• Aucun résultat trouvé

A preliminary study on some a posteriori error estimates for soft-tissue biomechanics

N/A
N/A
Protected

Academic year: 2021

Partager "A preliminary study on some a posteriori error estimates for soft-tissue biomechanics"

Copied!
15
0
0

Texte intégral

(1)

A preliminary study on some a posteriori error estimates for soft-tissue biomechanics

S. P. A. Bordas1, M. Bucki2, F. Chouly3,M. Duprez4, V. Lleras5, C. Lobos6, A. Lozinski3, P.-Y. Rohan7, S. Tomar1

1Université du Luxembourg, Luxembourg.

2Texisense, Grenoble, France.

3Université Bourgogne Franche-Comté, France.

4Université Aix-Marseille, France.

5Université de Montpelier, France.

6Universidad Técnica Federico Santa Marià, Chile.

7Arts & Métiers ParisTech, France.

Euromech Colloquium 595

29-31 August 2017, Lille

(2)

Introduction

Patient-specific finite element models of soft-tissues

Design of personalized medical devices Computer-assisted planning or guidance

Bucki, Lobos, Payan & Hitschfeld 2011 www.Texisense.com 2017c

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 1

(3)

Introduction

Meshing is still a big challenge

Complex geometries

Geometric quality of the elements ? Impact on the accuracy of the results ?

ådiscretization error www.Texisense.com 2017c

Ito Y, Shih A & Soni 2009 Zhang, Hughes

& Bajaj 2010

Ebeida, Patney, Owens & Mestreau 2011 Lobos & Gonzalez 2015 Frey & Georges 2008

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 2

(4)

Introduction

A posteriori error estimate : Optimal / Economical mesh Finite Elements

Solution

New mesh Error Estimate

in each element Solve

Adapt

Hansbo & Johnson 1992 Ainsworth & Oden 1997 Verfürth 1999

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 3

(5)

Method

Simplified setting for a preliminary study

2D linear elasticity with (possibly) linearized fiber activation :

minu∈V

R

σ(u) :ε(u)

where σ(u) = σP(u)

| {z } passive part

+ σA

|{z}

fiber activation

with





σA=βT eAeA

eA: fiber direction T : tension

β: activation parameter

Cowin & Humphrey 2001 Payan & Ohayon 2017

Biomechanics of Living Organs : Hyperelastic Constitutive Laws for Finite Element Modeling.

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 4

(6)

Method

Goal oriented error estimates

Variational setting (for linear problems) :uVs.t.

a(u,v) =l(v)vV

Here

a(u,v) = Z

σP(u) :ε(u) and l(v) = Z

σA:ε(u)

Linearquantity of interest:

J:V3u7→J(u)∈R.

Aim :|J(u)−J(uh)|?

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 5

(7)

Method

Dual Weighted Residuals (DWR) error estimates

Fundamental observation :

J(u)J(uh) =a(u,z)a(uh,z) =l(z)a(uh,z) =:ηh(z).

withzV s.t. a(v,z) =J(v),vV.

åglobal estimator:ηh

Moreover :

J(u)J(uh) = P

K∈Kh

hRK,zπhziK+hR∂K,zπhzi∂K

=: P

K∈Kh

ηK(z−πhz) Error by element

whereπhzis an interpolant andRKandR∂Kare the residual contribution over the cellKand his boundary∂K.

ålocal estimators:ηK

Becker & Rannacher 1997, 2001

Rognes & Logg 2013(Generic implementation in FENICS)

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 6

(8)

1st Example : Artery with fibre activation

Le Floc’h et al 2008

Region of interestω(green)

Displacement Activation

Quantity of interest :J(u) =1 2 Z

ω

trε(u)dx∈R

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 7

(9)

1st Example : Artery with fibre activation

103 103.5 104

10−6 10−5 10−4

N

J2(u)J2(uh)

Uniform refinement Adaptive refinement 1/N2 1/N

Initial error estimatorηK

Initial mesh Adapted mesh (5th iteration)

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 8

(10)

2nd Example : Tongue with fibre activation

Bijar, Rohan, Perrier & Payan 2015 Region of interestω(green)

Displacement

Activation of Genioglossus

Quantity of interest :J(u) =1 2 Z

ω

trε(u)dx∈R

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 9

(11)

2nd Example : Tongue with fibre activation

102 103 104

10−6 10−5 10−4 10−3

N

J(u)J(uh)

Uniform refinement Adaptive refinement 1/N2 1/N

Initial error estimatorηK

Initial mesh Adapted mesh (5th iteration)

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 10

(12)

Conclusion

Motivations

A posteriorierror estimators :

Rarely used in practice for biomedical simulations Allow to quantify the discretization error

Discretization error may have serious implications for guidance/design

Results

DWR estimate : discretization error for a goal-oriented quantity Mesh adaptivity : optimal accuracy with low computational cost Promising preliminary results in a simplified setting

Perspectives

Errors coming from the parameters and the model Hyperelasticity & 3D

Other error estimator

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 11

(13)

Acknowledgement

For the discussions

R. Becker F. Hubert J. Ohayon ...

Y. Payan P. Perrier J. Hale

For their financing

Michel Duprez A posteriorierror estimates for soft-tissue biomechanics 12

(14)

Conclusion

A posteriorierror estimators : Error per cell

Optimal mesh

Improvement of the simulations

(15)

Conclusion

A posteriorierror estimators : Error per cell

Optimal mesh

Improvement of the simulations

Happy Birthday Karol ! ! !

Références

Documents relatifs

We should also mention alternative approaches to (implicit, standard) finite elements for fast nonlinear finite element analysis: for instance the solution of total lagrangian

Our theoretical analysis is now confirmed by different numerical examples. The first two ones are used to confirm the efficiency and reliability of our error esti- mator, while

The general convergence theory from [22, 29] states that if the discretization of a linear problem is stable, the a posteriori error estimators constitute an upper bound for the

We propose an adaptive algorithm wherein the different iterative procedures (iterative linearization, iterative coupling, iterative solution of linear systems) are stopped when

In this paper we derive a posteriori error estimates for the compositional model of multiphase Darcy flow in porous media, consisting of a system of strongly coupled nonlinear

We give an a posteriori error estimator for nonconforming finite element approximations of diffusion- reaction and Stokes problems, which relies on the solution of local problems

This paper presents an error estimator for partition of unity enriched finite element methods such as the extended finite element method (XFEM) based on derivative recovery

Keywords: second order wave equation, reduced basis method, dual weighted residual method, goal-oriented error estimation, dual problem,