• Aucun résultat trouvé

Intersections maximales de quadriques réelles

N/A
N/A
Protected

Academic year: 2021

Partager "Intersections maximales de quadriques réelles"

Copied!
126
0
0

Texte intégral

(1)

HAL Id: tel-01076980

https://tel.archives-ouvertes.fr/tel-01076980v2

Submitted on 12 Feb 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Intersections maximales de quadriques réelles

Arnaud Tomasini

To cite this version:

Arnaud Tomasini. Intersections maximales de quadriques réelles. Géométrie algébrique [math.AG].

Université de Strasbourg, 2014. Français. �NNT : 2014STRAD035�. �tel-01076980v2�

(2)

UNIVERSITÉ DE STRASBOURG

ÉCOLE DOCTORALE ED269

Institut de Recherche Mathématique Avancée

THÈSE

présentée par :

Arnaud TOMASINI

soutenue le :

10 novembre 2014

pour obtenir le grade de :

Docteur de l’université de Strasbourg

Discipline/ Spécialité

: MATHÉMATIQUES

Intersections maximales de

quadriques réelles

THÈSE dirigée par :

KHARLAMOV Viatcheslav

Professeur, Université de Strasbourg

RAPPORTEURS :

FINASHIN Sergey

Professeur, Middle East Technical University

MANGOLTE Frédéric

Professeur, LAREMA

AUTRES MEMBRES DU JURY :

ITENBERG Ilia

Professeur, Université Pierre et Marie Curie

(3)
(4)
(5)
(6)
(7)

(VC, τ ) VC τ 16 VC τ (VC, τ ) bi(VR) i VR Hi(VR) Z2 bi(VC) VC Hi(VC) bi(VK) Hi(VK)

(8)

X i≥0 bi(VR) ≤ X i≥0 bi(VC) XC (r + 1) PN C XC hj,i(XC) = hi,j(XC) i ≤ j δi,j+ r+1 X k=1  r + 1 k  "kX−1 ℓ=0  k − 1 ℓ  k − 1 j − i + ℓ  j + ℓ k − 1 # i + j = N − r − 1 δi,j n m  = 0 n < m hj,i(X C) = hi,j(XC) = δi,j i + j 6= N − r − 1 |i − j| > r + 1 r + 1 (r + 1) (Q0, . . . , Qr) Rr+1 −→ S2(RN+1)∗ (ω0, . . . , ωr) 7−→ Pri=0ωiqi S2(RN+1)∗ RN+1 Pr i=0ωiqi = ωq ωq Sr ind imin imax Sr

(9)

Ωi = {λ ∈ Sr ind(λ) + corang(ωq) ≤ i} ∅ = Ω−1⊂ Ω0⊂ · · · ⊂ ΩN+1= Sr RN+1 Λi(N ) = {q ∈ P(S2(RN+1)∗) λi(Q) 6= λi+1(Q)} {λi(Q)}0≤i≤N Q q ξi Λi(N ) q ∈ Λi(N ) RN+1 λ0(Q), . . . , λi(Q) Ri+1 // E i+1 ξi  Λi(N ) γi π : ω 7→ ωq ω ∈ Sr XR (r+1) PN R Hi+j(PN R \ XR) E2i,j= Hi(Ω N−j) di,N2 −j : Hi(Ω j) δ(γj+1)∪ // Hi+2(Ω j+1, π−1(Λj+1)) // Hi+2(Ωj+1) δ H1−1j+1)) → H2(Ω j+1, π−1(Λj+1)) (Ωj+1, π−1(Λj+1)) Z2 Z2 0 0 0 0 0 0 Z2 Z2 0 0 0 j = imin j = imax i = 0 i = r i j ∗ Ωi6= Sr

(10)

(q1, q2) PN C q1 0 ∈ CN+1 CN+1 (q 1, q2)

(λq1+ µq2)(x) = (λa1+ µb1)x21+ (λa2+ µb2)x22+ · · · + (λam+ µbm)x2m+

+ m+MX i=m+1  (λαi+ µβi)(xi+ ıxi+M)2+ (λ ¯αi+ µ ¯βi)(xi− ıxi+M)2  ai bi αiβ−1i 6∈ R m m = m1+ · · · + m2k+1 m mi Pm m PN R Pm m 1 ≤ m ≤ N + 1 m = N + 1 2 m 1 ≤ m ≤ N + 1 m = N +1 2 XR PRN N ≥ 3 XR imin=  N 2  m = N + 1 m C ⊂ P1 R N + 1 1 N 1 2 N N N

(11)

2⌊N4⌋−1+ 1 N + 1 X m|N +1 2 m ϕ(m)2N +12m −1 ϕ(m) N N + 1 1 2 N = 7 8 = 2+2+2+1+1 8 = 2 + 1 + 2 + 1 + 2 16 d0,N −imin 2 d2 XR PRN N = 2k + 1 XR imin= k

(12)

XR PRN N = 2k XR d2 imin= k − 1 d2 imin= k (M − 1) d2

imin= k Himin−1(XR) → Himin−1(P

N R)

(M − 2) d2

imin = k Himin−1(XR) → Himin−1(P

N R) (C, θ) C θ 3 4 P3 R P3 R 8 7 P3 R 7 F1 F2 f : PR3× [0, 1] → PR3

(13)

f (F1, 0) = F1 f (F1, 1) = F2 t ∈ [0, 1] f (F1, t) 7 P3 R P3 R P4 R P4 R

(14)
(15)
(16)

P3 R

P4 R

(17)

G p 1 Z/pZ Zp K G G n n K G (g0, . . . , gn) G (v0, . . . , vn) K g ∈ G i g(vi) = gi(vi) ZpG =    X gi∈G nigi, ni∈ Zp    KG= { } K KG g G  σ = 1 + g + g2+ · · · + gp−1 τ = 1 − g

(18)

ZpG στ = 0 = τ σ G p gp = 1 σ = τp−1 τ = σ p = 2 ρ = τk 1 ≤ k ≤ p − 1 ρ = τ¯ p−k L ⊂ K G LG = L ∩ KG ρC(K, L) ⊂ C(K, L) 0 −→ ¯ρC(K, L) ⊕ C(KG, LG)−→ C(K, L)i −→ ρC(K, L) −→ 0ρ i ker ρ = i C(K, L) ρ i C(K, L) Zp n K L s n K L s ∈ KG τ (s) = 0 s i ρ s 6∈ KG P gi∈Gnigi(s) Λ = ZpG 0 −→ ¯ρΛ−→ Λi −→ ρΛ −→ 0ρ

dim ¯ρΛ + dim ρΛ = dim Λ = p

ker(τ : Λ → Λ) = hσi dim τ Λ = dim Λ − 1 ker τ = Zpσ ⊂ τ Λ σ = τp−1 = τkτp−k−1

dim τk+1Λ = dim τ (τkΛ) = dim τkΛ − 1

dim τkΛ = p − k Hρ(K, L) = H∗(ρC(K, L; Zp)) Hn(K, L) ρ∗ xx Hρ n(K, L) // Hnρ¯(K, L) ⊕ Hn(KG, LG) i∗ ii

(19)

K G L ⊂ K n ≥ 0 ρ = τk (Hρ n(K, L)) + X k≥n (Hk(KG, LG)) ≤ X k≥n (Hk(K, L)) k (Hkρ(K, L)) + (Hk(KG, LG)) ≤ (Hk+1ρ¯ (K, L)) + (Hk(K, L)) (Hk+1ρ¯ (K, L)) + (Hk+1(KG, LG)) ≤ (Hk+2ρ (K, L)) + (Hk+1(K, L)) ρ ρ¯ k ≥ n K VC c : VC→ VC (VC, c) VC c VR G = { , c} G VC L = ∅ n = 0 dim(H0c(VC; Z2)) + X i≥0 dim(Hi(VCG; Z2)) ≤ X i≥0 dim(Hi(VC; Z2)) VG C VR VC X i≥0 dim(Hi(VR; Z2)) ≤ X i≥0 dim(Hi(VC; Z2)). WC ⊂ VC VC c WC X i≥0 dim(Hi(VR, WR; Z2)) ≤ X i≥0 dim(Hi(VC, WC; Z2)) VR X i≥0 dim(Hi(VR; Z2)) = X i≥0 dim(Hi(VC; Z2)) VR (M − k) X i≥0 dim(Hi(VR; Z2)) = X i≥0 dim(Hi(VC; Z2)) − 2k

(20)

PN C (PN C , conj) PN R PRN (r + 1) XK PKN K= R C (r + 1) q0, . . . , qr XK= {x ∈ PKN q0(x) = · · · = qr(x) = 0}. (r + 1) (r + 1) 2 (q0, . . . , qr) Kr+1 −→ S2(KN+1)∗ (ω0, . . . , ωr) 7−→ Pr i=0ωiqi , S2(KN+1)∗ KN+1 Pr i=0ωiqi = ωq ˆ q : Pr K −→ P(S2(KN+1)∗) (ω0, . . . , ωr) 7−→ ωq . (q0, . . . , qr) ω ∈ Pr K x ∈ KN+1 x ∈ ker(ωq) i qi(x) = 0 ω ∈ Pr K ω ˆ q (r + 1) PN K N − r − 1 r < N

(21)

q = (q0, . . . , qr) RN+1 q ω0∈ Pr R ρ > 0 q B(ω0, ρ) ω0 ∈ PRr ker(ω0q) = {0} ω0q ρ > 0 ω ∈ B(ω0, ρ) ker(ωq) = {0} q B(ω0, ρ) ω0 ∈ Sr ker(ω0q) 6= {0} q ω0 x ∈ ker(ω0q) i 0 r qi(x) 6= 0 k dim ker(ωq) ≤ k U ω0 ω ∈ U dim ker(ωq) ≤ dim ker(ω0q)

U ε > 0 x′ ∈ ker(ωq) ω ∈ U x ∈ ker(ω 0q) ||x′ − x|| < ε x′ ∈ ker(ωq) ω ∈ U x ∈ ker(ω 0q) ||x′−x|| < ε q i qi(x) 6= 0 qi C qi(x′) = qi(x) + ||x′− x||C + o(||x′− x||2). ε U ω0 qi(x′) 6= 0 ρ > 0 q B(ω0, ρ) ⊂ U q = (q0, . . . , qr) RN+1 q ω 0∈ PRr q+ ρ > 0 ε > 0 τ 0 < τ < ε qτ = (q0− τ q+, q1, . . . , qr) B(ω0, ρ) q+ > 0 RN+1 XR⊂ RN+1 q SN ρ > 0 1 ρ = supx∈SN |q+(x)|. q ω0 x ∈ SN \ XR ε > 0 ωx ∈ B(ω0, ρ) |ωxq(x)| ≥ ε > 0 SN ε x ∈ SN \ X R q′ B(ω0, ρ) (ω, x) ∈ B(ω0, ρ) × SN x ∈ ker(ωqτ) q+ x 6∈ XR ωx∈ B(ω0, ρ) |ωxq(x)| ≥ ε τ < ε |ωxqτ(x)| ≥ |ωxq(x)| − τ ||ωx||.|q+(x)| > 0

(22)

qτ B(ω0, ρ) QN C = {x20+ x21+ · · · + x2N = 0} ⊂ PCN PN C bk= dim Hk(QNC; Z2) QNC QN C PCN i ≤ 2N bi(QNC) = 2 i = N − 1 bi(QNC) = 1 i 6= N − 1 bi(QNC) = 0 i k 6= N − 1 Hk(QN C; Z2) ≃ Hk(PCN; Z2). bi(QNC) i 6= N − 1 bN−1(QNC) QNC PCN−1 x2 0= −(x21+ · · · + x2N) Q N−1 C χ(QN C) = 2χ(P N−1 C ) − χ(Q N−1 C ) = 2N − χ(QNC−1). QN C χ(QNC) = N X i=0 (−1)kbk. bN−1= dim HN−1(QNC; Z2) =  2 N − 1 0

(23)

QR⊂ PRN (N++1, N−+1) N++ 1 N−+ 1 QR N+ ≥ N− N = N++ N−+ 1 QR QR ⊂ PRN (N+ + 1, N− + 1) N+≥ N−+ 1 bi(QR) =  1 0 ≤ i ≤ N− N+≤ i ≤ N − 1 0 N+= N− bi(QR) =  2 i = N+ 1 0 ≤ i ≤ N − 1 i 6= N+ N= 0 QR SN−1 N > 0 QR q(x) = x20+ x21+ · · · + x2N+− x 2 N++1− · · · − x 2 N  q(x) = 0 x2 0+ · · · + x2N = 1 x2 0+ · · · + x2N+ = 1 2 x 2 N++1+ · · · + x 2 N = 1 2 q(x) = 0 SN+× SN− x 7→ −x SN+× SN− SN+ SN− SN+× SN−→ SN− π : QR→ P N− R SN+ Hi(Q R) E2p,q = Hp(P N− R ; H q(SN+))

(24)

p q N+ 0 N− 0 Z2 0 0 Z2 Z2 0 0 Z2 . . . . . . . . . Z2 0 0 Z2 Z2 0 0 Z2 N−≤ N+ Hi(Q R; Z2) = M p+q=i Hp(PN− R ; Hq(SN+)) N+ = N− N+ = N− + 1 XR r r (M − r + 1) X i≥0 bi(QR) ≥ X i≥0 bi(QC) − 2(r − 1). PN C VN−r−1 (r +1) di PN C VN−r−1 P (y; VN−r−1) = NX−r−1 i=0 dim Hi(V N−r−1; C)yi

(25)

n ∈ N Vn (r + 1) di PCn+r+1 ∞ X n=0 P (y; Vn)zn+r+1= 1 (1 + zy)(1 − z) r+1Y i=1 (1 + zy)di− (1 − z)di (1 + zy)di+ y(1 − z)di (r + 1) di PCN hp,q(V N−r−1) = dim Hp,q(VN−r−1; C) hp,q0 (Vn) =  hp,q(V n) = dim Hp,q(Vn, C) p 6= q, hp,p(V n) − 1 = dim Hp,p(Vn, C) − 1 . hp,q0 (Vn) d = (d0, . . . , dr) H(d; y, z) = X p,q≥0 hp,q0 (Vp+q)ypzq Vp+q r di PCp+q+r r H(d; y, z) = (1 + y) d−1− (1 + z)d−1 (1 + z)dy − (1 + y)dz H(d; y, z) = X P⊂[0,r] " (1 + y)(1 + z)|P |−1Y i∈P H(di; y, z) # 0 r Vn d PCn+1 X n≥0 P (u; Vn)vn= 1 (1 + uv)(1 − v)v× (1 + uv)d− (1 − v)d (1 + uv)d+ u(1 − v)d

(26)

y = uv z = −v X n≥0 P (u; Vn)vn = 1 (1 + y)(1 + z)× (1 + y)d− (1 + z)d −z(1 + y)d+ y(1 + z)d X n≥0 P (u; Vn)vn= X n≥0 n X p,q=0 (−1)qhp,q(Vn)upvn =X n≥0 n X p,q=0 (−1)qhp,q0 (Vn)upvn+ X n≥0 n X p=0 (−1)pupvn = n X p,q=0 (−1)qhp,q0 (Vp+q)upvp+q+ X n≥0 n X p=0 (−1)pupvn = n X p,q=0 hp,q0 (Vp+q)(uv)p(−v)q+ X p≥0 X n≥p (−1)n(uv)p(−v)n−p y = uv z = −v X n≥0 P (u; Vn)vn= n X p,q=0 hp,q0 (Vp+q)ypzq+ X p≥0 X n−p≥0 (−1)pyp(−1)n−pzn−p = n X p,q=0 hp,q0 (Vp+q)ypzq+ 1 (1 + y)(1 + z) X n≥0 P (u; Vn)vn= H(d; y, z) + 1 (1 + y)(1 + z) H(d; y, z) = 1 (1 + y)(1 + z) (1 + y)d− (1 + z)d y(1 + z)d− z(1 + y)d − 1 (1 + y)(1 + z) = (1 + y) d−1− (1 + z)d−1 y(1 + z)d− z(1 + y)d H(d; y, z) = 1 (1 + y)(1 + z) " r Y i=0 (1 + y)d− (1 + z)d y(1 + z)d− z(1 + y)d − 1 # r Y i=0 ai− 1 = X P⊂[0,r] Y i∈P (ai− 1)

(27)

H(d; y, z) = 1 (1 + y)(1 + z)   X P⊂[0,r] Y i∈P  (1 + y)di− (1 + z)di y(1 + z)di− z(1 + y)di − 1   = X P⊂[0,r] (1 + y)(1 + z)|P |−1Y i∈P H(di) (r + 1) PN C (r + 1) 2 XC(r) (r + 1) PN C XC(r) p < q p + q = N − r − 1 hp,q0 (XC(r)) = r+1 X k=1  r + 1 k  "kX−1 ℓ=0  k − 1 ℓ  k − 1 q − p + ℓ  q + ℓ k − 1 # , n m  = 0 n < m XC(r) p + q 6= N − r − 1 XC(r) p + q 6= N − r − 1 2 H(2) = 1 1 − yz = X k≥0 (yz)k (r + 1) PN C XC(r) H(2) = r+1 X k=1  r + 1 k  (1 + y)(1 + z)k−1 H(2)k H(2)k =  1 1 − yz k =X ℓ≥0  ℓ + k − 1 k − 1  (yz)ℓ (1 + y)(1 + z)k−1= k−1 X ℓ=0 ℓ X m=0 m X p=0  k − 1 ℓ  ℓ m  m p  yℓ−pzm

(28)

p < q p + q = N −r −1 H(2) hp,q0 (XC(r)) r+1 X k=1 q X ℓ=q−k+1 k−1 X m=q−ℓ  r + 1 k  ℓ + k − 1 k − 1  k − 1 m  m q − ℓ  q − ℓ ℓ + m − p  hp,q0 (XN−r−1) = r+1 X k=1  r + 1 k  "k−1X ℓ=0  k − 1 ℓ  k − 1 q − p + ℓ  q + ℓ k − 1 # 6 P12 C PC13 • • • • • • • p hp,6−p0 (XC) 0 1 6 r = 5 N = 12 • • • • • • • • p hp,7−p0 (XC) 0 1 7 r = 5 N = 13 (r + 1) PN C (r + 1) p = q = N−r−1 2 (r + 1) XC PN C X i≥0 bi(XC) =  2N N 2(N − 1) N

(29)

hp,q(X C) p + q = N − 2 = dim(XC) p = q ≤ N − 2 hp,p(X C) = 1 2p = N − 2 N = 2k X i≥0 bi(XC) = hk0−1,k−1(XC) + 2k − 1 = 2k + 1 + 2k − 1 = 4k = 2N. N = 2k + 1 X i≥0 bi(XC) = 2hk0−2,k−1(XC) + 2k = 2k + 2k = 4k = 2(N − 1). XC PN C X i≥0 bi(XC) =  N2− 4 N N2− 1 N hp,q(X C) p + q = N − 3 = dim(XC) p = q ≤ N − 3 hp,p(X C) = 1 2p = N − 3 N = 2k X i≥0 bi(XC) = 2hk−2,k−1(XC) + 2k − 2 = 4k2− 2k − 2 + 2k − 2 = 4k2− 4 = N2− 4. N = 2k + 1 X i≥0 bi(XC) = hk−1,k−1(XC) + 2hk−2,k(XC) + 2k − 2 = 3k2+ 3k + 2 + k(k − 1) + 2k − 2 = 4k2+ 4k = N2− 1. q = (q0, q1, . . . , qr) (r + 1)

(30)

ˆ q : Pr C −→ P(S 2(CN+1)) (ω0, . . . , ωr) 7−→ ωq . CC CC= {ω ∈ PCr det(ωq) = 0}. CC PCr CC= PCr XC CC PCr N + 1 q0, q1, . . . , qr R ˆ q : Pr R −→ P(S2(RN+1)∗) (ω0, . . . , ωr) 7−→ ωq , CR CC R ω CC PN C {ωq = 0} (q0, q1) q1 C ω [1 : 0] PC1 (q0+ λq1)λ∈C {q0= 0} x0∈ CN+1 ker(q0) q1(x0) 6= 0 x⊥0 x0 q1 CN+1 λ ∈ C CN+1 = Cx0⊕ x0

det(q0+ λq1) = det((q0+ λq1)|Cx0) det((q0+ λq1)|x⊥0)

[1 : 0] ∈ P1 C λ = 0 det(q0+λq1) det((q0)|x⊥ 0) = 0 ker(q0) x0 x06∈ x⊥0

(31)

q0 x0 ∈ ker(q0) q1 q1(x0) = 0 x0 λ = 0 det(q0+ λq1) ω q1 q1 x⊥0 x1∈ CN+1 q1(x0, x1) = 1 x1 x1 x0 q1(x1) = 0 x0 q1 x⊥1 V = x⊥0 ∩ x⊥1 2 x0 x1 (x2, . . . , xN) V v ∈ V q1(x1, v) = q1(x0, v) = 0 (x0, . . . , xN) CN+1 q 0+ λq1        0 λ 0 . . . 0 λ c1 c2 . . . cN 0 0 c2 cN M        ci = q0(x1, xi) M (q0+ λq1)|V det(q0+ λq1) CC (r + 1) XC XC ω ∈ CC ωq XC ω ∈ CC CC CC ω ∈ CC ω {ωq = 0} XC C CC r ≥ 3 Rr+1 → S2(RN+1)∗ r S2(RN+1)∗ S2(RN+1)D(N ) CR ˆ q 1 ≤ k ≤ N + 1 Dk(N ) = {q ∈ S2(RN+1)∗ corang(q) = k}

(32)

q0∈ S2(RN+1)∗ V0= ker(q0) U q0 S2(RN+1)∗ Φ : U → S2(V0)∗ q ∈ U Φ(q0) = 0; corang(q) = corang(Φ(q)); dq0Φ(q) = q|V; i −(q) = i(q 0) + i−(Φ(q)). i−(q) γ q0 γ C γ q0 U q0 S2(RN+1)∗ q ∈ U q C\ γ q ∈ U πq Vγ(q) γ πq0|V0= idV0 Φ(q) = q ◦ πq|V0. Dk(N ) k(k + 1)/2 S2(RN+1)1 ≤ k ≤ N + 1 Dk(N ) =Sj≥kDj(N ) Dk+1(N ) D(N ) 3 (r + 1) r ≥ 3 C R  x2 0+ x21− 2x22+ x23= 0 −x2 0− x21+ x22+ x23= 0  2x0x1− 2x22+ x23= 0 −2x0x1+ x22+ x23= 0 R C

(33)

C ˜ C ⊂ Sr C R Pr R Sr ˜ C = {ω ∈ Sr det(ωq) = 0} indq : Sr→ Z ωq ind indq XR ind ind Sr\ C ind ±1 C

ind(−ω) = N + 1 − [ind(ω) + corang(ωq)]

imin= minω∈S2ind(ω) imax= maxω∈S2ind(ω) = N + 1 − imin

ind XR PN R \XR L+R = {(ω, x) ∈ S r× PN R (ω.q)(x) > 0} ⊂ Sr× PRN. Sr× PN R → PRN L+R → PRN \ XR p Sr× PN R → PRN x ∈ XR L+R L+R PRN \ XR L+R → PRN\XR x ∈ PRN\XR p−1(x) = {ω ∈ Sr (ω.q)(x) > 0}

(34)

Sr ∅ = Ω−1 ⊂ Ω0⊂ · · · ⊂ ΩN+1 = Sr Ωi = {ω ∈ Sr ind(ω) + corang(ωq) ≤ i} U × [0, 1] → S2(RN+1)∗ (ω, t) 7→ ωqt U ⊂ Sr q t t ∈ [0, 1] Lt= {(ω, x) ∈ U × PRN qˆt(ω)(x) > 0} L0 L1 L0 L1 Ft Zt U × PRN F0 = id Ft(L0) ⊂ Lt Gt G0= id Gt(L1) ⊂ L1−t Zt U × PRN Zt= Xt+ Yt ω, x) ∈ U × PRN Xt(ω, x) PN R Yt(ω, x) U Zt (ω, x, t) ∈ U ×PN R ×[0, 1] ωqt(x) = 0 ωqt(x) > 0 Zt(ω, x) = 0 x 6∈ ker(ωqt) Yt(ω, x) = 0 Xt(ω, x) PN R x PN R ωqt(x + Xt(ω, x)) > 0 x ∈ ker(ωqt) Xt(ω, x) = 0 qt i qt,i(x) 6= 0 qt = (qt,0, . . . , qt,r) Yt(ω, x) qt,i (t, ω, x) ωqt(x) = 0 F0= id Ft(L0) ⊂ Lt Gt G0= id Gt(L1) ⊂ L1−t F1◦ G1 : L1 → L1 G1◦ F1 : L0 → L0 L0 L1 q U ⊂ Sr Lq(U ) = {(ω, x) ∈ U × PRN ωq(x) > 0}. Lq(U ) Lq′(U )

(35)

q q′ q q ω0 ∈ Sr ρ0 > 0 U1 ⊂ U2 diam(U2) < ρ0 Lq(U1) ⊂ Lq(U2) q ω0 ∈ Sr ρ0 > 0 q B(ω0, ρ0) ρ1 < ρ2 ≤ ρ0 B(ω0, ρ1) ⊂ U1⊂ U2⊂ B(ω0, ρ2) ρ1≤ ρ ≤ ρ2 q B(ω0, ρ) ρ B(ω0, ρ2) q = (q0, . . . , qr) q ω0∈ Sr U ω0 Lq(U ) N − ind(ω0) − corang(ω0q) ker(ω0q) = {0} ker(ωq) = {0} ρ > 0 ω ∈ B(ω0, ρ) ker(ωq) = {0} ρ q B(ω0, ρ) ρ Lq(B(ω0, ρ)) Lq({ω0}) Lq({ω0}) = {x ∈ PN R ω0q(x) > 0}

N − ind(ω0) = N − ind(ω0) − corang(ω0q)

ker(ω0q) 6= {0} q qi ω0 = (1, 0, . . . , 0) ∈ Sr q+ ρ > 0 ε > 0 0 < τ < ε qτ = (q0− τ q+, q1, . . . , qr) B(ω0, ρ) q+ τ > 0 q0− τ q+

ker(ω0qτ) = {0} indqτ(ω0) = indq(ω0) + corang(ω0q)

U ω0 Lqτ(U )

N − indq(ω0) − corang(ω0q)

Lq(U ) Lqτ(U )

RN+1

(36)

{λi(Q)}0≤i≤N Q q ξi Λi(N ) q ∈ Λi(N ) RN+1 λ0(Q), . . . , λi(Q) Ei Ri+1 // Ei ξi  Λi(N ) γi ξi XR (r + 1) PRN L + R Hi+j(L+ R) E2i,j= Hp(Ω N−j) di,N2 −j: Hi(Ωj) δ(γj+1)∪ −−−−→ Hi+2(Ω j+1, ˆq−1(Λj+1)) → Hi+2(Ωj+1) δ H1q−1 j+1)) → H2(Ωj+1, ˆq−1(Λj+1)) (Ωj+1, ˆq−1(Λj+1)) βg : L+R → Sr L+R E2i,j= Hi(Sr, Fj) Fj U 7→ Hj−1 g (U )) U ⊂ Sr ω ∈ Sr Fj ω lim −−−→ ω∈U Fj(U ) β−1 g (U ) = Lq(U ) lim −−−→ ω∈U Fj(U ) = HjPN−ind(ω)−corang(ωq) R  . ω ∈ Sr Z 2 j ≤ N − ind(ω) − corang(ωq) ω ∈ ΩN−j ω 6∈ ΩN−j E2i,j= Hi(ΩN−j)

(37)

Ωi XR (r + 1) PN R XR χ(XR) = 1 2 1 + (−1) N+1+ N X j=0 (−1)j+1χ(Ωj). (PN R, XR) χ(XR) = χ(PRN) − (−1)Nχ(PRN\ XR) PN R \ XR E2i,j χ(PN R \ XR) = N X j=0 (−1)j+Nχ(Ωj). Ωi {ω ∈ Sr ind(ω) ≤ i} E20,j = E r,j 2 = Z2 j < imin E2i,j= 0 j < imin 1 ≤ i ≤ r − 1

E2i,j= 0 imin≤ j < imax i ≥ r

E2i,j= 0 j ≥ imax

E2i,j = Hi(ΩN−j)

j < imin N − j > N − imin = imax− 1

Ωimax= S

r⊂ Ω

(38)

Z2 Z2 0 0 0 0 0 0 Z2 Z2 0 0 0 q = imin q = imax p = 0 p = r p q ∗ Ωi6= Sr (r + 1) PN R (r + 1) PN R imin= imax r ≤ N2+1 Hi(L+ R) = Hi(PR\XR) Hi(L+ R) = 0 i > N L+R r + imin− 1 = r + N + 1 2 . PN R \ XR

(X

R

)

ℓ(XR) Hp(XR) → Hp(PRN) Hp(XR) → Hp(PRN) p ≤ ℓ(XR) q µ = min{N−+ 1, N++ 1} > 0 N+ 1, N++ 1 Hi(Q) → Hi(PRN)

(39)

Q ⊂ PN R q(x) = 0 0 ≤ i ≤ µ − 1 q −q Q µ = N−+ 1 Hi(Pµ−1 R ) → Hi(Q) 0 ≤ i ≤ µ − 1 π : Q → PRN− SN+ π∗: Hi(Pµ−1 R ) → Hi(Q) 0 ≤ i ≤ µ − 1 H Q ⊂ PN C x H1(Pµ−1 R ) π∗(t) = [HR][HR]∈ H1(Q R) [HR] ∈ HN−2(QR) ([HR]∗)i= π∗(ti) 0 ≤ i ≤ µ − 1 i ≥ µ XR (r + 1) PN R imin ℓ(XR) imin6= imax imin− r ≤ ℓ(XR) < imin q0, . . . , qr XR ω ∈ Sr ind(ω.q) = imin Q ω.q = 0 QR⊂ PRN Hi(Q) → Hi(PRN) 0 ≤ i ≤ imin− 1 Hi(XR) → Hi(PRN) i ≥ imin ℓ(XR) < imin (XR, PRN) → HN−i−1(L+ R) → Hi(XR) → Hi(P N R ) → HN−i(L + R) → HN−i(L+ R) = 0

(40)

Z2 Z2 0 0 0 0 0 0 Z2 Z2 0 0 0 q = imin q = imax p = 0 p = r p q ∗

Ωi6= Sr HN−i(L+R) = 0 N −i ≥ imax+r−1

i ≤ N + 1 − r − imax= imin− r XR (r + 1) PN R XR imin 6= imax ℓ(XR) ≥ dim(X R) 2  = N − r − 1 2  ⌊x⌋ x X (r + 1) Hi(XC) → Hi(PCN) i < dim(XC) = N − r − 1 i = dim(XC) → Hi(PCN) ϕi → Hi(PCN, XC) → Hi−1(XC) → Hi−1(PCN) ϕi−1 → 0 → ker ϕi→ Hi(PCN) ϕi

−→ Hi(PCN, XC) → Hi−1(XC) → ker ϕi−1 → 0.

dim H∗(PCN, XC) = dim H(PCN) + dim H∗(XC) − 2 dim ker ϕ

≤ dim H(PCN) + dim H∗(XC) − 2  N − r − 1 2  + 1  ℓ(XR)

(41)

PN R XR ℓ(XR) ≥  N − r − 1 2  XR (r + 1) (r + 1) (M − r + 1) X i≥0 dim(Hi(QR; Z2)) ≥ X i≥0 dim(Hi(QC; Z2)) − 2(r − 1) XR (r + 1) imin > j dim(XR) 2 k = N−r−1 2  (r + 1) XR (r + 1) PN R r ≤ N+12 p q imin 0 r 0 Z2 Z2 0 0 0 0 . . . . . . . . . 0 0 0 Z2 Z2 0 ξ : L+R → Sr PN R \ XR

(42)

ℓ(XR) (r + 1) r ξ wr(ξ) ∈ Hr(Sr, Z2) wr(ξ) = 0 ℓ(XR) = N2−1 ℓ(XR) =N2−1− r (XR, PRN) Hi(XR) → Hi(PRN) → Hi(PR, XR) ℓ(XR)

HN−i(PRN) → HN−i(PRN\ XR) ∼= HN−i(L+R)

t H1(PN R) tN−i HN−i(PN R ) tN−i p(tN−i) p : L+ R → PRN ℓ(XR) = imin− 1 p∗(timin) = 0 p∗(timin) = w r(ξ) (r + 1) XR (r + 1) PRN r = N2+1 wr(ξ) 6= 0 XR r < N2+1 1 wr(ξ) = 0 bi(XR) = 1 0 ≤ i ≤ N − 3 2 − r bi(XR) = 2 N − 1 2 − r ≤ i ≤ N − 1 2 bi(XR) = 1 N + 1 2 ≤ i ≤ N − r − 1 2 wr(ξ) 6= 0 bi(XR) = 1 0 ≤ i ≤ N − 1 2 − r bi(XR) = 0 N + 1 2 − r ≤ i ≤ N − 3 2 bi(XR) = 1 N − 1 2 ≤ i ≤ N − r − 1

(43)

L+R ℓ(XR) p q imin 0 r 0 Z2 Z2 0 0 0 0 . . . . . . . . . 0 0 0 Z2 Z2 0 L+R dim Hi(L+ R) = 1 0 ≤ i ≤ r − 1 dim Hi(L+R) = 2 r ≤ i ≤ N − 1 2 dim Hi(L+ R) = 1 N + 1 2 ≤ i ≤ N − 1 2 + r (XR, PRN) ℓ(XR) i < ℓ(XR) 0 → HN−i−1(L+ R) → Hi(XR) → Hi(P N R) → 0 i = ℓ(XR) 0 → Hℓ(XR)+1(P N R ) → HN−ℓ(X R)−1 (L+R) → Hℓ(XR)(XR) → Hℓ(XR)(P N R ) → 0 i > ℓ(XR) 0 → Hi+1(PRN) → HN−i−1(L+R) → Hi(XR) → 0 XR bi(XR) = dim HN−i−1(L+R) + 1 0 ≤ i < ℓ(XR) bi(XR) = dim HN−i−1(L+R) i = ℓ(XR) bi(XR) = dim HN−i−1(L+R) − 1 ℓ(XR) < i ≤ N − r − 1 r = (N + 1)/2 HN(L+ R) 1

(44)

H0(XR) → H0(PRN) ℓ(XR) < 0 wr(ξ) 6= 0 (r+1) PN R N = 3 r = 1  x2 0− x21+ x22− x23= 0 2x0x1+ 2x2x3= 0 . P3 R S1

(45)

q0, q1 C CC⊂ PC1 XR Ωi Ω˜i = {ω ∈ Sr ind(ω) ≤ i} ˜ Ωi Hp(Ω i) 1 N ≥ 2 0 ≤ p ≤ 1 Z2 Z2 Z2 Z2 q = imin q = imax p = 0 p = 1 p q

(46)

L+R PRN\ XR q0, q1 XR PN R XR imin< (N − 1)/2 bi(XR) = 1 i ≤ imin− 2 bimin−1(XR) = dim H 0(Ω imin)

bi(XR) = dim H0(Ωi+1) − 1 imin≤ i ≤ imax− 3

bimax−2(XR) = dim H 0(Ω imax−1) bi(XR) = 1 imax− 1 ≤ i ≤ N − 2 imin= (N − 1)/2 = imax− 2 N XR bi(XR) = 1 i ≤ imin− 2 bimin−1(XR) = dim H 0(Ω imin) bimin(XR) = dim H 0(Ω imin+1) bi(XR) = 1 imin+ 1 ≤ i ≤ N − 2 imin= N/2 = imax− 1 N XR bi(XR) = 1 i ≤ imin− 2 bimin−1(XR) = dim H 0(Ω imin) + 1 bi(XR) = 1 imin≤ i ≤ N − 2 Hi(L+ R) r = 1 ℓ(XR) = imin− 1 ℓ(XR) Hi(XR) → Hi(PRN) (XR, PRN) → HN−i−1(L+ R) → Hi(XR) → Hi(PRN) → HN−i(L+R) → HN−i−1(L+ R) HN−i(L + R) Hi(XR) Hi(PRN)

(47)

Z2 Z2 Z2 Z2 q = imin q = imax p = 0 p = 1 p q N − i − 1 ≥ imax

i ≤ N −1−imax= imin−2

Hi(XR) = Z2 i ≤ imin− 2 Himin−1(XR) 0 → Himin(P N R) → HN−imin(L + R) → Himin−1(XR) → → Himin−1(P N R) → 0 Himin(XR) → Himin(P N R) imin> ℓ(XR) Himin−1(XR) → Himin−1(P N R) bimin−1(XR) = dim H N−imin(L+ R) = dim H0(Ωimin) i > ℓ(XR) 0 → Hi+1(PRN) → HN−i−1(L + R) → Hi(XR) → 0 i > imin− 1 bi(XR) = dim HN−i−1(L+R) − 1 L+R dim HN−i−1(L+ R) = 2 dim HN−i−1(L + R) Ωj 6= S1 imin < (N − 1)/2 bi(XR) = 1 i ≤ imin− 2 bi(XR) = 1 imax − 1 ≤ i ≤ N − 2 bimin−1(XR) = dim H 0(Ω imin)

bi(XR) imin− 1 ≤ i ≤ imax− 2 i 6= imax− 2

bi(XR) = dim HN−i−1(L+R) − 1 = dim H 0(Ω

(48)

i = imax− 2

bimax−2(XR) = dim H

imin(L+

R) − 1

= dim H0(Ωimax−1) + dim H

1(Ω imax) − 1 = dim H0(Ωimax−1) PN R  q1(x) = a0x02+ · · · + aNxN2= 0 q2(x) = b0x02+ · · · + bNxN2= 0 XR Ai = abii  ∈ R2 S = {Ai, i = 0, . . . , N } R2 (H1) :  R2 [Ai, Aj] S  XR N −2 R2 (H1) (H1) R2 (H1) XR (H1) m m1, . . . , mk m = m1+ · · · + mk k 0 0 = 0

(49)

N + 1 (H1) N + 1 (H1) R2 (H1) S A, B ∈ R2 S S A ∼S B A ∼ B C ∈ S A B C S = {A, C1, C2, C3} O A C1 C2 C3 B B′ A ∼ B A 6∼ B′ O ∈ [ABC 2] S k k S S k (q1, q2) RN+1 (q1, q2) S = {B0, . . . BN} (q1, q2) (A1, A2, . . . , Ak) R2 k k = 2ℓ + 1 k > 1 Ai Ai+1 j = i + ℓ + 1 k j O Ai Ai+1 Aj R2 k > 1 A1, Ak Aℓ+1

(50)

O [A1, Ak, Aℓ+1] i = 1, . . . , ℓ

As(i) O [Ai, Ai+1, As(i)]

s(i) i s(i) [ℓ + 2, k] ℓ ≤ k − ℓ − 1 i = ℓ + 1, . . . , k − 1 ℓ ≥ k − ℓ − 1 k = 2ℓ + 1 s(i) s(i) = i + ℓ + 1 N + 1 N + 1 = k X i=1 Ni Ni = ♯ {C ∈ S C ∼ Ai} A1 Ak S (2k+1) Ai (2k + 1) (q1, q2) RN+1 q1(x) = m X i=1 aixi2+ m+MX i=m+1 2xixi+M ; q2(x) = m X i=1 bixi2+ m+MX i=m+1 (βi(xi2− xi+M2) + 2αixixi+M) . M = N−m+1 2 ai, bi αi, βi (q1, q2) q1 Q1, Q2 q1, q2 RN+1 (q1, q2) Q1−1Q2 C Q1−1Q2 CN+1 q1 q2 q1(x) = NX+1 i=1 aizi2 , q2(x) = NX+1 i=1 bizi2.

(51)

q1 q2 Q1−1Q2 e e¯ (z1, z2) λq1+ µq2(z1e + z2e) = (λa + µb)z¯ 12+ (λ¯a + µ¯b)z22 a b z1e + z2e¯ z2= ¯z1 z1= u + iv, a = a1+ ia2, b = b1+ ib2.

λq1+ µq2(z1e + ¯z1e) = 2(λa + µb)(u¯ 2− v2) + 4(λa2+ µb2)uv

b/a = α + iβ a = −i/2 λq1+ µq2(z1e + ¯z1e) = µβ(u¯ 2− v2) + 2(λ + µα)uv PN R m m N + 1 m ≡ N + 1( 2) q1 q2 RN+1 (q1, q2)

λq1+ µq2(x) =(λa1+ µb1)x21+ (λa2+ µb2)x22+ · · · + (λam+ µbm)x2m+

+ m+MX i=m+1  (λαi+ µβi)(xi+ ıxi+M)2+ (λ ¯αi+ µ ¯βi)(xi− ıxi+M)2  M = N−m+1 2 ai, bi∈ R βj−1αj6∈ R

(λa1+ µb1)x21+ (λa2+ µb2)x22+ · · · + (λam+ µbm)x2m.

m m

q1

q2

m ≤ N + 1

(52)

m m CR⊂ PR1 0 S1 S1 m = m1+ · · · + mk mi • O • • • • • • imin imin+ 1 imin+ 2 imin+ 3 imin+ 2 imin+ 3 imin+ 4 = imax 6 6 = 3 + 2 + 1 q1 q2 RN+1 (q1, q2)

λq1+ µq2(x) =(λa1+ µb1)x21+ (λa2+ µb2)x22+ · · · + (λam+ µbm)x2m+

+ m+MX i=m+1  (λαi+ µβi)(xi+ ıxi+M)2+ (λ ¯αi+ µ ¯βi)(xi− ıxi+M)2 

(53)

(λ, µ) ∈ S1 M = N−m+1 2 ai, bi∈ R β−1j αj 6∈ R c > 0 det(λq1+ µq2) = 2c m Y i=1 (λai+ µbi). m+MY i=m+1 |λαi+ µβi|2 = 2c m Y i=1 (λai+ µbi).A A C f1: R2 −→ S1 (a, b) 7−→  b a2+b2, −a √ a2+b2  f2: R2 −→ S1 (a, b) 7−→ √−b a2+b2, a √ a2+b2  Ai = (ai, bi) ∈ R2 C˜ ω ∈ S1 ind(ω.q) = i min S1 ω 1 f1 1 f2 Ai, Aj Ai∼ Aj Ai Aj Aℓ f1(Aℓ) f1(Ai) f1(Aj) AiAj Aℓ •f1(Ai) • f1(Aj) i i + 1 i + 2 Aℓ f1(Aℓ) f1(Ai) f1(Aj) Aℓ f2(Aℓ) f1(Ai) f1(Aj) R2 [AiAjA]

(54)

XR PRN i =N 2  N b0(Ωimin) = m N b0(Ωimin) + b0(Ωimin+1) = m m C ⊂ P1 R N i = N 2  i + i = N + 1 ˜ C 2m dim H0(Ωimin) = m N i =N 2  i + i = N + 1 ˜ C i +1 i +2 i i + 1 Ωimin+1 Ωimin S 1 2m dim H0(Ω imin) + dim H 0(Ω imin+1) = m XR PRN N ≥ 3 XR imin=  N 2  m = N + 1 m C ⊂ P1 R N = 2k XR 1 bk−1(XR) = 2k + 2 N = 2k + 1 XR 1 bk−1(XR) = bk(XR) = k + 1 N N 1 N NX−2 i=0 bi(XR) = N − 1 + b0(Ωimin)

(55)

dim H0(Ω imin) = m NX−2 i=1 bi(XC) = 2N N − 1 + m = 2n m = N + 1 dim H0(Ω imin) = m = N + 1 2 N N−2X i=0 bi(XR) = N − 3 + b0(Ωimin) + b0(Ωimin+1) b0(Ωimin) + b0(Ωimin+1) = m NX−2 i=1 bi(XC) = 2(N − 1) N −3+m = 2N −2 m = N +1 b0(Ωimin) + b0(Ωimin+1) = m = N + 1 b0(Ωimin+1) = b0(Ωimin) XR PN R XC bi(XR) = hi,N−2−i(XC). XR PRN N N ≥ 3 2⌊N4⌋−1+ 1 N + 1 X m|N +1 2 m ϕ(m)2N +12m −1

(56)

ϕ(m) XR⊂ PRN imin=  N 2  m = N + 1 m C ⊂ P1 R N 1 N imax= imin+1 1 m 1 m = N + 1 N + 1 = 1 + · · · + 1 | {z } N+1 2 N imax= imin+ 2 1 2 m = N + 1 1 2 N + 1 1 2 N+1 2  imin = N 2  1 N +1 8 = 2+2+2+1+1 P7 R 8 = 2 + 1 + 2 + 1 + 2 • O • • • • • • • • imin imin+ 1 imin+ 2 imin+ 1 imin+ 2 imin+ 1 imin imin+ 1 imin+ 2 = imax P7 R

(57)

N + 1 2 N+1 2 #k k N = 2k + 1 #1= 1, #2= 2, #3= 2, #4= 4, #5= 5, #6= 9, #7= 12, #8= 23, #9= 34, #10= 63, #11= 102, #12= 190. #k≥ 2⌊ k 2⌋−1+ 2 k−1 k + 1.

(58)
(59)

q0, q1, q2 ω ∈ P2 R ωq = ω0q0+ ω1q1+ ω2q2 C det(ωq) = 0 C d d CR CC x ∈ PN R C x C 16 (P2 R, CR) C d

(60)

P2 R P2 R PR2 P2 R σ σ′ σ ≺ σ′ σ σ′ σ0 m σ0≺ σ1≺ · · · ≺ σm−1≺ σm 0 p C n CR C d ℓ

(61)

CR 1 − (−1)d 2 ≤ ℓ ≤ (d − 1)(d − 2) 2 + 1 d ℓ d ℓ d ≥ 3 d ≤ 2 C d ≥ 3 CR ℓ = (d−1)(d−2)2 + 2 ℓ − 1 C1, . . . , Cℓ−1 Cℓ i 1 ℓ − 1 pi∈ Ci q1, . . . , qd−3∈ Cℓ d − 2 d(d−1)2 > ℓ + d − 4 D d − 2 pi qi CR DR c c ≥ 2(ℓ − 1) + d − 3 = (d − 1)(d − 2) + 2 + d − 3 > d(d − 2) ℓ ≤ (d−1)(d−2)2 + 1 1−(−1)d 2 ≤ ℓ g = (d−1)(d−2)2 g + 1 d = 2k p − n ≡ k2 ( 8) CR CC CC ⊂ PC2 : P2 C → PC2 CR CC (CC, ) CR CC

(62)

CC\ CR C CR CR C CR C C D = CC\ CR 2g + 2 CC χ(D) = 2 − 2g ˜ D 1 χ( ˜D) = 2 − 2g + 2(g + 1) = 4 2 CR CC CR CR Π+ Π

(63)

Λ+ Λ− C d ℓ 2(Π+− Π) = ℓ −d2 4 C d ℓ Λ+− Λ−+ 2(Π+− Π) = ℓ −d2− 1 4 m M+ M− C Π+− Π−= n − 2(m + M+− M) Ci C Π+Ci = Ci Π−Ci = Ci mCi =  1 Ci 0 MC+i = Ci MCi = Ci

(64)

2k 2k + 1 Π+Ci− Π−Ci =  1 − 2(mCi+ MC−i− M + Ci) Ci −2(MCi− MC+i) Ci 2(mCi+ MC−i− M + Ci) m + M+− M−≡ 0 ( 2) q0, q1, q2 PRN C C CR6= ∅ imin 6= 0 Ωi Ωfi f Ωi Hp(Ω i) L+R L+R =  (ω, x) ∈ S2× PN R (ωq)(x) > 0 E2p,q= Hp(ΩN−q) Ωi = {ω ∈ S2 (ωq) ≤ i} ωq

(65)

Z2 Z2 Z2 Z2 p q imin imax ∗ Hi(Ω j) dp,N2 −q: Hp(Ωq) δ(γq+1)∪ −→ Hp+2(Ωq+1, π−1(Λq+1)) −→ Hp+2(Ωq+1) δ H1−1 q+1)) → H2(Ωq+1, π−1(Λq+1)) (Ωq+1, π−1(Λq+1)) d0,N −q2 : H0(Ωq) → H2(Ωq+1) q ≥ imax−1 q > imax−1 H2(Ωq+1, π−1(Λq+1)) π−1q+1) = Ωq+1= S2 π−1(Λq+1) Ωq+1 d0,imin 2 : H0(Ωimax−1) → H 2(S2) d2

(66)

ℓ(XR) d2 imin< imax−1 d2 ℓ(XR) = imin− 1 ℓ(XR) = imin− 2 XR imin < imax− 2 bimin−1(XR) = bimax−3(XR) ε1 d2 ε1= 0 d2 ε1= 1 ε2= 0 ℓ(XR) = imin− 1 ε2= 1 imin− 2 ≤ ℓ(XR) < imin ε1 = ε2 (PN R, XR) 0 → Himin(P N

R) → Himax−1(PRN\ XR) → Himin−1(XR) → Himin−1(P

N R ) ℓ(XR) < imin Himin(XR) → Himin(P N R ) bimin−1(XR) = dim H imax−1(PN R \ XR) − 1 + (1 − ε2)

= dim H0(Ωimin) + dim H

1(Ω imin+1) − ε2 (PN R , XR) 0 → Himax−2(P N R) → Hi min+1(PN R \ XR) → Himax−3(XR) → 0 imax− 3 ≥ imin > ℓ(XR) bimax−3(XR) = dim H imin+1(PN R \ XR) − 1

= dim H0(Ωimax−2) + dim H

1(Ω

imax−1) + 1 − ε1− 1

= dim H1(Ωimin+1) + 1 + dim H

0(Ω

imin) − 1 − ε1

= dim H1(Ωimin+1) + dim H

0(Ω imin) − ε1 ε1 = ε2 imin = imax− 2 N > 3 bimin−2(XR) = bimax−2(XR) N > 3 imin= 1 bimin−2(XR) = dim H imax(PN R \ XR) + 1 − ε2 = dim H1(Ωimin) + 1 − ε2

(67)

bimax−2(XR) = dim H imin(PN R \ XR) − 1 = dim H0(Ω imax−1) + 1 − ε1− 1 = dim H1(Ωimin) + 1 − ε1 ε1= ε2 imin= imax− 2 N = 3 ℓ(XR) = imin− 1 = 0 H3(LR) b1(XR) = 0 XR 0 imin= imax−1 d2 ℓ(XR) = imin− 2 imin= imax− 1 d2 ℓ(XR) = imin− 2 (PN R, XR) Hi(XR) → Hi(PRN) Hi(PRN) → Hi(PRN, XR) HN−i(PN R ) → HN−i(PRN\ XR) ∼= HN−i(L+R) x ∈ H1(PN R) xN−i p∗(xN−i) p : L+ R → PRN Hi(XR) → Hi(PRN) p∗(xN−i) = 0

p∗(xN−(imin−1)) = p∗(ximax) 6= 0

L+R|Ωimin → Ωimin. Himax(L+ R) = H 1(Ω imin) = H imax(L+ R|Ωimin) ξimax−1 S2 p∗(ximax) ξimax−1 p∗(x imax) = w 1(ξimax−1) d2 p∗(ximax) = w 1(ξimax−1) 6= 0 ℓ(XR) = imin− 2 PN R

(68)

q0, q1, q2 XR PN R ε d2 ε = 0 d2 i < i − 2 bi(XR) = 1, i < i − 2 i > i − 2; bi −2(XR) = b1(Ωi ) + 1 − ε; bi −1(XR) = b0(Ωi ) + b1(Ωi +1) − ε; bi(XR) = b0(Ωi+1) + b1(Ωi+2) − 1, i ≤ i ≤ i − 4; bi −3(XR) = b0(Ωi −2) + b1(Ωi −1) − ε; bi −2(XR) = b0(Ωi −1) − ε. i = i − 2 bi(XR) = 1, i < i − 2 i > i ; bi −2(XR) = b1(Ωi ) + 1 − ε; bi −1(XR) = b0(Ωi ) + b1(Ωi +1) + 1 − 2ε; bi (XR) = b0(Ωi −1) − ε. i = i − 1 ℓ(XR) = imin− 1 bi(XR) = 1, i < i − 2 i > i − 1; bi −2(XR) = b1(Ωi ) + 2; bi −1(XR) = b0(Ωi ) + 1. i = i − 1 ℓ(XR) = imin− 2 bi(XR) = 1, i < i − 2 i > i − 1; bi −2(XR) = b1(Ωi ) + 1 − ε; bi −1(XR) = b0(Ωi ) − ε. imin6= imax (PRN, XR) → HN−i−1(PN R \ XR) → Hi(XR) → Hi(PRN) → HN−i(PRN \ XR) → i N − i > i + 1 i < i − 2 HN−i−1(PN R \ XR) HN−i(PRN\ XR) bi(XR) = 1 i < i − 2 i ≥ i Hi(XR) → Hi(PRN) ℓ(XR) (PN R , XR) 0 → Hi+1(PRN) → HN−i−1(PRN \ XR) → Hi(XR) → 0

(69)

bi(XR) = dim HN−i−1(PRN\ XR) − 1

i ≥ imax− 1 dim HN−i−1(PRN\ XR) = 2 bi(XR) = 1

imin< imax− 2 bi(XR) =    b0(Ωimax−1) − ε i = imax− 2

b0(Ωimax−2) + b1(Ωimax−1) − ε i = imax− 3

b0(Ωi+1) + b1(Ωi+2) − 1 imin≤ i ≤ imax− 4

imin= imax− 2

bimax−2(XR) = b0(Ωimax−1) − ε

bimin−1(XR) bimin−2(XR) imin < imax− 1

ℓ(XR) = imin− 1 ε = 0 (PN R, XR) 0 → Himin(P N R ) → Hi max−1(PN R \ XR) → Himin−1(XR) → Himin−1(P N R ) bimin−1(XR) = bimax−1(P N R \ XR) − 1 + (1 − ε) = 

b0(Ωimin) + b1(Ωimin+1) − ε imin< imax− 2

b0(Ωimin) + b1(Ωimin+1) + 1 − 2ε imin= imax− 2

Himin−1(XR) → Himin−1(P N R) → Himax(PRN\ XR) → Himin−2(XR) → → Himin−2(P N R) → 0 bimin−2(XR) = bimax(P N R \ XR) + 1 − ε = b1(Ωimin) + 1 − ε

imin= imax−1 bimin−2(XR)

bimin−1(XR) ℓ(XR) = imin− 1 d2 bimin−2(XR) = b0(Ωimin) + 1 bimin−1(XR) = b1(Ωimin) + 2 ℓ(XR) = imin− 2 d2 bimin−2(XR) = b0(Ωimin) − ε bimin−1(XR) = b1(Ωimin) + 1 − ε

(70)

N > 3 N = 3 imin= imax− 2 = 1 XR 0 b0(XR) bimin−1(XR) CR ℓ i ≤ i − 2 X i≥0 bi(XR) = i −1 X i=i b0(Ωi) + b1(Ωi) ! + 4(i − ε) − N − 1 i −1 X i=i b0(Ωi) + b1(Ωi) =  2ℓ 2ℓ + 1 i = i − 1 = k N = 2k X i≥0 bi(XR) = 2ℓ + 2k − 2(1 + ε)ν ν = 0 ℓ(XR) = imin− 1 ν = 1 PN R N = 2k + 1 XR 2k − 2 XR PRN XR i = k  N − 3 2  ≤ ℓ(XR) < i

(71)

⌊x⌋ i ≤N+1 2  N = 2k + 1 k − 1 < i ≤ k + 1 i = k + 1 i = i XR PRN XR i = k XR i = k i = i − 2 X i≥0 bi(XR) = 2ℓ + 2k − 4ε − 2 ε d2 ℓ X i≥0 bi(XC) = hk−1,k−1(XC) + 2hk−2,k(XC) + 2k − 2 = 3k2+ 3k + 2 + k(k − 1) + 2k − 2 = 4k2+ 4k XR 2ℓ + 2k − 4ε − 2 = 4k2+ 4k ℓ = 2k2+ k + 1 + 2ε = 2k(2k + 1) 2 + 1 + 2ε = g + 1 + 2ε ℓ ≤ g + 1 ℓ = g + 1 ε = 0 PN R N = 2k XR 2k − 3 XR PRN XR i = k − 1 i = k

(72)

 N − 3 2  ≤ ℓ(XR) < i ⌊x⌋ i ≤N+1 2  N = 2k k − 2 < i ≤ k i = k − 1 i = k XR PRN XR i = k − 1 d2 i = k d2 (M −1) i = k d2 ℓ(XR) = imin− 2 (M −2) i = k ℓ(XR) = imin− 1 XR i = k − 1 i = k i = k − 1 i < i − 2 X i≥0 bi(XR) = 2ℓ + 2k − 4ε − 4 ε d2 ℓ X i≥0 bi(XC) = 2hk−2,k−1(XC) + 2k − 2 = 4k2− 2k − 2 + 2k − 2 = 4k2− 4 XR 2ℓ + 2k − 4ε − 4 = 4k2− 4 ℓ = 2k2− k + 2ε = 2k(2k − 1) 2 + 2ε = g + 2ε

(73)

ℓ + 1 ≤ g + 1 ℓ = g ε = 0 i = k i = i − 1 X i≥0 bi(XR) = 2ℓ + 2k − 2(1 + ε)ν ε d2 ℓ ν = 0 ℓ(XR) = imin− 1 X i≥0 bi(XC) = 4k2− 4 XR 2ℓ + 2k − 2(1 + ε)ν = 4k2− 4 ℓ = 2k2− k − 2 + (1 + ε)ν = 2k(2k − 1) 2 − 2 + (1 + ε)ν = g − 2 + (1 + ε)ν (ε, ν) (1, 1) (0, 1) (0, 0) ε = 1 ν = 1 ℓ = g ε = 0 ν = 1 ℓ = g − 1 ν = 0 ℓ = g − 2 C g θ CC θ θ⊗2= K C KC Σ(C) Σ C h0(C, θ)

(74)

dim H0(C, θ) > 0 (C, θ) C d θ CC d d (C,12(d − 3)H) H d ≡ ±1 8 d ≡ ±3 8 C g H0(C, K C) 1 CC ι : H1(C, Z) −→ H0(C, KC)∨ γ 7−→ ι(γ)(ω) =Rγω Λ 2g H0(C, K C)∨ Jac(C) = H0(C, KC)∨/Λ g CC P ic0(C) 2 2 Jac2(C) Jac2(C) ∼= H1(C, Z2) H1(C, Z) × H1(C, Z) −→ H2(C, Z) ∼= Z H1(C, Z) ∼= Z2g α1, . . . , αg, β1, . . . , βg ω1, . . . , ωg 1 CC Z αi ωj= δi,j τi,j= Z βi ωj τ = (τi,j) τ = Re(τ ) + ıIm(τ ) tτ = τ, Im(τ ) > 0

(75)

Cg C C (ε, δ) ∈ Zg2 θ  ε δ  (z, τ ) = X r∈Zg exp  ıπ  t (r +1 2ε)τ (r + 1 2ε) + 2 t (z +1 2δ)(r + 1 2ε)  θ  ε δ  (−z, τ ) = exp(ıπtεδ) θ  ε δ  (z, τ ) CC −→ C P 7−→ θ  ε δ  (u(P ), τ ) u(P ) = RPP 0ω1, . . . , RP P0ωg  ∈ Cg P 0 θ  ε δ  (0, τ ) = 0 d ≡ ±1 8 τ (C, θ) C d θ CC (C, θ) θ d (C, θ) θ CC L 2 θ ⊗ L qθ: Jac2(C) −→ Z2 L 7−→ h0(C, θ ⊗ L) − h0(C, θ)

(76)

θ 7→ qθ C Jac2(C) Jac2(C) ∼= H1(C, Z2) qθ H1(C, Z2) u1, . . . , ug, v1, . . . , vg H1(C, Z2) qθ(ui) = αi, qθ(vj) = βj (α, β) ∈ Zg2 Arf (qθ) =tαβ 2 Z2 q q′ H1(C, Z2) h., .i v ∈ H1(C, Z2) u ∈ H1(C, Z2) q′(u) − q(u) = hv, ui q′ = q + v H1(C, Z2) q′ = q + v q′ Arf (q′) = Arf (q) + q(v) q0 q = q0+ v q0(v) = 0 C g 22g C C 2g−1(2g+1) 2g−1(2g−1) C g θ CC s θ ˆ s = s ⊗ s θ ⊗ θ = KC 1 CC K∗ C T C τ T C τ (ˆs) 1 CC ˆ s τ Ω ⊂ CC τ γ c ∈ H1(C; Z2) γ : S1→ CC\ Ω p ∈ S1 T γ(p)C \ {0} γ(p)

(77)

0 S1= {(x, y) ∈ R2 x2+y2= 1} (1, 0) ∈ S1 γ′(p) τ (γ(p)) S1 f : S1→ S1 n = deg(f ) (τ, γ) = n 2 H1(C; Z2) → Z2 c 7→ τ γ γ c ∈ H1(C; Z2) (τ, γ) γ τ s θ H1(C; Z2) → Z2 c 7→ θ c C g θ CC c ∈ H1(C; Z2) qθ(c) = θ c + 1 2 (C, ) : CC → CC c : Σ → Σ ΣR θ τ : θ → θ θ τ //  θ  CC // CC θR→ CR C0, . . . , Cr CR ε = (ε0, . . . , εr) ∈ Zr+12 εi= 0 θR Ci εi ε0+ ε1+ · · · + εr≡ g + 1 ( 2) ε0 (ε1, . . . , εr) Ci CR pi∈ Ci γi p0 pi γi⊂ CC C0 Ci Gi = γi∪ (γi) δ = (δ1, . . . , δr) ∈ Zr2 δi = qθ([Gi]) [Gi] Gi H1(C, Z2) θ CR

(78)

ω θ Ω = ω ⊗ ω C Ω CR θ qθ qθ([Ci]) ≡ εi+ 1 ( 2) [Ci] Ci H1(C, Z2) Gi qθ([Gi]) = 1 Gi C0, Ci qθ(c) = (θ, c) + 1 c ∈ H1(C, Z2) (θ, [Ci]) = εi Gi C0, Ci (θ, [Gi]) = 0 C δi = 0 Ci θ conj∗: H1(C, Z2) → H1(C, Z2) C ([Ci], [Gi]) H1(C, Z2)         Ik 0 0 0 0 0 0 0 Is 0 0 0 0 Is 0 0 0 0 0 0 0 Ik 0 0 0 0 0 0 0 Is 0 0 0 0 Is 0         C             Ik 0 0 0 0 0 0 0 0 0 Is 0 0 0 0 0 0 Is 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 Ik 0 0 0 0 0 0 0 0 0 Is 0 0 0 0 0 0 Is 0 0 0 0 0 0 0 0 0 1             ,                 Ik 0 0 0 0 0 0 0 0 0 0 0 Is 0 0 0 0 0 0 0 0 Is 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 Ik 0 0 0 0 0 0 0 0 0 0 0 Is 0 0 0 0 0 0 0 0 Is 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1                

(79)

([Ci], [Gi]) C1 C2 C3 G1 G2 G3 C0 H1(C, Z2) qθ H1(C, Z2) conj∗ c ∈ H1(C, Z2) qθ(c) = qθ(conj∗(c)) CR= ∅ C r ≥ 1 (ε, δ) ∈ (Zr2−1)2 θ qθ([Ci]) ≡ εi+ 1 ( 2) qθ([Gi]) = δi C C qθ (qθ) = r X i=1 δi(1 + εi) C r g k = (g + 1 − r)/2 H1(C, Z2) ([C1], . . . , [Cr], X1, . . . , Xk, X1c, . . . , Xkc, [G1], . . . , [Gr], Y1, . . . , Yk, Y1c, . . . , Ykc) Xc i = conj∗(Xi) Yic = conj∗(Yi) C

(80)

Z2 [C1], . . . , [Cr] [G1], . . . , [Gr]) qθ qθ([Ci]) ≡ εi+ 1 ( 2) qθ([Gi]) = δi θ Xi Xic Yi Yic qθ(Xi) = qθ(Xic) qθ(Yi) = qθ(Yic) qθ(Xi) qθ(Yi) Arf (qθ) = r−1 X i=1 qθ([Ci])qθ([Gi]) + k X i=1 [qθ(Xi)qθ(Yi) + qθ(Xic)qθ(Yic)] = r−1 X i=1 (1 + εi)δi+ 2 k X i=1 qθ(Xi)qθ(Yi) = r−1 X i=1 (1 + εi)δi. g r g r k = (g − r)/2 H1(C, Z2) ([Ci], Xj, Xjc, X, [Gi], Yj, Yjc, Y )1≤i≤r−1 1≤j≤k Xc

i = conj∗(Xi) Yic = conj∗(Yi) conj∗(X) = X conj∗(Y ) = X + Y

([C1], . . . , [Cr], [G1], . . . , [Gr]) qθ qθ(Xi) = qθ(Xic) qθ(Yi) = qθ(Yic) qθ(conj∗(Y )) = qθ(Y + X) = qθ(Y ) qθ(conj∗(X)) = qθ(X) qθ(Y + X) = qθ(Y ) qθ(X) = hX, Y i = 1

(81)

qθ(Xi) qθ(Yi) qθ(Y ) Arf (qθ) = r−1 X i=1 qθ([Ci])qθ([Gi]) + k X i=1 [qθ(Xi)qθ(Yi) + qθ(Xic)qθ(Yic)] + qθ(X)qθ(Y ) = r−1 X i=1 (1 + εi)δi+ 2 k X i=1 qθ(Xi)qθ(Yi) + qθ(Y ) = r−1 X i=1 (1 + εi)δi+ qθ(Y ). qθ(Y ) (ε, δ) ∈ (Z2r−1)2 q0, q1, q2 C d CC K CC ω ∈ CC ker(ωq) 1 L = K(d − 1) L2 = O C(d − 1) H0(C, L(−1)) = 0 θ = L(−1) C A(x) m x ∈ P2 C

(m − 1) A(x) F (x)ℓ det A(x)

F (x)ℓ+1 p F (x)p det(A(x)) adj(A(x)) F (x)ℓ det(adj(A(x))) F (x)ℓm det(adj(A(x))) = [det(A(x))]m−1 F (x) [det(A(x))]m−1 p(m − 1) ℓm p(m − 1) ≥ ℓm ⇒ p ≥ m m − 1ℓ p p ≥ ℓ + 1 det(A(x)) F (x)ℓ+1

(82)

θ dim H0(C, θ) = 0 C d (q0, q1, q2) C θ φ11, . . . , φ1d H0(C, θ(1)) = H0(C, L) v 11 = φ211, . . . , v1d = φ11φ1d ∈ H0(C, L2) L2 = O C(d − 1) H0(P2 C, OP2 C(d − 1)) → H 0(C, O C(d − 1)) v1i d − 1 U (x0, x1, x2) = 0 C {v1i= 0} i ≥ 2 C {v11 = 0} vij w11ij d − 1 d − 2 v1iv1j= v11vij− U w11ij vij = vji V (x) = (vij) d x ∈ CR d − 1 dim H0(C, θ) = 0 r V (x) U (x)r−1 V (x) x ∈ CR

det V (x) Ud−1 deg(det V (x)) = d(d − 1) = deg Ud−1

c ∈ R det V (x) = cU (x)d−1 d − 1 U (x)d−2 M (x) = 1 U (x)d−2adjV (x) M (x) det M (x) = cd−1U (x) adjM (x) = cd−2V (x) d2

(83)

d2 q0, q1, q2 PRN CR P2 R\CR r N D1, . . . , Dr i Di ≺ Ci Di S2 → PR2 D′ i, D′′i Ci Γ′ i, Γ′′i Γ′i ⊂ ∂D′i Γ′′ i ⊂ ∂D′′i Ei′ ξm−1 D′i m D′ i Ei′′ ξN−m D′′ i Mi j ∈ {1, 2, . . . , r} j 6= i Cj ⊂ ∂Di j ∈ Mi Mi,j k ∈ {1, . . . , r} Cj ≺ Ck i ∈ {1, . . . , r} j ∈ Mi ω1(E′i)[Γ′j] = ε(Cj) + X k∈Mi,j ε(Ck) ω1(Ei′′)[Γ′′j] = ε(Cj) + X k∈Mi,j ε(Ck) ε(Ck) K ε(Ck) = 0 K Ck i ∈ {1, . . . , r} j ∈ Mi p(Cj) = p Cj ≺ Ck1≺ Ck2 ≺ · · · ≺ Ckp p p(Cj) = 0 Γ′ j D′ i Γ′ i

(84)

Mi,j = ∅ Ej′ D′ j Ei′|Γ′ j = E ′ j Γ′ j ⊕ K|Γ′ j, E ′ j Γ′ j = Ei′|Γ′ j⊕ K|Γ′j E′ j ω1(Ei′)[Γ′j] = ε(Cj) p(Cj) = 0 j ∈ Mi p(Cj) ≤ ρ j ∈ Mi p(Cj) = ρ + 1 Mj= {k1, . . . , ka} Γ′ j Γ′ k1 Γ′ ka Γ′ i D′ j p(Ck1) ≤ ρ . . . p(Cka) ≤ ρ ω1(Ej′)[Γ′k1] = ε(Ck1) + X k∈Mi,k1 ε(Ck) ω1(Ej′)[Γ′ka] = ε(Cka) + X k∈Mi,ka ε(Ck) E′ j D′j ω1(Ej′)[Γ′j] = a X m=1 ω1(Ej′)[Γ′km] = X k∈Mi,j ε(Ck) Ei′|Γ′ j = E ′ j Γ′ j ⊕ K|Γ′ j, E ′ j Γ′ j = Ei′|Γ′ j⊕ K|Γ′j ω1(Ei′)[Γ′j] = ω1(E′j)[Γ′j] + ε(Ck) q0, q1, q2 CR d2 i ∈ {1, . . . , r} D′ i Di′′ i j ∈ Mi ε(Cj) + X k∈Mi,j ε(Ck) = 0

(85)

d2 ξimax−1 d2: H0(Ωimax−1) δ(γimax)∪ // H2(Ω imax, π−1(Λimax)) // H 2(Ω imax) δ : H1−1 imax)) → H 2(Ω i , π−1(Λimax) (Ωi , π−1(Λimax)) d2= 0 ⇔ δ(γi ) = 0 ⇔ γi = 0 H1−1 imax)) = L H1(D′ i)  ⊕ LH1(D′′ i)  D′ i D′′i i γi = 0 ξimax−1 D′i Di′′ H1(D′ i) = L j∈MiH 1′ i) ξimax−1 D′i j ∈ Mi ω1(Ei′)[Γ′j] = 0 d2 K θ K K θ K θ ε = (ε0, . . . , εr) Ci CR ε(Ci) = εi Ci ε(Ci) = εi+ 1 Ci C0 qθ εi K Ci CR CR S2 CR

(86)

= i i − 1 i − 1 = i i + 1 i − 1 q0, q1, q2 CR q0, q1, q2 XR PN R N = 2k + 1 k ≥ 2 imin > 1 χ(XR) = (1 + (−1)k) + (−1)k−1(2p − 2n) 2 < imin< imax− 2 χ(XR) = N X j=0 (−1)j+1χ(Ωj). j < imin Ωj = ∅ j ≥ imax Ωj = S2

(87)

imin+ imax= N + 1 χ(XR) = (1 + (−1)imin−1) + imaxX−1 j=imin (−1)j+1χ(Ω j), χ(XR) = (1 + (−1)imin−1) + iXmax i=imin (−1)i(b 0(Ωi−1) + b1(Ωi)). i − k iXmax i=imin (−1)i(b 0(Ωi−1) + b1(Ωi)) = (−1)k−1(2p − 2n − 1 − (−1)k−imin). (−1) p − n VR PRN s N − s m1, . . . , ms VC σ(VC) σN s(m1, . . . , ms) σsN(m1, . . . , ms) =  1, s = 0; m1.m2. . . ms, 0 < s = N ; σsN(m1, . . . , ms) = msσsN−1−1(m1, . . . , ms−1) − ms X µ=1 σNs(m1, . . . , ms−1, µ, µ − 1), 0 < s < N . σ(VC) = σNs (m1, . . . , ms) σ32k+1(2, 2, 2) = (1 + (−1)k) + (−1)k−12(k + 1)2. VR 2k VR χ(VR) ≡ σ(VC) (16). VR χ(VR) ≡ σ(VC) ± 2 (16).

(88)

VR m1. . . ms ≡ 0 (8) Hk(VR, Z2) → Hk(PRN, Z2) χ(VR) ≡ ±σ(VC) (16). 2k p − n ≡ k2 (8). 2k p − n ≡ k2± 1 (8). C 2k imin= imax− 2 XR d2 d2 Hk(XR, Z2) → Hk(PRN, Z2) ℓ(XR) χ(XR) ≡ ±σ(XC) (16). p − n ≡ k2 (8). C imin= imax− 2 d2 XR χ(XR) ≡ σ(XC) ± 2 (16), p − n ≡ k2± 1 (8). VR 2k |χ(VR) − 1| ≤ hk,k(VC) − 1.

(89)

2k −3 2k(k − 1) ≤ p − n ≤ 3 2k(k − 1) + 1. C 2k XR 2(k − 2) |χ(XR) − 1| = (1 + (−1)k) + (−1)k−1(2p − 2n) − 1 = |1 − (2p − 2n)| ≤ hk−2,k−2(XC) − 1 ≤ 3k2− 3k + 2. PN R N = 2k + 1 XR 2k − 2 (C, θ) 2k + 2 2k Ci 2m + 1 εi+ X j∈ fMi εj = 0 f Mi= {j ∈ {1, . . . , g} Cj≺ Ci Cj 2m + 2}

(90)

(C, θ) imin= k S2\ eC 0 k + 1 0 k k + 2 1 k + 1 1 0 2k + 1 2k d2 i ∈ {1, . . . , g} Di imax j ∈ Mi εj+ X k∈Mi,j εk= 0 εi

(91)

C N + 1 N = 2k + 1 XR PN R C θ C C (C0, . . . , Cg) C δ = (δ1, . . . , δg) ε = (ε1, . . . , εg) Zg 2 δi = 0 Ci ε = 0 d2 a = δi = 1 2 (qθ) = g X i=1 δi(1 + εi) (qθ) = a (2) a (δ, ε) a Cj 2k δj= 0 2k δj= 1 Cj Cj (qθ) = a + 1 (2) a Cj 1 δj= 1 Ck 2 εj εk εj = εk = 1

(92)

1 δj= 1 εj= 0 εk= 0 δj= 1 εj= 1 εk= 1 εi d2 a Ck 2 3 1 δj= 0 δk= 0 δj= 0 δk= 1 a a a εk εj Cj Ck δj = 0 1 a m m a PN R N = 2k XR 2k − 3 imin = k − 1 εi imin = k

(93)

d2 imin= k i εi = 0 2k + 1 θ imin = k εi = 0 i C N + 1 N = 2k XR PN R C C i = k i εi = 0 εi = 1 i

(94)
(95)

P3 R PR4 Q1, Q2, Q3 PRN e C det(λ1Q1+ λ2Q2+ λ3Q3) = 0 Qi Qi

(96)

(Q1(t), Q2(t), Q3(t)) (Q1, Q2, Q3) 0 C (1 : 0 : 0) CN+1 Q1+ λQ2+ µQ3=  λb00+ µc00 tBλ,µ Bλ,µ Cλ,µ  Bλ,µ Q2 Q3 Cλ,µ λ µ Mλ,µ (1 : 0 : 0) b00 = c00 = 0 Q1+ λQ2+ µQ3=   λbλb0001+ µc+ µc0001 λbλb0111+ µc+ µc0111 tB λ,µ Bλ,µ Cλ,µ   Bλ,µ Q2 Q3 Cλ,µ λ = µ = 0 Mλ,µ det(Mλ,µ) = det Aλ,µ−tBλ,µCλ,µ−1Bλ,µ  × det(Cλ,µ) Aλ,µ 2 (λbij + µcij)0≤i,j≤1 λ = µ =

(97)

0 2 det(Mλ,µ) = det(C0,0) × h λ2(b00b11− b201) + µ2(c00c11− c201) + λµ(b00c11+ + c00b11− 2b01c01) + i ∆ = (b00c11+ c00b11− 2b01c01)2− 4(b00b11− b201)(c00c11− c201) ∆ 6= 0 x y λ µ xe1+ ye2 e1, e2 t (xe1+ ye2)Mλ,µ(xe1+ ye2) = 0 λ (x2b00+ y2b11+ 2xyb01) | {z } P1(x,y) +µ (x2c00+ y2c11+ 2xyc01) | {z } P2(x,y) = 0 ∆ P1 P2 ∆ = 0 (Q1(t), Q2(t), Q3(t)) t

(98)

CC π : eCC → CC CC ωC CC U CC 1 τ π−1(U ) ⊂ eCC Pi,+ Pi,− Pi CC Pi,+τ + Pi,−τ = 0. CC CC F OC HomOC(F, ωC) Θ(CC) CC CC θ CC dim H0(C C, θ) ≡ 0 (2) θ dim H0(C C, θ) ≡ 1 (2) θ dim H0(C C, θ) = 0 q = (q0, q1, q2) PN R CC RN+1 M ∈ MN+1(OP2 R(1)) OCN+1(−1)−→ OM N+1 C EC 0 → EC→ ONC+1(d − 1)−→ OM NC+1(d) EC dim H0(E C(−1)) = 0 EC

(99)

EC ∼= Hom(EC, ωC(2)) EC(−1) CC θ dim H0(C C, θ) = 0 M ∈ MN+1(OP2 C(1)) CC θ M CC tAM A A ∈ ON+1(C) M θℓ = θ⊗ ω C dim H0(C C, θ(1)) = dim H0(CC, θℓ(1)) = N + 1. H0(C C, θ(1)) = he1, . . . , eN+1i H0(C C, θℓ(1)) = heℓ1, . . . , eℓN+1i θ(1) θℓ(1) (H0(θ(1)), H0(θℓ(1))) −→ H0(ωC(2)) ≈ H0(OC(N )). V (x) Vi,j (ei, eℓj) V (x) L L ⋔ C = {pt1, . . . , ptN+1} div(ei) ≥ X j6=i ptj6≥ pti, div(eℓi) ≥ X j6=i ptj 6≥ pti. k i 6= j Vi,j|ptk = 0 deg(Vi,j) ≥ N + 1

Vi,j PC2 N i 6= j Vi,j|L = 0 i Vi,i|pti 6= 0 Vi,i|L 6= 0 V (x) L M V (x) 2 CC adj(V (x)) fN−1 f (x) C M = adj(V (x))/fN−1 θ θ θℓ

(100)

M M CC (CC, conj) CC F CC Fconj ∼= F Fconj CC U ⊂ CC F conj(U ) ⊂ CC (CC, conj) θ M ∈ MN+1(OP2 R(1)) CC = {det M = 0} θ M f (x, y) H = {(x, y) ∈ C2 f (x, y) = 0} ⊂ C2 (0, 0) g(x, y; t) t ∈ Cµ µ g(x, y; 0) = f (x, y) g(0, 0; t) = 0 g ti t = (t1, . . . , tµ) C{x, y}/(∂ ∂xf, ∂ ∂yf )

(101)

Bη τ > 0 ∂Bη Ht= {(x, y) ∈ C2 g(x, y; t) = 0}, ||t|| < τ. Dτ Cµ 0 τ X = {(x, y; t) ∈ Bη× Dτ g(x, y; t) = 0} p : X → Dτ (x, y; t) 7→ t H = H0 ∆ = {t ∈ Dτ p−1(t) } p F = p−1(t 0) t0∈ Dτ\ ∆ H π1(Dτ\ ∆) H1(F ; Z2) = Zµ2 Γ Γ = Im π1(Dτ \ ∆) → Aut(H1(F ; Z2))  H Ti: H1(F ; Z2) → H1(F ; Z2) x 7→ x + hx, ξiiξi ξi H1(F ; Z2) h., .i (Q1, Q2, Q3) PRN XR C = {(x : y : z) ∈ PC2 det(xQ1+ yQ2+ zQ3) = 0} (0, 0, 1) C Ct= {(x : y : z) ∈ PC2 det(xQ1(t) + yQ2(t) + zQ3(t)) = 0} C0 = C θt (Q1(t), Q2(t), Q3(t)) t G(x, y, z; t) = det(xQ1(t) + yQ2(t) + zQ3(t)) F (x, y, z) = det(xQ1+ yQ2+ zQ3) (iii)

(102)

(Q1(t), Q2(t), Q3(t)) t = 0 |t| < η (ut, vt) Ct (0 : 0 : 1) ∈ P2 C f (ut, vt) = t2 f (u, v) = F (1, u, v) t (0 : 0 : 1) ∈ P2 C Ct det(Q1(t)+ λQ2(t) + µQ3(t)) = 0 t ∈] − η, η] η (Q1(t) + λQ2(t) + µQ3(t))   aa0001(t) + λb(t) + λb0001(t) + µc(t) + µc0001(t)(t) aa1101(t) + λb(t) + λb1101(t) + µc(t) + µc1101(t)(t) tB λ,µ(t) Bλ,µ(t) Cλ,µ(t) + A   . Mλ,µ(t) Mλ,µ(0) = Mλ,µ t, λ µ det(Mλ,µ(t)) =t2(a00a11− a201) + λ2(b00b11− b201) + µ2(c00c11− c201) +λµ(b00c11+ c00b11− 2b01c01) + tλ(a00b11+ b00a11− 2a01b01) +tµ(a00c11+ c00a11− 2a01c01) + t ∆ ∆ = (b00c11− b11c00)2+ 4(b00c01− b01c00)(b11c01− b01c11) t Ct f (ut, vt) = t2 f t t G(x, y, z; t) = G(x, y, z; −t) |t| < η {f ((1 − λ)ut+ λu0, (1 − λ)vt+ λv0) = t2} ∆ t {f (ut, vt) = t2} {f (u0, v0) = t2}

(103)

{f (u0, v0) = t} C1 C2 C0 C → T ⊂ C Ct0 = C0 Ct1= C1 Ct2 = C2 γ T t1 t2 t1 t0 t2 γ ¯ γ Ct1 = C1 Ct2 = C2 C1 C2 γ C0 γ C0 Γ H1(C, Z2) CC C → T CC E(T ) = {(Cτ, F) τ ∈ T F ∈ Θ(Cτ)} (Cτ, F) ∈ E(T ) 7→ τ ∈ T Cτ 2 τ = 0

(104)

τ = 0 τ θ1 θ2 θs θ′ 1 θ′ s θ′2 p : C → [t1, t2] CC Ct0 t0∈]t1, t2[ θ1 C1 θ2 p θ1 c ∈ H1(C, Z2) qθ2(c) = qθ1(µ(c)) µ t0 C C0, . . . , Cℓ CR Gi C0 Ci θ θ′ qθ([Ci]) = 1 + εi qθ([Gi]) = δi qθ′([Ci]) = 1 + ε′i qθ′([Gi]) = δi′ (ε′ i, δ′i) (εi, δi)

(105)

[Ci] ∈ H1(C, Z2)  δ′ k= δk+ δi,kεi ε′ k = εk [γi,j] ∈ H1(C, Z2)  δ′ k = δk ε′ k= εk+ (δi,k+ δj,k)(1 + δi+ δj) δi,k c ∈ H1(C, Z2) qθ′(c) = qθ(µ(c)) µ 1 [Ci] ∈ H1(C, Z2) · Ci Ci Ci H1(C, Z2) (εi, δi) δ′k= qθ′([Gk]) = qθ(µ([Gk])) = qθ([Gk] − h[Ci], [Gk]i[Ci]) = qθ([Gk]) + h[Ci], [Gk]i2qθ([Ci]) + h[Ci], [Gk]i2 = δk+ δi,kεi δi,k [Ck] [Ck] [Ci] k  δ′ k= δk+ δi,kεi ε′ k= εk 2 [γi,j] ∈ H1(C, Z2)

(106)

Ci Cj Ci Cj γij H1(C, Z2) γij = [Gi]−[Gj] (εi, δi) 1 + ε′k = qθ′([Ck]) = qθ(µ([Ck])) = qθ([Ck] − h[Ck], γijiγij) = qθ([Ck]) + h[Ck], γiji2qθ(γij) + h[Ck], γiji2 = 1 + εk+ (δi,k+ δj,k)(1 + qθ(γij)) = 1 + εk+ (δi,k+ δj,k)(1 + δi+ δj) δi,k δj,k [Gk] [Gk] γij k  δ′ k = δk ε′ k = εk+ (δi,k+ δj,k)(1 + δi+ δj) (ei, fi) H1(C, Z2) ei Ci fi Gi i ≤ ℓ i > ℓ 3.3.4 q0 q0 g X i=1 αiei+ βifi ! = g X i=1 αiβi q H1(C, Z2) q = q0+ v v ∈ H1(C, Z2) q = q0+ v v ∈ H1(C, Z2)

(107)

q = q0+ v H1(C, Z2) u ∈ H1(C, Z2) q′ u q q′ =  q0+ v + u hu, vi = q0(u) q0+ v h., .i q′ µ u x ∈ H1(C, Z2) q(µ(x)) = q′(x) µ(x) = x + hx, uiu q(µ(x)) = q(x + hx, uiu) = q(x) + hx, ui + hx, uiq(u)

= q0(x) + hv, xi + hx, ui + hx, ui(q0(u) + hv, ui)

= q0(x) + hv, xi + hx, ui(1 + q0(u) + hv, ui)

P3 R PR4

P

3 R P3 R 4 h4i 4 Ci Gi γij P3 R θ C θ

(108)

C0 C3 C2 C1 G1 G3 γ13 γ23 γ12 G2 γ13 G2 imin = 1 d2 ε1= ε2= ε3= 1 qθ([Ci]) = 1 + εi δi Ci εi= 1 δi= 0 i 1 ε3= 0 ε3 δ1+ δ3 δ1+ δ3 = 0 ε3 γ13 δ1+ δ3 = 1 δ1 = 0 δ3= 1 γ1 ε1= 1 C1 δ1= 1 δ1+δ3= 0 δ1 = 1 δ3 = 0 ε1 = 0 δ1 C1 0 = (qθ) = (1 + ε1)δ1+ (1 + ε2)δ2+ (1 + ε3)δ3 = 1 + (1 + ε2)δ2 ε2= 0 δ2= 1 δ1+ δ2= 0 γ12 ε1= ε2= 1 δ1 δ1+ δ3= 0 2 ε3= 1 ε2= 0 ε2

(109)

δ1+δ2 δ1+δ2= 0 ε2 γ12 δ1+ δ2= 1 δ1= 0 δ2= 1 γ1 ε1= 1 C1 δ1= 1 δ1+δ2= 0 δ1= 1 δ2= 0 0 = arf (qθ) = (1 + ε1)δ1+ (1 + ε2)δ2+ (1 + ε3)δ3 = 1 + ε1 ε1= 1 δ1 C1 δ1+ δ2= 0 3 ε2 = ε3 = 1 ε1 = 0 0 = arf (qθ) = (1 + ε1)δ1+ (1 + ε2)δ2+ (1 + ε3)δ3 = δ1 ε1 γ1 P3 R P3 R 8 P3 R 7 8 7 7 P3 R 7 7 8 7 P3 R 7 8 7 pi

(110)

pi 6 pi 3 7 pi X v X pi pi v pi X 7 X 4 7 6 7 7 F1 F2 7 f : P3 R× [0, 1] → PR3 f (F1, 0) = F1 f (F1, 1) = F2 t ∈ [0, 1] f (F1, t) 7 7 S = {q1, . . . , q7} 7 S (i, j, k) qi+ qj+ qk H1(C, Z2) S = {q1, . . . , q7} qS = q1+ q2+ · · · + q7

(111)

qθ 8 qS = qθ 4 7 P3 R 28 pi PR3 B 6 P3 R (pi, pj) pipj B P2 R p8 p2 p3 p4 p5 p6 p7 p1 • • • • • • • • • p6 • p7 • p5 • p8 • p1 • p2 • p3 • p4 8 280 p8

(112)

P3 R P3 R p8 p8 (q1, . . . , q7) pi qi q2 q5 q7 q4 q3 q6 q1 • • • • • • • • p8 p2 p5 p7 p4 p3 p6 p1 • • • • • • • • P3 R p8 PR3 qi, qj, qk i < j < k pi= qj∩ qk pj= qi∩ qk pk = qi∩ qj q2 q5 q7 q4 q3 q6 q1 • • • • • • • • • p5 • p7 • p2 • p8 • p4 • p3 • p6 • p1

(113)

7 P3 R (ei, fi) H1(C, Z2) ei Ci fi Gi q0 q0 3 X i=1 αiei+ βifi ! = 3 X i=1 αiβi qθ = q0+ e1+ e3+ f1+ f2+ f3 q1= q0+ e1+ e3+ f2+ f3 q2= q0+ e3+ f2+ f3 q3= q0+ e3+ f1+ f3 q4= q0+ e2+ e3+ f1+ f3 q5= q0+ e2+ e3+ f1+ f2 q6= q0+ e2+ f1+ f2 q7= q0+ e2+ f1+ f2+ f3 C0 C3 C2 C1 q1 q2 q3 q4 q5 q6 q7 qθ

(114)

S7 qi q qθ G1 f1 C0 C3 C2 C1 q1 1 q1 2 q1 3 q1 4 q15 q1 6 q1 7 q1= q0+ e1+ e3+ f2+ f3 q2= q0+ e3+ f2+ f3 q3= q0+ e3+ f1+ f3 q4= q0+ e2+ e3+ f1+ f3 q5= q0+ e2+ e3+ f1+ f2 q6= q0+ e2+ f1+ f2 q7= q0+ e2+ f1+ f2+ f3 ⇒ q1 1 = q0+ e1+ e3+ f2+ f3 q1 2 = q0+ e3+ f1+ f2+ f3 q1 3 = q0+ e3+ f3 q1 4 = q0+ e2+ e3+ f3 q1 5 = q0+ e2+ e3+ f2 q61= q0+ e2+ f2 q1 7 = q0+ e2+ f2+ f3 q1 1+ · · · + q17= qθ

(115)

qi C1 e1 C0 C3 C2 C1 q2 2 q2 3 q2 4 q2 5 q2 6 q2 7 q2 1 q1 1= q0+ e1+ e3+ f2+ f3 q1 2= q0+ e3+ f1+ f2+ f3 q1 3= q0+ e3+ f3 q1 4= q0+ e2+ e3+ f3 q1 5= q0+ e2+ e3+ f2 q1 6= q0+ e2+ f2 q1 7= q0+ e2+ f2+ f3 ⇒ q2 1 = q0+ e3+ f2+ f3 q2 2 = q0+ e3+ f1+ f2+ f3 q2 3 = q0+ e1+ e3+ f3 q2 4 = q0+ e1+ e2+ e3+ f3 q2 5 = q0+ e1+ e2+ e3+ f2 q2 6 = q0+ e1+ e2+ f2 q2 7 = q0+ e1+ e2+ f2+ f3 q2 1 + · · · + q72 = qθ γ12 f1+ f2 C0 C3 C2 C1 q3 1 q3 2 q3 3 q3 4 q3 5 q3 6 q73

(116)

q2 1= q0+ e3+ f2+ f3 q2 2= q0+ e3+ f1+ f2+ f3 q2 3= q0+ e1+ e3+ f3 q2 4= q0+ e1+ e2+ e3+ f3 q2 5= q0+ e1+ e2+ e3+ f2 q2 6= q0+ e1+ e2+ f2 q2 7= q0+ e1+ e2+ f2+ f3 ⇒ q3 1= q0+ e3+ f1+ f3 q3 2= q0+ e3+ f3 q3 3= q0+ e1+ e3+ f3 q3 4= q0+ e1+ e2+ e3+ f1+ f2+ f3 q3 5= q0+ e1+ e2+ e3+ f1 q3 6= q0+ e1+ e2+ f1 q3 7= q0+ e1+ e2+ f1+ f3 q3 1 + · · · + q73 = qθ e2 C2 q41= q0+ e2+ e3+ f1+ f3; q42= q0+ e2+ e3+ f3; q43= q0+ e1+ e2+ e3+ f3; q44; = q0+ e1+ e2+ e3+ f1+ f2+ f3; q4 5= q0+ e1+ e3+ f1; q46= q0+ e1+ f1; q47= q0+ e1+ f1+ f3. γ23 f2+ f3∈ H1(C, Z2) q15= q0+ e2+ e3+ f1+ f2; q25= q0+ e2+ e3+ f2; q5 3 = q0+ e1+ e2+ e3+ f2; q45= q0+ e1+ e2+ e3+ f1; q55= q0+ e1+ e3+ f1; q65= q0+ e1+ f1+ f2+ f3; q75= q0+ e1+ f1+ f2. C3 e3∈ H1(C, Z2) q6 1 = q0+ e2+ f1+ f2; q26= q0+ e2+ f2; q36= q0+ e1+ e2+ f2; q46= q0+ e1+ e2+ f1; q56= q0+ e1+ f1; q66= q0+ e1+ f1+ f2+ f3; q76= q0+ e1+ e3+ f1+ f2. G3 f3 q17= q0+ e2+ f1+ f2+ f3; q27= q0+ e2+ f2+ f3; q37= q0+ e1+ e2+ f2+ f3; q47= q0+ e1+ e2+ f1+ f3; q57= q0+ e1+ f1+ f3; q67= q0+ e1+ f1+ f2; q77= q0+ e1+ e3+ f1+ f2.

(117)

(q1, . . . , q7) S7 (q1, . . . , q7) S7 S7 (i, i + 1) qi qi+1 q4 q5 γ23 C0 C3 C2 C1 q1 q2 q3 q4 q5 q6 q7 γ23 q1 q2 C1 ei q1= q0+ e1+ e3+ f2+ f3 q2= q0+ e3+ f2+ f3 q3= q0+ e3+ f1+ f3 q4= q0+ e2+ e3+ f1+ f3 q5= q0+ e2+ e3+ f1+ f2 q6= q0+ e2+ f1+ f2 q7= q0+ e2+ f1+ f2+ f3 ⇒ q′ 1= q0+ e3+ f2+ f3= q2 q′ 2= q0+ e1+ e3+ f2+ f3= q1 q′ 3= q0+ e3+ f1+ f3= q3 q′ 4= q0+ e2+ e3+ f1+ f3= q4 q′ 5= q0+ e2+ e3+ f1+ f2= q5 q′ 6= q0+ e2+ f1+ f2= q6 q′ 7= q0+ e2+ f1+ f2+ f3= q7

(118)

q2 q3 f1+ f2 γ12 q′1= q0+ e1+ e3+ f2+ f3= q1 q′2= q0+ e3+ f1+ f3= q3 q′3= q0+ e3+ f2+ f3= q2 q′4= q0+ e2+ e3+ f1+ f3= q4 q′ 5= q0+ e2+ e3+ f1+ f2= q5 q′6= q0+ e2+ f1+ f2= q6 q′7= q0+ e2+ f1+ f2+ f3= q7 q3 q4 e2 C2 q′1= q0+ e1+ e3+ f2+ f3= q1 q′2= q0+ e3+ f2+ f3= q2 q′3= q0+ e2+ e3+ f1+ f3= q4 q′ 4= q0+ e3+ f1+ f3= q3 q′5= q0+ e2+ e3+ f1+ f2= q5 q′6= q0+ e2+ f1+ f2= q6 q′7= q0+ e2+ f1+ f2+ f3= q7 q4 q5 f2+ f3 γ23 q′ 1= q0+ e1+ e3+ f2+ f3= q1 q′2= q0+ e3+ f2+ f3= q2 q′3= q0+ e3+ f1+ f3= q3 q′4= q0+ e2+ e3+ f1+ f2= q5 q′5= q0+ e2+ e3+ f1+ f3= q4 q′6= q0+ e2+ f1+ f2= q6 q′7= q0+ e2+ f1+ f2+ f3= q7 q5 q6 e3 C3 q′1= q0+ e1+ e3+ f2+ f3= q1 q′2= q0+ e3+ f2+ f3= q2 q′3= q0+ e3+ f1+ f3= q3 q′4= q0+ e2+ e3+ f1+ f3= q4 q′ 5= q0+ e2+ f1+ f2= q6 q′6= q0+ e2+ e3+ f1+ f2= q5 q′7= q0+ e2+ f1+ f2+ f3= q7

(119)

q6 q7 f3 G3 q′1= q0+ e1+ e3+ f2+ f3= q1 q′2= q0+ e3+ f2+ f3= q3 q′3= q0+ e3+ f1+ f3= q2 q′4= q0+ e2+ e3+ f1+ f3= q4 q′5= q0+ e2+ e3+ f1+ f2= q5 q′6= q0+ e2+ f1+ f2= q6 q′ 7= q0+ e2+ f1+ f2+ f3= q7 q2 q3 f1+ f2 γ12 q′ 1= q0+ e1+ e3+ f2+ f3= q1 q′2= q0+ e3+ f2+ f3= q2 q′3= q0+ e3+ f1+ f3= q3 q′4= q0+ e2+ e3+ f1+ f3= q4 q′5= q0+ e2+ e3+ f1+ f2= q5 q′ 6= q0+ e2+ f1+ f2+ f3= q7 q′7= q0+ e2+ f1+ f2= q6 (i, i + 1) S7

P

4 R P3 R 5 5 C 5 θ dim H0(C, θ) 6= 0 C

(120)

θ 2 dim H0(C, θ) = 0 2 θ φ ψ (φ+tψ)t∈R K = OC(2) 2 P2 C Qt: (φ + tψ)2= 0 Qt C 2 (φ + tψ) θ t t′ C P3 R Ci γi C0 C1 C2 C3 C4 C5 C6 γ1 γ1,2 γ2,3 γ3 γ3,4 γ4,5 γ5,6 γ1,6 P4 R

(121)

θ C θ imin= 1 d2 imin = 2 d2 ε1 = ε2 = ε3 = 1 qθ([Ci]) = 1 + εi δi Ci εi = 1 δi= 0 i εi = 1 εi= 1 εj = 1 j 6= i 1 εi= 0 i εi= 1 i (δ1+ δ2) + (δ2+ δ3) + · · · + (δ6+ δ1) = 2(δ1+ · · · + δ6) i δi+ δi+1 = 0 γi,i+1 εi= 1 δi+ δi+1= 1 i δ1= 1 δ3= 1 γ1 γ3 ε1= 1 ε3= 1 i εi = 1 2 εi= 0 i 6= 5 εi= 1 δ1 δ3 δ3+ δ4 δ1+ δ6 2 i εi = 1 δ4 = δ6 = 0 C5 δ5 = 0 δ5+ δ4= δ5+ δ6= 0 γ4,5 γ5,6 ε4= ε5= ε6= 1 3 ε2= ε5= 1 δ3+ δ4 δ1+ δ6 εi= 1 δ1= δ3= 1 C2 δ2= 1 γ2,3 γ1,2 ε1= ε2= ε3= 1 4 ε2= ε3= ε5= 1 ε1= ε4= ε6= 0 δ4 δ4= 0 C3 δ3= 0 δ3+ δ4= 0 γ3,4 ε4 = 1 ε3 = 0 δ3 = 0

(122)

γ3 ε3= 1 δ4 = 1 C3 δ3 = 1 δ3+ δ4 = 0 γ3,4 ε4 = 1 ε3 = 0 arf (qθ) = 6 X i=1 (1 + εi)δi = δ1+ δ2+ δ3= δ1+ δ2+ 1 δ1+ δ2 = 1 δ1 = 0 γ1 ε1 = 1 δ1 = 1 C2 δ2= 1 δ1+ δ2= δ2+ δ3= 0 γ1,2 γ2,3 ε1= ε2= ε3 = 1 4 εi= 1 5 ε2= ε3= ε4= ε5= 1 arf (qθ) = 6 X i=1 (1 + εi)δi= (1 + ε1)δ1+ (1 + ε6)δ6 ε1= ε6= 0 δ1+ δ6= 0 γ1,6 ε1 = ε6 = 1 ε6 = 1 ε1 = 0 δ1 = 0 γ1 ε1= 1 εi= 1 i

(123)
(124)

m

Pn

(125)
(126)

Arnaud TOMASINI

Intersections maximales de

quadriques réelles

Résumé

La géométrie algébrique réelle est dans sa définition la plus simple, l'étude des ensembles de

solutions d'un système d'équations polynomiales à coefficients réelles. Dans cette vaste

thématique, on se concentre sur les intersections de quadriques où déjà le cas de trois quadriques

reste largement ouvert. Notre sujet peut être résumé comme l'étude topologique des variétés

algébriques réelles et l'interaction entre leur topologie d'une part et leur déformations et

dégénérations d'autre part, un problème issu du 16ième problème de Hilbert et enrichi par des

développements récents.Au cours de cette thèse, nous allons nous focaliser sur les intersections

maximales de quadriques réelles et en particulier démonter l'existence de telles intersections en

utilisant des développements issus des recherches effectuées depuis la fin des années 80. Dans le

cas d'intersections de trois quadriques, nous allons mettre en évidence le lien très étroits entre ces

intersections d'une part et les courbes planes d'autre part, et démontrer que l'étude des M-courbes

(une des problématiques du 16ième problème de Hilbert) peut se faire à travers l'étude des

intersections maximales. Nous utiliserons ensuite les résultats sur les courbes planes nodales afin

de déterminer dans certains cas les classes de déformations d'intersections de trois quadriques

réelles.

Mots clés

: Formes quadratiques, nombres de Betti, courbes planes, 16ème problème de Hilbert, classes de

déformation.

Résumé en anglais

Real algebraic geometry is in its simplest definition, the study of sets of solutions of a system of

polynomial equations with real coefficients. In this theme, we focus on the intersections of quadrics

where already the case of three quadrics remains wide open. Our subject can be summarized as

the topological study of real algebraic varieties and interaction between their topology on the one

hand and their deformations and degenerations on the other hand, a problem coming from the 16th

Hilbert problem and enriched by recent developments. In this thesis, we will focus on maximum

intersections of real quadrics and particularly prove the existence of such intersections using

research developments made since the late 80. In the case of intersections of three quadrics, we

will point the very close link between the intersections on the one hand and on the other plane

curves, and show that the study of M-curves (one of the problems of the 16th Hilbert problem) may

be done through the study of maximum intersections. Next, we will use the study on nodal plane

curves to determine in some cases deformation classes of intersections of three real quadrics.

Références

Documents relatifs

Dans la suite, on d´ efinira et on appliquera ` a ce complexe de poids cohomologique avec action un foncteur L G , afin obtenir un complexe de poids ´ equivariant cohomologique

Cette majoration nous permettra, entre autre, de démontrer dans la dernière partie que pour les surfaces rationnelles on a

et A coïncident au voisinage de a. Soit S l'ensemble des points singuliers de B\ le germe Sa induit par*? ne contient pas Aai sinon il contiendrait Aai ce qui est impossible puisque

Choisissons, en efÏet, sur chaque composante irréductible de ^f^...,f^\i rencon- trant ^ un point aç.K.i\ l'ensemble de tous ces points est dénombrable, et tout compact de V ne

compacts^ et soit E un sous-ensemble analytique non vide de F, de dimen- sion p&lt; II existe une suite de points x^çE sans point d'accumulation dans F\ jouissant de la

2° Que si l'on néglige dans son premier membre un nombre pair arbitraire de derniers termes, l'équation restante ait encore toutes ses racines imaginaires. Telles sont, par exemple,

Enfin, en guise d’interpr´ etation de cette suite exacte courte de Smith Nash-constructible, on montre que dans le cas d’une vari´ et´ e alg´ ebrique compacte munie d’une

— Soit f un automorphisme loxodromique r´eel d’une sur- face k¨ ahl´erienne compacte r´eelle X, et soit S une composante connexe de X(R) qui est contenue dans l’ensemble de Fatou