• Aucun résultat trouvé

Adaptive Nonlinear Excitation Control of Synhronous Generators

N/A
N/A
Protected

Academic year: 2021

Partager "Adaptive Nonlinear Excitation Control of Synhronous Generators"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-02936801

https://hal.archives-ouvertes.fr/hal-02936801

Submitted on 11 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Generators

G. Damm, Riccardo Marino, Françoise Lamnabhi-Lagarrigue

To cite this version:

G. Damm, Riccardo Marino, Françoise Lamnabhi-Lagarrigue. Adaptive Nonlinear Excitation Control

of Synhronous Generators. Nonlinear and Adaptive Control, 2002, 978-3-540-45802-9. �hal-02936801�

(2)

GilneyDamm 1

, RiardoMarino 2

,andFranoiseLamnabhi-Lagarrigue 1

1

LaboratoiredesSignauxetSystemes,CNRS

Supele,3,rueJoliot-Curie

91192 Gif-sur-YvetteCedex,Frane

dammlss.supele.fr, lamnabhilss.supele.fr

2

DipartimentodiIngegneriaElettronia,UniversitadiRomaTorVergata,

viadiTorVergata110

00133 Rome,Italymarinoing.uniroma2.it

Abstrat. In this paper, ontinuing the line of our previous works, anonlinear

adaptive exitation ontrol is designed for a synhronous generator modeled by

a standard third order model on the basis of the physially available measure-

ments of relative angular speed, ative eletri powerand terminal voltage. The

powerangle,whihisaruialvariableforthe exitationontrol,is notassumed

tobeavailableforfeedbak,asmehanialpowerisalsoonsideredasanunknown

variable. The feedbak ontrol is supposed to ahieve transient stabilization and

voltageregulationwhenfaults ourtotheturbinessothatthemehanialpower

maypermanentlytakeany(unknown)valuewithinitsphysialbounds.Transient

stabilizationandvoltageregulationareahievedbyanonlinearadaptiveontroller,

whihgeneratesbothon-lineonvergingestimates ofthemehanialpowerand a

trajetorytobefollowedbythepoweranglethatonvergestothenewequilibrium

pointompatiblewiththerequiredterminalvoltage.Themainontributionshere,

omparedwithourprevious works,istheuseofon-lineomputationandtraking

ofequilibriumpowerangle,andtheproofofexponentialstabilityofthelosedloop

system for states and parameterestimates, instead of the previous asymptotial

one.

1 Introdution

Theproblemofstabilizationofpowergeneratorsisalassialpowersystems

and ontrolsystemsproblem. It hasbeenapproahedforsometime nowin

manyworksinitiallybylassiontrolandlinearmodernontroltehniques

with good results, but only loally valid. Reently this problem has been

treatedbynonlinearmethods asLyapunovtehniques(seeforinstane[12℄,

[10℄,[7℄).

Reently, feedbaklinearization tehniques wereproposed in [6℄,[4℄ and

[13℄ to design stabilizing ontrols with the purpose of enlarging the stabil-

ity region of the operating ondition. Nonlinear adaptive ontrols are also

proposedin[1℄and[14℄.

Thenonlinearfeedbakontrolalgorithmssofarproposedintheliterature

make use of power angle and mehanial power measurements whih are

(3)

physially not available and have the diÆulty of determining the faulted

equilibrium value whih is ompatible with the required terminal voltage

onethefault(mehanialoreletrialfailure)hasourred.

Followingthelines of ourpreviousworks [5℄and [3℄wemakeuseof the

standardthird order model used in [14℄ (see [2℄ and [15℄) to show that the

terminal voltage, the relative angular speed and the ative eletri power

(whihareatuallymeasurableandavailableforfeedbak)arestatevariables

in thephysialregionofthestatespae

Inthispaper,ontinuingourpreviousresults,westudythezerodynamis

ofthesystem,withrespettotheterminalvoltage,fortypialvaluestoshow

the existene of two equilibrium points, one stable and oneunstable. This

is a motivation for the useof nonlinear ontrol instead of the lassialone

omputedusingtheapproximatelinearized modelaroundthestable point.

In our previous work [5℄, a nonlinear adaptive feedbak ontrol on the

basis of physially available measurements (relative angular speed, ative

eletri power and terminal voltage) waspresented. There, when apertur-

bationourred,thesystemwasmaintainedin theoldequilibriumpoint,no

longer valid, ausing wrong outputs, while the estimation of the new equi-

librium point wasmade.Then, atrajetory todrivethe systemto thenew

equilibrium pointwasomputed.

Inthe presentwork,estimation of thenew equilibrium point and om-

putation of the trajetory that drives the system there are done on-line.

Global exponentialstability isguaranteed forthe whole losed loopsystem

to this new previouslyunknown equilibrium point. There is a onsiderable

improvement with respet to the output errorswith the on-line proedure,

androbustnessisguaranteedbytheexponentialstability.

2 Dynamial model

Asin [5℄,weonsiderthesimplied mehanialmodelexpressedin perunit

as

_

Æ=!

_

!= D

H

!+

!

s

H (P

m P

e

) (1)

where:Æ(rad) isthepowerangleofthegeneratorrelativeto theangleofthe

innitebusrotatingatsynhronousspeed!

s

;!(rad/s)istheangularspeed

of thegeneratorrelativeto thesynhronousspeed!

s

i.e.! =!

g

!

s with

!

g

beingthegeneratorangularspeed;H(s)istheperunit inertiaonstant;

D(p:u:)istheperunitdampingonstant;P

m

(p:u:)istheperunitmehanial

input power; P

e

(p:u:) is theperunit ativeeletripowerdeliveredby the

generatorto theinnitebus.Notethattheexpression! 2

=!

g

issimpliedas

(4)

! 2

s

=!

g '!

s

intheright-handsideof(1).Theativeandreativepowersare

givenby

P

e

= V

s E

q

X

ds

sin(Æ) (2)

Q= V

s

X

ds E

q os(Æ)

V 2

s

X

ds

(3)

where: E

q

(p:u:) isthequadrature'sEMF;V

s

(p:u:)is thevoltageat thein-

nitebus;X

ds

=X

T +

1

2 X

L +X

d

(p:u:)isthetotalreatanewhihtakesinto

aount X

d

(p:u:), the generatordiret axis reatane,X

L

(p:u:), the trans-

mission line reatane,andX

T

(p:u:), thereataneof thetransformer,and

thedenitionX

S 4

=X

T +

1

2 X

L

.ThequadratureEMF,E

q

,andthetransient

quadratureEMF,E 0

q

,arerelatedby

E

q

= X

ds

X 0

ds E

0

q X

d X

0

d

X 0

ds V

s

os(Æ) (4)

whilethedynamisofE 0

q

aregivenby

dE 0

q

dt

= 1

T

d0 (K

u

f E

q

) (5)

inwhih:X 0

ds

=X

T +

1

2 X

L +X

0

d

(p:u:)withX 0

d

denotingthegeneratordiret

axistransientreatane;u

f

(p:u:)isthe inputtothe (SCR)amplierof the

generator;K

isthegainoftheexitationamplier;T

d0

(s)isthediretaxis

shortiruittimeonstant.

Espeially beauseP

e

is measurable while E 0

q

is not, it is onvenientto

expressthestatespaemodelusing(Æ;!;P

e

)asstates,whihareequivalent

states aslongas the powerangle Æ remains in the openset 0<Æ <, as

follows.

_

Æ=!

_

!= D

H

!

!

s

H (P

e P

m )

_

P

e

= 1

T 0

d0 P

e +

1

T 0

d0

V

s

X

ds

sin(Æ)[K

u

f +T

0

d0 (X

d X

0

d )

V

s

X 0

ds

!sin(Æ)℄

+ T 0

d0 P

e

!ot(Æ)g

(6)

in whih(Æ;!;P )isthestateandu istheontrolinput.

(5)

Note that when Æ is near 0 or near the eet of the input u

f

on the

overalldynamisisgreatlyredued.Notealsothat herewehaveintrodued

thenotation

T 0

d0

= X

0

ds

X

ds T

d0

Thegeneratorterminalvoltagemodulusisgivenby

V

t

=

X 2

s P

2

e

V 2

s sin

2

(Æ) +

X 2

d V

2

s

X 2

ds +

2X

s X

d

X

ds P

e ot(Æ)

1

2

whihistheoutputofthesystemtoberegulatedtoitsreferenevalueV

tr

=

1(p:u:)

2.1 PowerAngle

Thepowerangleis notmeasurableandis alsonotaphysialvariable tobe

regulated;theonly physialvariable toberegulatedis theoutputV

t , while

(V

t

;!;P

e

)aremeasuredandareavailableforfeedbakation.

Asamatteroffat(V

t

;!;P

e

)isanequivalentstateforthemodel(6)(as

provedin[5℄)

Æ=arotg V

s

X

s P

e X

d V

s

X

ds +

s

V 2

t X

2

s

V 2

s P

2

e

!!

(7)

Iftheparameters(V

s

;X

s

;X

d

;X

ds

)areknown,statemeasurementsareavail-

able.From(7)itfollowsthat inorderto regulatetheterminalvoltageV

t to

itsreferenevalue(V

tr

=1(p:u:))Æshould beregulatedto

Æ

s

=arotg V

s

X

s P

m X

d V

s

X

ds +

s

V 2

tr X

2

s

V 2

s P

2

m

!!

(8)

Fromaphysial viewpointthenaturalhoieof statevariables is(V

t

;!;P

e )

whiharemeasurable.Thestatefeedbakontroltaskistomakethestability

regionofthestableequilibriumpoint(V

tr

;0;P

m

)aslargeaspossible.Infat

the parameter P

m

may abruptly hange to an unknown faulted value P

mf

due to turbine failures sothat (V

tr

;0;P

m

)may notbelongto the region of

attrationof thefaultedequilibrium point (V

tr

;0;P

mf

).The statefeedbak

ontrol should be designsothat typialturbine failuresdo notauseinsta-

bilitiesandonsequentlylossofsynhronismandinabilitytoahievevoltage

regulation.

AredutionfromP

m to(P

m )

f

ofthemehanialpowergeneratedbythe

turbine, hangestheoperatingondition:thenewoperatingondition(Æ

s )

f

isthesolutionof

(P

m )

f

P +

sin(Æ)

f

sin(Æ )

=0

(6)

andsine(P

m )

f

istypiallyunknown,theorrespondingnewstableoperating

ondition(Æ

s )

f

isalsounknown.

2.2 Zero Dynamis

If weregulatethe voltage output (V

t

) to itsreferene value (V

tr

), the zero

dynamiswillbegivenby

_

Æ=!

_

!= D

H

!+

!

s

H (P

m +

X

d

X

s X

ds V

2

s

sin(Æ)os(Æ)

V

s

X

s sin(Æ)

s

V 2

tr X

2

d

X 2

ds V

2

s sin

2

(Æ)

whihareveryomplex,andforsomeinitialonditionsorparametersvalues

maybeomeunstable.

Ifweuse thevaluesdened in[5℄ wemayplot!_ asafuntion of! and

Æ, therewill thenbetwopointsofÆthat satisfytheequilibrium ofthezero

dynamis.These points(thetworealones) areÆ=1:26andÆ=2:96.

Linearizingthesystemaroundeahoneofthesetwopoints,wewillhave

aseigenvaluesthepairs[ 0:31 7:58I; 0:31+7:58I℄and[ 13:86;+13:86℄

respetively.

Thus we have shown the existene of two equilibrium points, one

stableandoneunstable.Therewillthenbeanattrationregionforthestable

one. Ifoneis driven outof this region (by initial onditionsor byafault),

the ontroller will not at regulating ! and Æ and the system will beome

unstable. This shows that using the output error voltage asthe only error

signalmaybedangerousasonemayregulatethisvoltageandloosestability.

3 Adaptive Controller and Main Result

Inthissetionwepresentthealulationoftheadaptiveontrollerasin [5℄.

Ourmainresultisthentoprovetheglobalexponentialstabilityofthewhole

system,withparameterexponentialonvergene.

The model (6) is rewritten substituting P

m

by (t) whih is apossibly

time-varying disturbane:this parameterisassumed to beunknown andto

belongtotheompatset[

m

;

M

℄:wherethelowerandupperbounds

m

;

M

areknown.

Letf(;x) beaC 3

referenesignaltobetraked.Dene (

1

>0)

~

Æ(t)=Æ(t) f(;x)

!

=

1

~

Æ+ _

f(;x)

~

!=! !

=!+

~

Æ _

f(;x)

(7)

sothatthersttwoequationsin(6)arerewrittenas

_

~

Æ=

1

~

Æ+!~

_

~

!= D

H

!+

!

s

H

((t) P

e

)

2

1

~

Æ+

1

~

!



f(;x)

Dene(

2

>0;k>0) thereferenesignalforP

e as

P

e

= H

!

s

D

H

!

2

1

~

Æ+

1

~

!



f(;x)+

2

~

!+

~

Æ+ 1

4 k

!

s

H

2

~

!

+

^

while

^

is an estimate of = P

m and

~

P

e

= P

e P

e

so that (6) may be

rewrittenas(

~

=

^

)

_

~

Æ=

1

~

Æ+!~

_

~

!=

~

Æ

2

~

!

!

s

H

~

P

e k

4

!

s

H

2

~

!+

!

s

H

~

_

~

P

e

= 1

T 0

d0 P

e +

V

s

X

ds T

0

d0

sin(Æ)K

u

f +

(X

d X

0

d )V

2

s

X

ds X

0

ds

!sin 2

(Æ)+P

e

!ot(Æ)

H

!

s

2

1

+1+

1 D

H

(

1

~

Æ+!)~

+

D

H +

1 +

2 +

k

4

!

s

H

2

D

H

!

2

1

~

Æ+

1

~

!

!

s

H P

e



f(;x)

D

H +

1 +

2 +

k

4

!

s

H

2

^

_

^

D

H +

1 +

2 +

k

4

!

s

H

2

~

+ D

!

s



f(;x)+ H

!

s _



f(;x)

Dening

3

>0,wethenproposetheontrollaw

u

f

= T

0

d0 X

ds

V

s K

sin(Æ)

0

0

= 1

T 0

d0 P

e (X

d X

0

d )

X

ds X

0

ds V

2

s

!sin 2

(Æ) P

e

!ot(Æ)

+ H

!

s

2

1

+1+

1 D

H

(

1

~

Æ+!)~

+

D

H +

1 +

2 +

k

4

!

s

H

2

D

H

!

2

1

~

Æ+

1

~

!

!

s

H P

e



f(;x)

+

D

H +

1 +

2 +

k

4

!

s

H

2

^

+ _

^

k

4

D

H +

1 +

2 +

k

4

!

s

H

2

2

~

P

e D

!



f(;x) H

! _



f(;x)

3

~

P

e +

!

s

H

~

!

(8)

then,thelosedloopsystembeomes

_

~

Æ=

1

~

Æ+!~

_

~

!=

~

Æ

2

~

!

!

s

H

~

P

e k

4

!

s

H

2

~

!+

!

s

H

~

_

~

P

e

=

!

s

H

~

!

3

~

P

e

D

H +

1 +

2 +

k

4

!

s

H

2

~

k

4

D

H +

1 +

2 +

k

4

!

s

H

2

2

~

P

e

(9)

Theadaptationlawis( isapositiveadaptationgain)

_

^

=Proj

~

P

e

D

H

1

2 k

4

!

s

H

2

+!~

!

s

H

;

^

(10)

whereProj(y;

^

)isthesmoothprojetionalgorithm introduedin [11℄

Proj(y;

^

)=y; ifp(

^

)0

Proj(y;

^

)=y; ifp(

^

)0 and hgradp(

^

);yi0

Proj(y;

^

)=[1 p(

^

)jgradp(

^

)j℄; otherwise

(11)

with

p()= (

M+m

2 )

2

(

M m

2 )

2

+2(

M m

2 )

foranarbitrarypositiveonstantwhih guaranteesin partiularthat:

i)

m

^

(t)

M +

ii) jProj(y;

^

)jjyj

iii)(

^

)Proj(y;

^

)(

^

)y

Considerthefuntion

W = 1

2 (

~

Æ 2

+!~ 2

+

~

P

e 2

) (12)

whosetimederivative,aordingto(9), is

_

W =

1

~

Æ 2

2

~

! 2

3

~

P

e 2

+!~

!

s

H

~

k

4

!

s

H

2

~

! 2

D

+

1 +

2 +

k

!

s

2

~

~

P

e k

D

+

1 +

2 +

k

!

s

2

2

~

P

e 2

(9)

Completingthesquares, weobtaintheinequality

_

W

1

~

Æ 2

2

~

! 2

3

~

P

e 2

+ 2

k

~

2

(13)

whihguaranteesarbitraryL

1

robustnessfromtheparametererror

~

tothe

trakingerrors

~

Æ;!;~

~

P

e .

The projetion algorithms (11) guarantee that

~

is bounded, and, by

virtueof(12)and(13),that

~

Æ,!~and

~

P

e

arebounded.Therefore, _

^

isbounded.

Integrating(13),wehaveforeverytt

0 0

Z

t

t0 (

1

~

Æ 2

+

2

~

! 2

+

3

~

P

e 2

)d+ 2

k Z

t

t0

~

2

d W(t) W(t

0 )

SineW(t)0and,byvirtueoftheprojetionalgorithm(11),

~

(t)

M

m +

itfollowsthat

Z

t

t0 (

1

~

Æ 2

+

2

~

! 2

)d W(t

0 )+

2

k (

M

m +)

2

(t t

0 )

whih, if W(t

0

) = 0 (i.e. t

0

is a time before the ourrene of the fault),

impliesarbitraryL

2

attenuation(byafatork)oftheerrors

~

Æand!~aused

bythefault.Toanalyzetheasymptotibehavioroftheadaptiveontrol,we

onsiderthefuntion

V = 1

2 (

~

Æ 2

+!~ 2

+

~

P

e 2

)+ 1

2 1

~

2

The projetion estimation algorithm (11) is designed so that the time

derivativeofVsatises

_

V

1

~

Æ 2

2

~

! 2

3

~

P

e 2

(14)

Integrating(14),wehave

lim

t!1 Z

t

t0 (

1

~

Æ 2

+

2

~

! 2

+

3

~

P

e 2

)d V(0) V(1)<1

Fromtheboundednessof _

~

Æ;

_

~

!and _

~

P

e

,andBarbalat'sLemma(see[9℄,[8℄)

itfollowsthat

lim

t!1

2

4

~

Æ(t)

~

!(t)

~

P (t) 3

5

=0

(10)

Wemaynowrewritethelosedloopsystemfollowingthenormalform:

_

~

x=A~x+ T

~

_

~

= x~

whihleadsto:

_

~ x=

2

4

1

1 0

1 (

2 +

2 )

!s

H

0

!

s

H

3 +

k

4

2

1

3

5

~ x+

2

4 0

!

s

H

1 3

5~

(15)

_

~

=

0

!

s

H

1

~ x

where

1 and

2 ,as

3

onnextequation,areonstants.Andthenomputing:

T

=

! 2

s

H 2

+ 2

1

=

3

>0

We then may show by persisteny of exitation that x~ and

~

will be

globally (for the model validity region) exponentially stable, then all error

signals go exponentially to zero, for all C 3

f(;x). This is also valid then

forthepartiularasewhere f(;x)=Æ

r

whereÆ

r

isgivenbyequation(8).

But, sine Æ

r

is aone-to-one smooth funtion of , it will onverge to the

orretequilibrium valueÆ

s as

~

onvergesto0,i.e.thereferenetrajetory

willonvergetotheunknownequilibriumpointandthenlim

t!1 (Æ Æ

s )=0.

4 Simulation results

Inthissetionsomesimulationresultsaregivenwithreferenetotheeight-

mahine powersystemnetworkreportedin [4℄withthefollowingdata:

!

s

=314:159rad/s D=5p.u. H =8s

T

d0

=6:9s K

=1 X

d

=1:863p.u.

X 0

d

=0:257p.u. X

T

=0:127p.u.X

L

=0:4853p.u.

Theoperatingpointis Æ

s

=72 o

, P

m

=0:9 p.u.,!

0

=0to whih orre-

spondsV

t

=1p.u.,withV

s

=1p.u..

It was onsidered a fast redution of the mehanial input power, and

simulatedaordingto thefollowingsequenes

1. Thesystemisinpre-faultedstate.

2. Att=0:5sthemehanialinputpowerbeginstoderease.

(11)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 40

50 60 70 80

( 1 )

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4 0.6 0.8 1

( 2 )

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4 0.6 0.8 1

( 3 )

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.4

−0.2 0 0.2 0.4

( 1 )

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.94 0.96 0.98 1

( 2 )

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1 0 1 2 3

( 3 )

(a) (b)

Fig.1.a1)RealÆ(-),CalulatedÆ(-.),Æ

r

(--) a2)P

m (-),

^

(--) a3)P

m (-),P

e

(--)b1)! b2)Vt b3)Controlsignal

Thesimulationswerearriedoutusingasontrolparameters

i

=20 1i3

=1 k=0:1

Fig.1.a1)showsthatthealulatedpoweranglemathesperfetlythereal

one.Italsoshowsthatthetrajetoryforthepowerangle(Æ

r

)goessmoothly

toitsnalvalue,andthat Æfollowsitperfetly.

InFig. 1.a2) one may see that the estimation of the mehanial power

is aurate, it may be veryfast ifwehange the parameters,and speially

iflargererrorsareaeptedforthestateandoutputvariables. Thismaybe

understoodbylookingat equation(10).

The eletrial power is also orretly driven to the mehanial one as

wesee in Fig. 1.a3).Thesame may be observedin Fig.1.b1) for therotor

veloity.

Fig.1.b2)showshowtheoutputvoltagedropsduringthefault,andgoes

toitsorretvaluewhenthesystemisdriventotheorretequilibriumpoint.

Ifestimationwasnotorret,therewouldbeasteadystateerror.

Finally, onean see in Fig. 1.b3) that theontrol signalis verysmooth

andiskeptinside thepresribedbounds.

Notethatduring alltime,errorsareverysmall.Theyanbemadeeven

(12)

5 Conlusions

Inapreviousworkwehaveomputedthezerodynamisofthesystemwith

respetto theterminalvoltagehavingthenobtainedahighlynonlinearse-

ondorderdynamis.Basedontypialvalues,weshowherethatthereisone

stableandoneunstablepoints,andthen,anattrationregionforthestable

one.This is amotivation to beonernedwith allthe statevetorand not

onlywiththeoutputvoltagesine,evenkeepingitregulatedtoitsreferene

value onemay nd instability for thewhole system. It is alsoamotivation

for the nonlinearontrol asthe systemmay always be driven to an unsta-

ble pointwhere alinear ontrol,speially onedesignedusing thelinearized

systemaroundthestablepoint,willnotbeabletostabilize it.

Finally,using thesameontrollerasin previousworks,weprovetheex-

ponentialstabilityofthelosedloopsystem.Wealsoprovethattheestimate

ofthe parameteronvergesexponentiallytoits truevalue.Thesystemmay

bedrivenarbitrarilyfastto thenewequilibriumpoint.Theonlyrestrition

willbethemagnitudeoftheontrolsignalandtheaeptederrorsignal.

Our present researh inludes the problem of transmission line failure.

Wehavealsostartedtheproeduretodopratialimplementationstoverify

ourssimulations.Themulti-mahineproblemwillthenbethenextstep.

Aknowledgments

TherstauthorwouldliketoaknowledgethenanialsupportofCAPES

Foundation.

Referenes

1. Silva-A.S.-KokotoviP. Bazanella,A. Lyapunov designofexitation ontrol

for synhronousmahines. InPro.36thIEEE -CDC,San Diego,CA,1997.

IEEE.

2. A. R.Bergen. PowerSystemsAnalysis. PrentieHall,EnglewoodClis,NJ,

1989.

3. Lamnabhi-LagarrigueF.-MarinoR.Damm,G.R.Adaptivenonlinearexitation

ontrolofsynhronousgeneratorswithunknownmehanialpower.In1stIFAC

SymposiumonSystemStruture andControl,Prague,CzehRepubli,August

2001.IFAC.

4. Chen-L. Fan-Y. Gao, L. and H. Ma. A nonlinear ontrol design for power

systems. Automatia,28:975{979, 1992.

5. Damm-G.R.Lamnabhi-LagarrigueF.Marino,R.Adaptivenonlinearexitation

ontrol of synhronous generators with unknown mehanial power. book -

NonlinearControlintheYear2000-Springer{Verlang, 2000.

6. R.Marino.Anexampleofnonlinearregulator.IEEETrans.AutomatiControl,

29:276{279, 1984.

7. R. Marino and S. Niosia. Hamiltonian-typelyapunov funtions. Int. J.of

(13)

8. R.MarinoandP.Tomei.NonlinearControlDesign-Geometri,Adaptiveand

Robust. PrentieHall,HemelHempstead,1995.

9. K. S. Narendra and A. M. Annaswamy. Adaptive Systems. Prentie Hall,

EnglewoodClis,NJ,1989.

10. A. Pai, M. and V. Rai. Lyapunov-popov stability analysis of a synhronous

mahinewithuxdeayandvoltageregulator. Int.J.ofControl,19:817{826,

1974.

11. J. Pomet and L. Praly. Adaptive nonlinear regulation: estimation from the

lyapunovequation. IEEE Trans.Automati Control,37:729{740,1992.

12. W. Siddiquee,M. Transientstability of ana..generatorby lyapunov diret

method. Int.J.ofControl,8:131{144,1968.

13. Hill-D.J.-MiddletonR.H.Wang,Y.andL.Gao. Transientstabilityenhane-

mentand voltageregulation ofpowersystems. IEEE Trans.Power Systems,

8:620{627, 1993.

14. Hill-D. J.-Middleton R. H. Wang, Y. and L. Gao. Transient stabilization of

powersystemswithanadaptiveontrollaw. Automatia,30:1409{1413,1994.

15. Y.WangandD.J.Hill.Robustnonlinearoordinatedontrolofpowersystems.

Automatia,32:611{618,1996.

Références

Documents relatifs

The only information that the overtaking (robot) vehicle can use for feedback control is the current relative position and orientation with respect to the overtaken vehicle given

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

on one hand, well compensation of current harmonics and the reactive currents absorbed by the nonlinear three-phase load and, on the other hand, a tight regulation of

From the empirical results and the simulation experiments, we draw the conclusion that the proposed portmanteau test based on squared residuals of an APGARCH(p, q) (when the power

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des