity distribution function [1, 3, 4] ; indeed, the latter has the

correct

linear and square-root behaviour in the weak and strong absorption limits, but underestimates the equivalent width in the intermediate regime (see Refs. [1, 4]

or

Fig. of Ref. [27>).

The results in figure 10 confirm those of figure 8. Note that underestimation by the LBLC model is due

to

the CO~ contribution,

as can

be

seen

in figures 6 and 7

near

2 300 cm~' Note

that

errors

in the modelling of the far wing contributions lead,

at

high densities,

to

overestimation (resp. underestimation) of equivalent widths by the Lorentzian model (resp.

low density

narrow

band statistical model).

(16)

400

W<cm-')

,,,'

350

1

>""

/.I -'~

~'~

/~ ~.~

~

300

/

I

/

~

.

~.

,>.l'

250

,"

/

/ ' P<&<mi

200

0 10 20 30 40 50 60 70 80

Fig. 10. Equivalent width~ for pure CO in the 1-0 band («~,~ 000

cm~ ' «~~~

3 200

cm~ '

for

L

7.10

cm.

Experimental values from thi; work for (.) T 297 K, (o) T 690 K

;

calculated by

using the models (... ) GNBSM, ( LBLC, (- -) LDNBSM, (- -) LBLL.

5. Conclusion.

The

tests

presented in this work confirm the interest of the corrected models proposed in

paper1 [3] when high densities

or

thick optical paths

are

considered. Contrary

to

previous models, they enable easy and quick computations and satisfactory accounting for line-mixing

and far wing non-Lorentzian absorption effect~. A good agreement with

measurements

is

obtained in the

case

of CO infrared spectra in

a

wide den;ity and temperature range. Note that the Generalized Narrow Band Statistical Model give; very satisfactory results, although CO

at room

temperature I;

not a

good candidate for ;uch model;

:

indeed, there

are

few line, of

significant absorption (one every 4cm~')

so

that the

use

of statistical representations is

approximate. One may predict that such

an

approach would give better results for molecules, such

as

CO~

or

H,O, whose spectra contain many

more

significant absorption lines

at

low

temperatures.

Acknowledgements.

The authors

are

grateful

to

Pr. C. Boulet for helpful discussions.

Appendix.

Procedure for computations with the G- and LD- NBSM.

.

The first computational step consists in interpolations within the values of tables IIa-IIC in order

to

determine the parameters «j"(T). &j"(T) and rj"(N~, T) for each of the

Table III. Ai>era,qe iatifis [y~/y~~]~~ of hioadenin,q parameters of CO lines by peiturber g

w.ith >.espec.t

to

bioadenin,q b_i'N~.

iw2nN2iAv iycotm2iAv iyco2/yN21Av iyR2~vw2iAv iyo2/w2iAv iyA~r/w2iAv

1.00 1.05 1.30 1.90 0.82 0.96

(17)

wavenumbers

«

of interest

at

the considered temperature. Since rj~'corresponds

to

CO-N~ collisions, the value in the mixture is given by the following approximate (5)

expression

r?[,,

A<,

Vi,

,

f,,~, T)

=

rl[,,A<,(N~, T) z fg1)((~

~~ ,

(A. i)

«

I,,g

,

where the average ratios of broadening by gas g and by N~

are

given in table III

([... ]~~ denotes

an

average

over

all lines).

.

The parameter

X

for the mixture is computed in

a

similar way, I-e-

x (« «,, /,,

,

/,,~, T)

=

z ~lj~~j~~ ~~x

«,, o.

,

/~,

,

o, T), (A.2)

g

=,.,,

N~

where X(« «,, 0,

,

f~,

,

0, T) corresponds

to

the correction function for CO-g colli- sions.

.

The parameter A involved in the ( correction

can

then be calculated, for each absorption

band (1-0

or

2-0), from the following approximation of equation (3)

:

A ~fl, /2, /n~, D, T)

=

j~

°~ U

Sinh (hCU/2 bT)

~~

Y~~~fl' In

,

D, T)

~

°'

"~~ ~i"h(h~"~12 bT)

~ ~ ~

~~~

~

~~~~ ~~ (" "~~)~

+

~~~fl,~.--,

fn~, D, T)~

~~

l~

w ~

~j~~ ~~~~/~ ~~j

~

lY ~~~fl, In

'

D' T)

x (U

U

[ fj,

,

f~, T)

~

~

da

~

U~~ Sinh(hCU~~ IT

~

(" "~~)~

+

Y~~~fl'

,

fn~'D, T)

(A.3) where «~~ and y~~

are

the band-average wavenumber and half-width

~~~ '

b,~

bJnd

~~~~~~ '~~

~

~~~j ~~)(T)j

'~~~ ~'~~~~ ' ~ <Pi<on hJnd

~ ~~

Y~~~/1, /2,

,

/,>~, ~)

"

=

~ «j"(T) Drj"~fj, f~,

,

f,,, T)j/ ~ «j"(T)j

g

<,~e Jh,orp><on bJnd «, e Jb,o,pi<an bJnd

.

The average transmissivity is then computed by using equation (7).

Computer time and programming

can

be saved by using the far wing properties of the GNBSM. Let

us note

Ap the integer such that 6 (Ap 1/2 )

»

1(o is defined in Eq. (7)) for all

wavenumbers

«

and considered column conditions. A possible choice for Ap is

~~ ~ ~~~j~~~ l~

~

~~~~ ~~~~~~~ ~~~~

'

lA.5)

(~) This procedure is only approximate but is quite

accurate

since the ratio of broadening parameters

by

two

different collision partners is almost independent

on

the considered line.

(18)

where the upperscript

max

refers

to

the maximum value

over

all temperatures that the

user

may encounter. Equation (7)

can

then be written under the simplified form

~j<,GNBSM

=

~<i<,iAp)GNBSM-L°Cd'

x

exp i- L/i D~ C«i

,

~A.6~

where r(Ap)~~~~'~~~°~"' is given by equation (7), restricting the summation

over

p

to

the [- Ap,

+

Ap] interval. C,, is

a

«

continuum

»,

which depends

on

temperature and mole

fractions only

C~,(f,, f,,~, T)

=

jj fi C~(g, T), (A.7)

Y"

""t with

C«~~ T)

=

~,~

,,~ "~~»~~~~~

li>li~~°ii.1/8~

...~

°~ ~~

x

x

~'

Sinh [«hc/2 bT]

~'~

~ ~" ~~~'~ l(~'+ P ha ) hc/2 bT] ~ ~~'~"' °,

,

fg,

,

0, T)j

C~,(g, T) is

a «

continuum

»

which depends

on

temperature and

on

the perturbing molecule g only. It

can

be tabulated by using the preceding equations

once

Ap is chosen.

References

Ii Goody R. M, and Young Y. L., Atmospheric Radiation. Theoretical basis, second edition (Oxford University Press, Oxford, 1989).

[2] Soufiani A., Proceedings of the 17th Eurotherm Conf. Cascais, Portugal (Oct. 1990).

[3] Hartmann J. M., Bouanich J. P., Boulet C. and Sergent M., J. Phys. II France 1(1991) 739.

[4] Goody R. M., Atmospheric Radiation, Chap. 4 (Clarendon Press, Oxford, 1964) p. 122.

[5] Farrenq R., Guelachvili G., Sauval A. J., Grevesse N. and Farmer C. B., J. Mol. Spectrosc. 149 (1991) 375.

[6] Chackerian C. Jr and Tipping R. H., J. Mol. Spec.nose.. 99 (1983) 431.

[71 Rothman L. S., Gamache R. R.. Tipping R. H.. Rinsland C. P., Smith M. A. H., Benner D. C., Malathy Devi V., Flaud J. M., Camy-Peyret C., Perrin A., Goldman A., Massie S. T., Brown L. R. and Toth R. A., J. Quaint. Spectio.<c.. Radial. Transfer 48 (1992) 469.

[8] GEISA (Spectroscopic data base), Laboratoire de Mdtdorologie Dynamique du CNRS, Ecole

Polytechnique, 91128 Palaiseau, France.

[9] Hartmann J. M., Rosenman L., Perrin M. Y. and Taine J., Appl. Opt. 27 (1988) 3063.

[10] Rosasco G. J., Rahn L. A., Hurst W. D., Palmer R. E. and Dohne S. M., J. Chem. Phys. 90 (1989) 4059.

Bulanin M. O., Dokuchaev A. B., Tonkov M. V. and Filippov N. N., J. Quant. Spectrosc. Radial.

Transfer 31 (1984), 521.

Ii 2] Coulon R., Galatry L., Okseengom B., Rubin S. and Vodar B., J. Ph_vs. Radium IS (1954) 641.

[13] Vu H., Atwood M. R. and Vodar B., J. Chem. Phys. 38 (1963) 2671.

[14] Vodar B. and Vu H., J. Q1Jant. Spectiosc Radial. Ticlnsfer 3 (1963) 397.

[15] Armstrong R. L. and Welsh H. L., Can. J. Phys. 43 (1965) 547.

[16] Buontempo U., Cunsolo S. and Jacucci G., J. Chem. Phys. 59 (1973) 3750.

[17] Bouanich J. P., Nguyen-Van-Thanh and Strapelias H., J. Quant. Spectiosc. Radiat. Tiansfe>. 26 (1981) 53.

'8] Bouanich J. P., J. Quaint. Spe<.t>.o.<c. Radiat. Tram.<Jbi 27 (1982) 131.

(19)

j19] Bouanich J. P., Nguyen-Van-Thanh and Rossi I.. J. Qiicl>it. Spe<

t>.o.«..

Radiat. T>.a>i.<fbi 30 j1983) 9.

[20] Fukabori M., NaLazawa T. and Tanaka M.. .I. Qiiant. Spin.n.o«.. Radiat. T>.a>i.ifbi 36 II 986 283.

[21] Brodbeck C., Nguyen-Van-Thanh, Jean-Louis A. and Bouanich J.-P., Induced Spectroscopy

Advances and Applications, G. Tabisz Ed. (Kluwer Academic Publishers) (in preparation).

[22] Goodwin R. D., J Chem. Phys. R~fl Data

14

[985) 249.

j23] Jacobsen R. T. and Stewart R. B.. J. Phy.<. Chem. R<f. Data

2

[973) 757.

j24] Perrin M. Y. and Hartmann J. M., J. Quaitt. Spe<.tic.«. Radiat. Tian.<fei

42

[989) 3 ii.

[25] Bouanich J. P.

et

al., paper in preparation.

[26] Tch[enova G. V., Vigasin A. A., Bouanich J. P. and Bou[et C., I>if.aied Phj..<. 34 ([993) 289.

[27] Young S. J., J. Quart. Spe<tic.<c.. Radiat. Tran.<fen18 (1977) 1.

Références

Documents relatifs

صلخم دراوملا فلتخم لوح ديازتملا بلطلل ارظن لوح بلطلا ةرثك يعدتسي امم دراوملا هذه ةيدودحمل ارظن كلذك و ةيعيبطلا تايئاملا ةيبرت قلاطنا زّيم ةموكحلا فرط

In conjunction with estimates of the volume discontinuity obtained from our previously reported PVT data, these turbidity data are used to calculate the values of

Both ends of the drc are submerged in argon gas to prevent re- absorption of radiation by C12-molecules in regions of lower temperature and thus to make possible

ever, this transition belongs to the y 2 ~ 0 which besides the 3845 transition, also deexcitates via a 3412-A spectral line, the measurements areconsistent. In the

Samples were tested for the presence of domain I IgG antibodies previously by an in-house ELISA and based on these results we selected 10 patients reactive to epitope G40-R43 on

Psychosocial work factors included decision latitude, psychological demands, social support, reward, overcommitment, long working hours, predictability, night and shift

Biocontrol effect (Verticillium wilt in oilseed rape) 1 Impaired Impaired Rhizosphere colonization oilseed rape 1 Nonaffected Nonaffected In vitro indole-3-acetic acid production

A decrease of the step width in the absorption spectrum is due to the difference in the shift rate of two spectral regions : the stronger-absorption region, located at the back of