• Aucun résultat trouvé

ROS homeostasis in a dynamic model: How to save PD neuron?

N/A
N/A
Protected

Academic year: 2021

Partager "ROS homeostasis in a dynamic model: How to save PD neuron?"

Copied!
1
0
0

Texte intégral

(1)

ROS  homeostasis  in  a  dynamic  model:  

 How  to  save  PD  neuron?  

Alexey Kolodkin

1,2

, Andrew Ignatenko

2

, Vineet Sangar

3

, Evangelos Simeonidis

1,3

, Bernhard Peters

2

, Hans V. Westerhoff

4,5,6

,

Alex Skupin

1

, Nilgun Yilmaz

4

, Matteo Barberis

5

, Thierry Mondeel

5

, Nathan D. Price

3

, Nathan Brady

6

and Rudi Balling

1

1Luxembourg Centre for Systems Biomedicine (LCSB), Luxembourg | 2Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg, Luxembourg

3Institute for Systems Biology, Seattle, USA | 4Molecular Cell Physiology, VU University Amsterdam, the Netherlands

5Manchester Centre for Integrative Systems Biology, Manchester, UK | 6 Synthetic Systems Biology, SILS, NISB, University of Amsterdam, Netherlands

7German Cancer Research Center, Heidelberg, Germany

ROS  plays  three  main  roles  in  the  cell:  it  is  a  (i)  signalling   molecule  in  cell  differen@a@on,  (ii)  “killing”  ingredient  in  

immune  response,  and  (iii)  damaging  component  leading  to   undesired  cell  death.  The  precise  tuning  of  ROS  management   is  crucial  in  cell  func@oning.  

Parkinson’s  disease  (PD)  is  an  example  of  ROS-­‐related   neurodegenera@ve  disorders,  affec@ng  1–3%  of  the  

popula@on  over  65  years  of  age.  PD  is  characterised  by   motoric  disorders  and  is  caused  by  the  death  of  

dopaminergic  neurons  in  the  substan'a  nigra  -­‐  a  brain   structure  located  in  the  mesencephalon  (midbrain).  

Dopaminergic  neurons  need  a  lot  of  energy  to  secrete  

dopamine.  Thus,  dopaminergic  neurons  have  a  higher  level   of  oxida@ve  phosphoryla@on  and  produce  more  ROS.    

ROS  management  network  is  a  good  example  of  a  non-­‐linear   mul@-­‐component  system  which  is  too  complex  for  intui@ve   understanding  and  needs  more  advanced  systems  biological   approaches.    

We  propose  a  detailed,  mechanis@c,  dynamic  model  of  ROS  

management.  Our  model  offers  insight  into  the  design  principles   underlying  the  func@onality  of  ROS  homeostasis  and  enlightens   the  func@onality  of  this  system  in  health  and  Parkinson’s  disease.

Introduction

Mitochondria   ER    

Cytoplasm  (Fe)     ROS  

ROS  regulatory  network  

Cell  differen@a@on   Immune  response  

Cell  damage  

Detailed model of ROS management

Parkinson’s disease: How to save a neuron

An emergent behaviour:

Response to the increased ROS generation

PD: increased α-synuclein PD: DJ1 is knocked down PD: Pink1, DJ1 and VDAC1 are down α-synuclein and Keap1 are up, Healthy

Untreated Nrf2 synthesis is Untreated Untreated

activated 50 fold

Nrf2 synthesis is activated 1000 fold

Nrf2 synthesis is activated 1000 fold

Activation of Nrf2 synthesis (e.g. by caffeine) might help

Proposed example of personalised medicine: PD-related increase of α-synuclein might be compensated by Nrf2 activation. However, Nrf2 activation does not help if PD is caused by DJ1 knockdown or other mutations.

Activation of Nrf2 synthesis (e.g. by caffeine) does not help

Mechanism explaining why does it happen:

Références

Documents relatifs

A comparison of target- and manually controlled infusion propofol and etomidate/desflurane anesthesia in elderly patients undergoing hip fracture surgery. Passot

We report the existence of a region within which en- hanced arcing (activation) exists for palladium and pal- ladium/ silver contacts, as a function of arc current and of

Dose [Target] Effect c Effect p Dose [Target] Effect c Dose [Plasma] Effect p Dose [Plasma] Effect c Effect p [Plasma] In vitro In silico for in vivo Human in vivo Rat in vivo

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Abstract. - We calculate the electron-phonon parameter 03BB for Pd-H like compounds using an isotropic phonon spectrum with nearest neighbour and next nearest neighbour

Palladium-catalysed direct coupling of various heteroarenes with 3-bromochromen-4-one (Scheme 2).. In summary, we have demonstrated that 3-bromochromen-4-one can be heteroarylated

Under these coupling conditions, com- pound 3a was obtained in 67% yield as a β:α mixture in a ratio of 20:1 (determined by 1 H NMR, comparing integrations of the two

Immune checkpoint inhibitors targeting the programmed death receptor ligand 1 (PD-L1)/programmed death receptor 1 (PD-1) pathway alone or in combination have greatly changed